Кольца и полукольца частных

Теория полуколец находит своё применение в теории автоматов, компьютерной алгебре и других разделах математики. Построение классического полукольца частных. Построение полного полукольца частных. Связь между полным и классическим полукольцами частных.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 27.05.2008
Размер файла 227,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3

Содержание

  • Введение
  • Глава 1.Построение классического полукольца частных
  • Глава 2.Построение полного полукольца частных
  • Глава 3.Связь между полным и классическим полукольцами частных
  • Библиографический список

Введение

В настоящее время теория полуколец активно развивается и находит своё применение в теории автоматов, компьютерной алгебре и других разделах математики.

В работе построены полное и классическое полукольца частных, а так же рассмотрена их связь.

Прежде чем начать рассмотрение этих структур, определим коммутативное полукольцо частных следующим образом.

Непустое множество с определёнными на нём бинарными операциями и называется коммутативным полукольцом, если выполняется следующие аксиомы:

A1. - коммутативная полугруппа с нейтральным элементом , т.е.

1) ;

2)

3)

А2. - коммутативная полугруппа с нейтральным элементом 1, т.е.

1) ;

2)

3)

А3. умножение дистрибутивно относительно сложения:

, .

А4. .

Таким образом, можно сказать, что полукольцо отличается от кольца тем, что аддитивная операция в нём необратима.

Глава 1.

Для построения классического полукольца частных можно воспользоваться следующим методом:

Рассмотрим пары неотрицательных целых чисел .

Будем считать пары и эквивалентными, если , получим разбиение множества пар на классы эквивалентности.

Затем введём операции на классах, превращающие множество классов эквивалентных пар в полуполе, которое содержит полукольцо неотрицательных чисел.

Определение1. Элемент назовём мультипликативно сокращаемым, если для из равенства следует, что .

Обозначим через множество всех мультипликативно сокращаемых элементов.

Утверждение1.Мультипликативно сокращаемый элемент является неделителем нуля.

Пусть - делитель нуля, т.е. для некоторого . Тогда , но не является мультипликативно сокращаемым. ^

Пусть - коммутативное полукольцо с возможностью сокращения на элементы из . Рассмотрим множество упорядоченных пар . Введём отношение на : для всех и .

Предложение1. Отношение является отношением эквивалентности на .

Покажем, что является отношением рефлективности, симметричности и транзитивности.

1.Рефлективность: в силу коммутативности полукольца ;

2. Симметричность: ;

3.Транзитивность: Таким образом, отношение является отношением эквивалентности на .

Полукольцо разбивается на классы эквивалентности; в каждом классе находятся те элементы, которые находятся в отношении . Обозначим класс эквивалентности пары . Введём операции на множестве всех классов эквивалентности:

т.к. для , , выполнено отсюда т.к. получаем и поскольку то следовательно .

Покажем корректность введённых операций:

Пусть , , тогда

^

Теорема1. - коммутативное полукольцо с 1. .

Доказательство.

Чтобы доказать, что множество всех классов эквивалентности является коммутативным полукольцом с 1, нужно показать замкнутость на нём операций:

сложение: для и

1.

2.

Так как правые части равны, то левые части тоже равны:

3. покажем, что для .

Так как

Класс является нейтральным по +:

Из равенства тогда .

Для составляет отдельный класс, играющий в роль нуля.

умножение: для и

1.

2.

Из равенства правых частей следует, что

3. покажем, что для .

Пусть

Класс является нейтральным по умножению (единицей полукольца), т.к. , поскольку из равенства тогда .

4. умножение дистрибутивно относительно сложения:

Следовательно, правосторонний дистрибутивный закон выполняется:

Аналогично доказывается левосторонний закон дистрибутивности.

Таким образом, доказано, что является коммутативным полукольцом с 1.

Полукольцо называется классическим полукольцом частных полукольца .^

Глава 2

Для построения полного полукольца частных можно воспользоваться следующим методом. Рассмотрим дробь как частичный эндоморфизм аддитивной полугруппы неотрицательных целых чисел. Его область определения - идеал , и он переводит в , где . Аналогично, дробь определена на идеале и переводит в . Эти две дроби эквивалентны, т.е. они согласованы на пересечении своих областей определений, равном идеалу , поскольку та и другая дробь переводят в . Отношения определяются как классы эквивалентных дробей. Варьируя этот метод, можно выбрать в каждом классе эквивалентности одну «несократимую» дробь. Рассмотренный выше класс содержит несократимую дробь .

Данный метод можно применить к произвольному коммутативному полукольцу для построения «полного полукольца частных», где в качестве областей определения допускаются лишь идеалы определённого типа - плотные идеалы.

Определение2. Идеал коммутативного полукольца называется плотным, если для и выполняется равенство тогда и только тогда, когда .

Свойства плотных идеалов полукольца :

10 - плотный идеал.

Доказательство:

Пусть для выполнено . Положим , тогда . Таким образом - плотный идеал по определению. ^

20 Если - плотный идеал и , то идеал плотный.

Доказательство:

Если - плотный идеал, то для из равенства следует . Пусть для выполнено . Так как по условию возьмём . Тогда т.к. - плотный идеал получаем отсюда . Таким образом - плотный идеал по определению. ^

30 Если и - плотные идеалы, то и - так же плотные идеалы.

Доказательство:

Положим для выполняется . Пусть , где , . Элемент т.к. , тогда верно равенство отсюда , т.к. - плотный идеал имеем , , и - плотный, . Таким образом - плотный идеал.

Пусть , тогда по определению идеала: . С другой стороны значит . Тогда по 20 - плотный идеал. ^

40 Если , то 0 не является плотным идеалом.

Доказательство.

Пусть . Для и выполнено отсюда 0 не является плотным идеалом. ^

Определение3. Дробью назовём элемент , где - некоторый плотный идеал. ( - сокращение от - гомоморфизм, в данном случае: - гомоморфизм )

Таким образом, - гомоморфизм аддитивных полугрупп, для которого для и .

Введём так же дроби , положив и для .

Сложение и умножение дробей определяются следующим образом:

пусть и тогда

,

, .

Покажем, что является идеалом, где т.е. сохраняются операции:

1. Если , то .

Пусть , , тогда .

2. Если и , то . По условию .

Так как - коммутативное полукольцо, то .

. Таким образом, - идеал.

Покажем, что идеал является плотным: надо доказать, что плотный идеал - , т.е. .

По определению сложения и умножения , т.е. содержит плотный идеал значит, по свойству 20 идеал является плотным.

Дроби образуют аддитивную коммутативную полугруппу с нулём и полугруппу с единицей. То есть образуют полукольцо.

Доказательство:

1. По определению сложения и умножения:

, .

,

2. Коммутативность:

3. Ассоциативность:

4. Нейтральный элемент.

5. Дистрибутивность:

Правосторонняя дистрибутивность аналогично.

Таким образом, дроби образуют полукольцо.

Определение4. Будем писать если и согласованы на пересечении своих областей определений, т.е. для .

Лемма 1. тогда и только тогда, когда и согласованы на некотором плотном идеале.

Доказательство.

Если то и согласованы на . По свойству 30 идеал является плотным. Следовательно, и согласованы на плотном идеале.

Обратно, пусть и согласованы на плотном идеале . Тогда если и , то отсюда в силу плотности идеала , для , но это равенство выполняется тогда, когда пересечением областей определений и является отсюда следует, что .^

Лемма 2. Отношение является конгруэнцией на системе .

Доказательство.

Для того чтобы доказать, что - конгруэнция, нужно показать:

1. отношение - рефлексивно, симметрично, транзитивно.

Рефлективность: и согласованы на плотном идеале .

Симметричность: пусть , т.е. и согласованы на .

Транзитивность: пусть и , т.е. и согласованы на плотном идеале

и согласованы на плотном идеале . Значит и согласованы на идеале , являющемся плотным , и согласована с на , тогда согласована с на плотном идеале по Лемме 1

Таким образом, - отношение эквивалентности.

2. отношение сохраняет полукольцевые операции.

Ш Пусть и , т.е. для и для .

Тогда и определены и согласованы на плотном идеале отсюда по Лемме 1 .

Ш Пусть и , т.е. для и для .

Тогда и определены и согласованы на плотном идеале отсюда по Лемме 1 .^

Теорема2.Если - коммутативное полукольцо то система так же является коммутативным полукольцом. . (Будем называть полным полукольцом частных полукольца )

Доказательство.

- разбивает множество дробей на непересекающихся классов эквивалентности.

По Лемме 2 все тождества выполняющиеся в справедливы и в .

Чтобы убедится, что коммутативное полукольцо остаётся проверить справедливость законов дистрибутивности и коммутативности.

1. Дистрибутивность.

Отображения: и согласованы на идеале покажем, что образы отображений и совпадают на этом идеале:

пусть , где .

Тогда .

Областью определения является . По определению идеала: то для , а идеал (свойство 30) то: . Тогда по определению сложения отсюда следует . Покажем . По определению

Аналогично .

Тогда:

Таким образом, где . По свойству 30 - плотный идеал значит и согласованы на плотном идеале .

2. Коммутативность.

Отображения и согласованы на плотном идеале докажем что их образы совпадают на этом идеале: .

Доказано ранее, что пусть элементы тогда

Отсюда следует, что и согласованы на плотном идеале .

Таким образом, по Лемме 1.

Наконец сопоставим дробь: с областью определения при которой переходит в .

Предложение2. Отображение является гомоморфизмом т.е. сохраняет операции:

Доказательство:

1. Пусть , и где и .

Нужно показать, что . Покажем равенство образов и .

Рассмотрим дробь , такую что

для . (1)

С другой стороны рассмотрим дроби и , такие что для . (2)

Из (1) и (2) следует, что .

По свойству сложения смежных классов:

для

2. Пусть , и где и .

Нужно показать, что . Покажем равенство образов и .

Рассмотрим дробь , такую что

для . (3)

С другой стороны рассмотрим дроби и , такие что для . (4)

Из (3) и (4) следует, что .

По свойству умножения смежных классов:

для .

Таким образом гомоморфизм.

Пусть , тогда

т.е. и согласованы на некотором плотном идеале значит для , так как - плотный идеал, то отсюда - инъективно.

Поэтому, гомоморфизм является мономорфизмом и вкладывается в полное полукольцо частных.

Гомоморфизм будем называть каноническим мономорфизмом в .^

Глава 3.

Определение5.Любому мультипликативно сокращаемому элементу сопоставим плотный идеал . Если , то элемент назовём классической дробью, полагая для .

Теорема3. Множество дробей образует подполукольцо полного полукольца частных, изоморфное классическому полукольцу частных полукольца .

Доказательство:

Рассмотрим отображение , т.е. .

1. Докажем, что - отображение: если и , , где , , то .

Имеем

Возьмём элемент из пересечения плотных идеалов , т.е. и

Тогда , домножим на получим . Так как и на выполняется коммутативность по умножению, то , отсюда для .

2. Докажем, что является полукольцевым гомоморфизмом, т.е. сохраняются полукольцевые операции.

2.1

. Покажем, что дробь согласована с на плотном идеале .

Пусть , .

для .

Следовательно .

2.2

.

Идеал содержит , покажем, что и согласованы на плотном идеале .

Пусть , . Тогда

для .

Значит .

Таким образом - полукольцевой гомоморфизм классического полукольца частных в полное полукольцо частных .

3. Докажем, что - инъективный гомоморфизм.

Пусть для . Предположим, что дроби и согласованы на некотором плотном идеале , т.е. для выполнено . Но , . Тогда . Домножим обе части равенства на получим:

т.к. - плотный идеал , что противоречит условию.

Значит, является инъективным гомоморфизмом или мономорфизмом в .

Так как , то , где - элемент подполукольца полного полукольца частных , т.е. и . Поскольку - инъективный гомоморфизм, то по теореме о гомоморфизме существует изоморфизм отсюда следует .

Мономорфизм называется вложением классического полукольца частных в полное полукольцо частных полукольца .^

Библиографический список

1. Вечтомов, Е. М. Введение в полукольца [Текст] / Е. М. Вечтомов. - Киров.: ВГПУ, 2000.

2. Ламбек, И. Кольца и модули [Текст] / И. Ламбек. - Москва.: Мир, 1971. - 288 с.

3. Чермных, В. В. Полукольца [Текст] / В. В. Чермных. - Киров.: ВГПУ, 1997. - 131 с.


Подобные документы

  • Основные понятия теории полуколец. Определение полукольца. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Свойства положительных полуколец.

    дипломная работа [136,1 K], добавлен 08.08.2007

  • Основные понятия теории полуколец. Определение полукольца. Примеры. Дистрибутивные решетки. Идеалы полуколец. Положительные и ограниченные полукольца. Определение и примеры положительных и ограниченных полуколец. Основные свойства полуколец.

    дипломная работа [130,7 K], добавлен 14.06.2007

  • Основные понятия, леммы и предложения. Доказательство основной теоремы. Полукольцо отличается от ассоциативного кольца с единицей отсутствием операции вычитания. Основные трудности при работе с полукольцами.

    дипломная работа [72,7 K], добавлен 08.08.2007

  • Решение эллиптических и параболических дифференциальных уравнений в частных производных. Суть метода Кранка-Николсона и теории разностных схем для теплопроводности. Построение численных методов с помощью вариационных принципов, описание Matlab и Mathcad.

    курсовая работа [1,4 M], добавлен 13.03.2011

  • Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.

    курсовая работа [294,7 K], добавлен 17.06.2014

  • Допустимые кольца и решетки. Допустимые полутела. О единственности расширения. Теория полуколец - раздел современной алгебры, находящий применения в компьютерной алгебре, идемпотентном анализе, теории оптимального управления.

    дипломная работа [92,2 K], добавлен 08.08.2007

  • Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.

    контрольная работа [90,0 K], добавлен 24.10.2010

  • Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.

    контрольная работа [153,6 K], добавлен 19.01.2010

  • Расчет частных производных первого порядка. Поиск и построение области определения функции. Расчет полного дифференциала. Исследование функции на экстремум. Поиск наибольшего и наименьшего значения функции в замкнутой области. Производные второго порядка.

    контрольная работа [204,5 K], добавлен 06.05.2012

  • Подборка нелепых отрывков из конспектов студентов механико-математического факультета и некоторых казусных высказываний их преподавателей. Анализ теории вероятностей и теории функции Зильберта. Методика вычисления интегралов методом подгонки под ответ.

    учебное пособие [237,6 K], добавлен 28.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.