Кривые второго порядка. Квадратичные формы

Понятие квадратичной формы и способы ее записи. Действительные и недействительные, вырожденные и невырожденные формы, ранг матрицы. Знакоопределенность квадратичных форм, определение ее миноров. Критерии положительной и отрицательной определенностей.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 03.08.2010
Размер файла 41,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Высшая математика

Кривые второго порядка

Квадратичные формы

Содержание

1. Понятие квадратичной формы и способы ее записи

2. Знакоопределенность квадратичных форм

3. Критерии положительной и отрицательной определенностей

Литература

1. Понятие квадратичной формы и способы ее записи

Квадратичной формой (х1, х2, …, xn) n действительных переменных х1, х2, …, xn называется сумма вида

,(1)

где aij - некоторые числа, называемые коэффициентами. Не ограничивая общности, можно считать, что aij = aji.

Квадратичная форма называется действительной, если aij ГR. Матрицей квадратичной формы называется матрица, составленная из ее коэффициентов. Квадратичной форме (1) соответствует единственная симметричная матрица

то есть АТ = А. Следовательно, квадратичная форма (1) может быть записана в матричном виде (х) = хТАх, где

хТ = (х1 х2 … xn). (2)

И, наоборот, всякой симметричной матрице (2) соответствует единственная квадратичная форма с точностью до обозначения переменных.

Рангом квадратичной формы называют ранг ее матрицы. Квадратичная форма называется невырожденной, если невырожденной является ее матрица А. (напомним, что матрица А называется невырожденной, если ее определитель не равен нулю). В противном случае квадратичная форма является вырожденной.

Пример 1.

Записать матрицу квадратичной формы

1, х2, x3) = - 6х1х2 - 8х1х3 + + 4х2х3 -

и найти ее ранг.

Решение.

r(A) = 3

квадратичная форма невырождена.

2. Знакоопределенность квадратичных форм

Квадратичная форма (1) называется положительно определенной (или строго положительной), если (х) > 0, для любого х = (х1, х2, …, xn), кроме х = (0, 0, …, 0).

Матрица А положительно определенной квадратичной формы (х) также называется положительно определенной. Следовательно, положительно определенной квадратичной форме соответствует единственная положительно определенная матрица и наоборот.

Квадратичная форма (1) называется отрицательно определенной (или строго отрицательной), если (х) < 0, для любого х = (х1, х2, …, xn), кроме х = (0, 0, …, 0).

Аналогично как и выше, матрица отрицательно определенной квадратичной формы также называется отрицательно определенной.

Следовательно, положительно (отрицательно) определенная квадратичная форма (х) достигает минимального (максимального) значения (х*) = 0 при х* = (0, 0, …, 0).

Отметим, что большая часть квадратичных форм не является знакоопределенными, то есть они не являются ни положительными, ни отрицательными. Такие квадратичные формы обращаются в 0 не только в начале системы координат, но и в других точках.

Пример 2.

Определить знакоопределенность следующих квадратичных форм.

1)

т. е. квадратичная форма является положительно определенной.

2)

т. е. квадратичная форма является отрицательно определенной.

3)

данная квадратичная форма не является знакоопределенной, так как она равна 0 во всех точках прямой х1 = -х2, а не только в начале системы координат.

Когда n > 2 требуются специальные критерии для проверки знакоопределенности квадратичной формы. Рассмотрим их.

Главными минорами квадратичной формы называются миноры:

то есть это миноры порядка 1, 2, …, n матрицы А, расположенные в левом верхнем углу, последний из них совпадает с определителем матрицы А.

3. Критерий положительной и отрицательной определенности

Критерий положительной определенности (критерий Сильвестра)

Для того чтобы квадратичная форма (х) = хТАх была положительно определенной, необходимо и достаточно, что все главные миноры матрицы А были положительны, то есть:

М1 > 0, M2 > 0, …, Mn > 0.

Критерий отрицательной определенности

Для того чтобы квадратичная форма (х) = хТАх была отрицательно определенной, необходимо и достаточно, чтобы ее главные миноры четного порядка были положительны, а нечетного - отрицательны, то есть:

М1 < 0, M2 > 0, М3 < 0, …, (-1)n Mn > 0.

Пример 3.

При каких значениях а и в квадратичная форма будет положительно определенной?

1, х2, x3) =

Решение.

Построим матрицу А и найдем ее главные миноры.

М1 = 1 > 0,

= а - 1 > 0 а > 1.

= ав - а - в > 0 в > .

Ответ:

а > 1, в > .

Пример 4.

При каких значениях а и в квадратичная форма будет отрицательно определенной?

1, х2, x3) =

Решение.

М1 = -1 < 0,

= -а - 1 > 0 а < -1.

= -ав - а - в < 0 в > - .

Ответ

а < -1, в > -.

Пример 5.

Доказать, что квадратичная форма

1, х2, x3) =

положительно определена.

Решение.

Воспользуемся критерием Сильвестра. Построим матрицу А и найдем главные миноры матрицы А.

М1 = 6 > 0, = 26 > 0, М3 = А = 162 > 0

1, х2, x3)

положительно определенная квадратичная форма.

Литература

1. Гусак А. А. Аналитическая геометрия и линейная алгебра.- Мн.: Тетрасистемс, 1998.

2. Овсеец М. И., Светлая Е. М. Сборник задач по высшей математике. Учебное издание.- Мн.: ЧИУиП, 2006.- 67 с.


Подобные документы

  • Фундаментальные понятия теории квадратичных форм. Линейные, квадратичные и билинейные функционалы. Приведение квадратичной формы к каноническому виду. Классификация комплексных квадратичных функционалов. Определенные вещественные квадратичные функционалы.

    контрольная работа [378,5 K], добавлен 24.08.2015

  • Основные способы приведения квадратичных форм к каноническому виду. Выделение полных квадратов по стандартной схеме метода Лагранжа. Запись матрицы перехода. Линейное и невырожденное преобразование координат. Метод ортогональных преобразований.

    лекция [362,9 K], добавлен 05.09.2013

  • Исследование кривой второго порядка. Определение типа кривой с помощью инвариантов. Приведение к каноническому виду, построение графиков. Исследование поверхности второго порядка. Определение типа поверхности. Анализ формы поверхности методом сечений.

    курсовая работа [231,0 K], добавлен 28.06.2009

  • Исследование видов квадратичных форм и способов приведения квадратичных форм к каноническому виду. Сфера применения и особенности данного вида уравнений: определения и доказательство основных теорем, алгоритм решения ряда задач по данной тематике.

    контрольная работа [286,0 K], добавлен 29.03.2012

  • Основные свойства кривых второго порядка. Построение кривой в канонической и общей системах координат. Переход уравнения поверхности второго порядка к каноническому виду. Исследование формы поверхности методом сечений и построение полученных сечений.

    курсовая работа [166,1 K], добавлен 17.05.2011

  • Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.

    лекция [30,2 K], добавлен 14.12.2010

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.

    реферат [202,6 K], добавлен 26.01.2011

  • Изучение понятий, действий (сумма, разность, произведение), свойств квадратной матрицы. Определение и признаки ранга матрицы. Анализ методов окаймляющих миноров и преобразований. Расчет системы линейных уравнений согласно методам Крамера и матричному.

    реферат [178,9 K], добавлен 01.02.2010

  • Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.

    курсовая работа [132,1 K], добавлен 14.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.