Линейная модель множественной регрессии

Цели линейной модели множественной регрессии (прогноз, имитация, сценарий развития, управление). Анализ эконометрической сущности изучаемого явления на априорном этапе. Параметризация и сбор необходимой статистической информации, значимость коэффициентов.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 21.09.2009
Размер файла 68,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

14

Задание 1

Линейная модель множественной регрессии ЛММР

Этап. Постановочный.

На постановочном этапе осуществляется определение конечных целей модели (прогноз, имитация, сценарий развития, управление) набор участвующих в ней факторов и показателей, их роль.

Пусть конечная цель модели - имитация поведения РТС индекса в зависимости цены акций.

Обозначим:

у - РТС индекс,

х1 - цена акции,

х2 - цена акции.

Этап. Априорный

На априорном этапе выполняется предметный анализ эконометрической сущности изучаемого явления, формирование и формализации априорной информации относящейся к природе исходных статистических данных и случайных составляющих.

Предмодельный анализ сущности изучаемого явления (используемой методики расчета РТС индекса), а также то, что обе акции входят в список, утвержденный для его расчета, позволяют сделать вывод о вероятности линейной зависимости поведения у от поведения х1 и х2.

Предположим, что х1 и х2 - неслучайные переменные, а у - случайная переменная.

Этап. Параметризация на этапе параметризация выполняется моделирование 3, т.е. выбор общей модели вида, состава, формы входящих в нее связей.

Анализ, проведенный на этапах 1,2 и сделанные предположения позволяют выбрать для наших целей модель вида:

В качестве рабочей гипотезы принимаем допущение о взаимности и гомоскедастичности регрессионных остатков l.

Этап. Информационный.

На информационном этапе выполняется сбор необходимой статистической информации, регистрация значений участвующих в модели факторов и показателей на различных временных и пространственных интервалах функционирования явления.

Наши данные приведены по итогам торгов в Российской торговой системе на 18.00 последовательно по датам торгов за октябрь 2003г. (данные с www.rbc.ru).

№ наблюдения

Дата

РТС индекс (посл)

Цена акции ЛукОйл (посл), USD

Цена акции НорНикель ГМК (посл), USD

1

01.10 03

574,11

20,66

49,00

2

02.10 03

589,50

21,52

49,80

3

03.10.03

594,26

22,40

50,25

4

06.10.03

597,11

22,52

52,10

5

07.10.03

609,60

23,62

54,94

6

08.10.03

627,74

24,10

60,40

7

09.10.03

626,89

23,30

61,70

8

10.10.03

621,40

22,95

59,40

9

13.10.03

621,34

22,83

60,40

10

14.10 03

642,01

23,45

65,00

11

15.10.03

629,49

22,70

61,50

12

16.10.03

640,08

23,00

63,10

13

17.10.03

643,24

23,80

60,50

14

20.10.03

644,48

23,24

60,25

15

21.10 03

619,24

22,67

58,25

16

22.10 03

595,68

21,88

57,10

17

23.10.03

588,73

21,65

55,50

18

24.10 03

594,91

21,83

56,50

19

27.10.03

531,85

20,40

53,75

20

28.10.03

565,47

21,00

56,55

21

29.10.03

537,22

21, 20

55,95

22

30.10.03

512,37

19,25

53,00

23

31.10 03

508,94

20, 20

51,55

Визуальный анализ данных позволяет сделать вывод об изменении тенденции в рассматриваемом периоде. При графическом отображении значений РТС индекса данное изменение хорошо заметно:

Построим, оценим качество и сравним графически три варианта модели:

по всей выборке,

за период возрастания индекса (первые 14 наблюдений),

за период убывания индекса (последние 10)

А также сделаем вывод о справедливости следующего априорного утверждения: модели 2,3 описывают исходные данные лучше, чем модель 1.

Этап. Идентификация модели

На этапе идентификации выполняется статистический анализ модели и, прежде всего статистическое оценивание неизвестных параметров.

В нашем случае имеется пространственная выборка объема k=23 (14 - для периода возрастания, 10 убывания). Число объясняющих переменных n=2. Матрица Х модели будет составлена из 3 столбцов размерности 23 (14,10) каждый. При этом в качестве первого столбца используется вектор из одних единиц, столбцы 2 - 3 представляют собой столбцы х1 и х2.

Подставляя соответствующие значения в формулу рассчитаем МНК - оценки для параметров А.

по всей выборке

23

510,1700

1306,5000

510,1700

11344,4995

29032,7645

1306,5000

29064,5645

74660,5000

Обратная

16,9368

-0,6252

-0,0533

-0,8478

0,0549

-0,0065

0,0336

-0,0104

0,0035

13715,6600

305186,0672

781955,1640

-152,2248

А =

33,8819

-0,0526

Y=-152,2248+33,8819*X1-0,0526*X2

за период возрастания индекса (первые 14 наблюдений)

14

320,0900

808,3500

320,0900

7329,1023

18527,9690

808,3500

18527,9690

47050,7575

Обратная

58,3597

-3,1314

0,2305

-3,1314

0, 1983

-0,0243

0,2305

-0,0243

0,0056

8661,2500

198238,8637

501570,9840

295,8791

А=

6,1272

3,1641

Y=295,8791+6,1272*X1+3,1641*X2

за период убывания индекса (последние 10)

10

213,3200

558,4000

213,3200

4563,2348

11936,8055

558,4000

11936,8055

31239,8050

Обратная

56,1080

1, 1991

-1,4611

1, 1991

0,4902

-0, 2088

-1,4611

-0, 2088

0,1059

5698,8900

122039,6387

319214,1000

-309,1111

А =

24,5941

6,3460

Y=-309,1111+24,5941*X1+6,3460*X2

Согласно первому уравнению, при увеличении цены акции ЛукОйл на 1 дол., РТС индекс возрастает на 33,8819 пункта; при увеличении цены акции НорНикель ГМК на 1 дол. уменьшится на 0,0526 пункта.

Согласно второму уравнению, при увеличении цены акции ЛукОйл на 1 дол., РТС индекс возрастет на 6,1272 пункта; при увеличении цены акции НорНикель ГМК на 1дол. возрастает на 3,1641 пункта.

Согласно третьему уравнению, при увеличении цены акции ЛукОйл на 1 дол., РТС индекс возрастет на 24,5941 пункта; при увеличении цены акции НорНикель ГМК на 1 дол. возрастает на 6,3460 пункта.

Этап. Верификация модели

На этапе верификации модели выполняется сопоставление модельных и реальных данных. Проверка адекватности модели, оценка точности модельных данных.

Проблема верификации заключается в решении вопроса о том, можно ли рассчитывать, что использование построенной модели даст результаты достаточно совпадающие с реальностью.

Наиболее распространенный подход верификации эконометрической модели - это ретроспективные расчеты.

Все исходные статистические данные за n - периодов времени делятся на две части:

обучающая выборка размерности n - j

экзаменующая выборка j

По данным обучающей выборки строится модель

С помощью модели осуществляется прогноз на j следующих периодов

Сравниваются прогнозные значения с реальными из экзаменующей выборки. Проводится анализ, оценивается точность

Проверка общего качества уравнения регрессии

Первый показатель - стандартная ошибка оценки Y.

Второй показатель - коэффициент детерминации, он характеризует долю общей вариации результирующего признака объясненную поведением выборочной функции регрессии.

При росте числа регрессоров значение R2 возрастает, однако качество описание исходных данных регрессионного уравнения может при этом не улучшиться, чтобы устранить этот подобный эффект проводят корректировку этого показателя на число регрессоров.

Проверка статистической значимости коэффициентов

Рассчитываются ошибки коэффициентов регрессии, для этого строятся ковариационные матрицы оценок. На главной диагонали матрицы стоят квадраты ошибок коэффициентов.

k - количество наблюдений

n - количество регрессий

Рассчитывается t - статистики Стьюдента

Определяется табличное значение t - статистики при числе степеней свободы k-n-1 и уровня значимости б/2. Сравнивается табличное и расчетное значение и делается вывод.

Далее рассчитаем показатели для оценки качества уравнений:

По всей выборке Y=-152,2248+33,8819*X1-0,0526*X2

k-n-1

20

Yср

596,3330

у2 - дисперсия

312,1648

у - станд. ош.

17,6682

R2

0,8330

R2 кор.

0,8163

5287,0816

-195,1602

-16,6290

СА =

-264,6435

17,1410

-2,0345

10,5032

-3,2577

1,0872

бА0 =

72,7123

tА0 =

-2,0935

бА1 =

4,1402

tА1 =

8,1837

бА2 =

1,0427

tА2 =

-0,0504

По 14 наблюдениям Y=295,8791+6,1272*X1+3,1641*X2

k-n-1

11

Yср

618,6607

у2 - дисперсия

51,3048

у - станд. ош.

7,1627

R2

0,9136

R2 кор.

0,8979

2994,1340

-160,6574

11,8244

СА =

-160,6574

10,1736

-1,2461

11,8244

-1,2461

0,2886

бА0 =

54,7187

tА0 =

5,4073

бА1 =

3,1896

tА1 =

1,9210

бА2 =

0,5372

tА2 =

5,8894

По 10 наблюдениям

Y=-309,1111+24,5941*X1+6,3460*X2

k-n-1

7

Yср

569,8890

дисперсия

192,9140

станд. Ош.

13,8893

R2

0,9297

R2корр

0,9096

10824,0152

231,3212

-281,8637

СА =

231,3212

94,5720

-40,2710

-281,8637

-40,2710

20,4320

бА0 =

104,0385273

tА0 =

-2,9711

бА1 =

9,724814036

tА1 =

2,5290

бА2 =

4,52017947

tА2 =

1,4039

Проанализируем значения полученных показателей:

Значения R2 и R2 кор. близки к 1, т.е. качество подгонки хорошее.

Проверяя статистическую зависимость коэффициентов, проверяем гипотезу Н0: аj =0 (полученные коэффициенты статистически не значимы, их отличие от нуля случайно). Коэффициент аj значим (Н0 отвергается). Если |tAрасч|>tтабл. то гипотеза Н0 отклоняется при значении аj не случайно отличается от нуля и сформировался под влиянием систематически действующего фактора.

Зададимся уровнем значимости 0,01, тогда при числе степеней свободы k-n-1=20 (11, 7 соответственно), табличное значение t - статистики Стьюдента t0,005; 20=2,845; t0,005; 11=3, 206; t0,005; 7=3,499.

Тогда при уровне значимости 0,01 (с вероятностью 0,99) статистически значимым являются (т.е. не случайно отличаются от 0, сформировались под влиянием систематически действующего фактора); в модели 1: а0, а2; в модели 2: а0, а2; в модели 3: а0, а1. (можно заметить, что для незначимых коэффициентов величина ошибки соответствующего коэффициента велика, превышает половину величины коэффициента).

Априорное утверждение относительно того, что модели 2 и 3 описывают исходные данные лучше, чем модель 1, подтвердилась. Действительно, значение R2 и R2кор. моделей 2 и 3 выше, чем модели 1, а стандартные ошибки оценки ниже. Вывод о справедливости утверждения можно сделать в результате сравнения соответствующих графиков.

Задание 2

Привести пример по одному примеру, иллюстрирующему практическое использование моделей каждого из следующих типов:

ЛММР

РМ с переменной структурой (фиктивные переменные)

Нелинейные РМ

Модели временных рядов

Системы линейных одновременных уравнений

1. ЛММР

Предположим, что по ряду регионов множественная регрессия величины импорта на определенный товар у относительно отечественного производства х1, изменения запасов х2 и потребления на внутреннем рынке х3 оказалась следующей

при этом среднее значение для рассматриваемых признаков составили

на основе данной информации могут быть найдены средние значения по совокупности показатели эластичности

т.е. с ростом величины отечественного производства на 1% размер импорта в среднем по совокупности регионов возрастет на 1,053% при неизменных запасах и потребления семей.

2. РМ с переменной структурой (фиктивные переменные)

Проанализируем зависимость цен двухкомнатной квартиры от ее полезной площади. При этом в модель могут быть введены фиктивные переменные, отражающие тип дома: "хрущевка", панельный кирпичный.

При использовании трех категорий домов вводятся две фиктивные переменные: z1 и z2.

Пусть переменная z1 принимает значение 1 для панельного дома и 0 для всех типов домов; переменная z2 принимает значение 1 для кирпичных домов и 0 для остальных; тогда переменные z1 и z2 принимают значение 0 для домов типа "хрущевки".

"хрущевки" =320+500*х

панельные =2520+500*х

кирпичные =1920+500*х

В рассматриваемом примере за базу сравнения цены взяты дома "хрущевки" для которых z1= z2=0

Параметр при z1=2200 означает, что при одной и той же полезной площади квартиры цена ее в панельных домах в среднем на 2200 дол. выше чем в "хрущевках". Соответственно параметр при z2 показывает, что в кирпичных домах цена выше в среднем на 1600дол. при неизменной величине полезной площади по сравнению указанным типам домов.

3. Нелинейные РМ

Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду. Если же нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции. Например, в эконометрических исследованиях при изучении эластичности спроса от цен широко используется степенная функция:

y=а*хb*

y - спрашиваемое количество,

xb - цена,

- случайная ошибка.

4. Модели временных рядов

Имеются следующие данные о величине дохода на одного члена семьи и расходы на товар А.

Показатель

1985

1986

1987

1988

1989

1990

Расходы на товар А, руб.

30

35

39

44

50

53

Доход на одного члена семьи, % к 1985г.

100

103

105

104

115

118

Ежегодные абсолютные приросты определяем по формулам

Расчеты можно представить в виде таблицы

yt

xt

30

-

100

-

35

5

103

3

39

4

105

2

44

5

104

4

50

6

115

6

53

3

118

5

Значение у не имеют четко выраженной тенденции они варьируют вокруг среднего уровня, что означает наличие в ряде динамики линейного тренда, аналогичный вывод можно сделать и по ряду х.

Системы линейных одновременных уравнений

Модель вида

y - валовый национальный доход

y-1 - валовый национальный доход предшествующего года,

С - личное потребление,

D - конечный спрос (помимо личного потребления)

Информация за 9 лет о приросте всех показателей дана в таблице.

Год

D

y-1

У

С

1

-6,8

46,7

3,1

7,4

2

22,4

3,1

22,8

30,4

3

-17,3

22,8

7,8

1,3

4

12,0

7,8

21,4

8,7

5

5,9

21,4

17,8

25,8

6

44,7

17,8

37,2

8,6

7

23,1

37,2

35,7

30

8

51,2

35,7

46,6

31,4

9

32,3

46,6

56,0

39,1

ИТОГО

167,5

239,1

248,4

182,7

Для данной модели была получена система приведенных уравнений


Подобные документы

  • Построение модели множественной регрессии теоретических значений динамики ВВП, определение средней ошибки аппроксимации. Выбор фактора, оказывающего большее влияние. Построение парных моделей регрессии. Определение лучшей модели. Проверка предпосылок МНК.

    курсовая работа [352,9 K], добавлен 26.01.2010

  • Значения коэффициента регрессии (b) и сводного члена уравнения регрессии (а). Определение стандартной ошибки предсказания являющейся мерой качества зависимости величин Y и х с помощью уравнения линейной регрессии. Значимость коэффициента регрессии.

    задача [133,0 K], добавлен 21.12.2008

  • Описание способов нахождения коэффициентов регрессии модели полнофакторного эксперимента. Проверка многофакторных статистических гипотез на однородность ряда дисперсий, значимость и устойчивость математических коэффициентов множественной корреляции.

    контрольная работа [1,2 M], добавлен 05.08.2010

  • Знакомство с уравнениями линейной регрессии, рассмотрение распространенных способов решения. Общая характеристика метода наименьших квадратов. Особенности оценки статистической значимости парной линейной регрессии. Анализ транспонированной матрицы.

    контрольная работа [380,9 K], добавлен 05.04.2015

  • Построение линейной множественной регрессии для моделирования потребления продукта в разных географических районах. Расчет оценки дисперсии случайной составляющей. Вычисление и корректировка коэффициентов детерминации. Расчет доверительного интервала.

    контрольная работа [814,0 K], добавлен 19.12.2013

  • Построение уравнения регрессии. Оценка параметров линейной парной регрессии. F-критерий Фишера и t-критерий Стьюдента. Точечный и интервальный прогноз по уравнению линейной регрессии. Расчет и оценка ошибки прогноза и его доверительного интервала.

    презентация [387,8 K], добавлен 25.05.2015

  • Определение наличия зависимости показателя Заработная плата от Возраста и Стажа с использованием корреляционной матрицы. Нормальность распределения остатков по: гистограмме остатков, числовым характеристикам асимметрии и эксцессу, критерию Пирсона.

    курсовая работа [1,1 M], добавлен 05.12.2013

  • Проверка адекватности линейной регрессии. Вычисление выборочного коэффициента корреляции. Обработка одномерной выборки методами статистического анализа. Проверка гипотезы значимости с помощью критерия Пирсона. Составление линейной эмпирической регрессии.

    задача [409,0 K], добавлен 17.10.2012

  • Построение теоретико-вероятностной модели исследуемого явления случайной величины математическими выводами. Реализация выборки статистической моделью, описывающей серию опытов. Точечная (выборочная) оценка неизвестного параметра и кривая регрессии.

    курсовая работа [311,7 K], добавлен 10.04.2011

  • Статистическое описание и выборочные характеристики двумерного случайного вектора. Оценка параметров линейной регрессии, полученных по методу наименьших квадратов. Проверка гипотезы о равенстве средних нормальных совокупностей при неизвестных дисперсиях.

    контрольная работа [242,1 K], добавлен 05.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.