Случайные события

Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 03.12.2007
Размер файла 402,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

20.2.1. Состояние системы удобно представить рис.20.1, где черточкой изображается граница ячейки, а точкой -- частица.

Рис. 20.1. Состояние системы частиц.

 

Конфигурация (состояние) из точек и границы полностью определяется положениями внутренних черточек. Две крайние черточки закреплены и перемещаться не могут. Отметим, что если поменять местами любые две или несколько частиц, то конфигурация (состояние) не изменится ввиду неразличимости частиц. Точно также конфигурация не изменится, если поменять местами две внутренние черточки. Однако каждый раз, когда меняются местами частица и черточка будет получено новое состояние системы. Число черточек и частиц равно , а общее число перестановок черточек и частиц равно . Из них существует перестановок черточек межу собой, которые не приводят к новому состоянию, а также существует перестановок частиц между собой, не приводящие к новым состояниям. Поэтому число разных состояний системы равно:

. (20.1)

Это число в комбинаторике называют числом сочетаний с повторениями из по . Если все состояния системы равновероятны, то говорят, что система частиц подчиняется статистике Бозе-Эйнштейна. При этом вероятность каждого состояния равна

. (20.2)

20.2.2. Если число частиц -- не меньше числа ячеек, то можно дополнительно потребовать, чтобы в каждом состоянии ни одна ячейка не оставалась пустой. При этом число возможных состояний уменьшится по сравнению с (20.1). Определим это число. Для этого "приклеим" к каждой из черточек справа по одной точке, исключив последнюю -ю (правую) черточку. Теперь, переставляя границу ячейки в виде "черточка + частица", будем получать состояния, когда в каждой ячейке будет не менее одной частицы. Всего имеется, как и в первом случае, границ, которые можно переставлять, а также -- число границ плюс свободных частиц, поскольку частиц "приклеены". Общее число перестановок границ и свободных частиц равно . Среди них перестановок между собой границ, которые не приводят к новым состояниям, а также перестановок между собой свободных частиц, которые также не дают новых состояний. Поэтому число разных состояний системы равно

, . (20.3)

20.3. Система Ферми-Дирака. Определяется как система Бозе-Эйнштейна, в которой дополнительно действует принцип запрета (принцип Паули), требующий, чтобы в каждой ячейке находилось не более одной частицы. Частицы и в этом случае неразличимы, поэтому состояние системы характеризуется числами заполнения для . Очевидно, в данном случае число частиц -- числа ячеек (состояний частицы). Состояние системы можно задать, выбирая заполненных ячеек из общего числа ячеек. Число разных способов выбора равно . Если все состояния равновероятны, то говорят о статистике Ферми-Дирака. При этом вероятность каждого состояния равна

. (20.4)

Статистике Максвелла-Больцмана подчинены системы молекул газа в классической статистической физике. Системы частиц с целым и полуцелым спином подчиняются соответственно статистикам Бозе-Эйнштейна и Ферми-Дирака.

 

Последовательность независимых испытаний

 

21.1. Пусть эксперимент может быть повторен раз. Тогда говорят о последовательности (или серии) испытаний (опытов, экспериментов). Пусть последовательность опытов характеризуется тем, что результат любого опыта не зависит от результатов остальных опытов данной последовательности. Тогда говорят о последовательности независимых испытаний. Пусть опыт имеет два исхода - событие или . Тогда последовательность независимых испытаний называется вероятностной схемой Бернулли. Обычно исход условно называют успехом, а исход - неудачей. Обозначим вероятность успеха и вероятность неудачи . Очевидно .

В качестве примеров схемы Бернулли можно привести опыт с бросанием монеты или игральной кости. В первом примере успех - это выпадение герба и неуспех - выпадение решетки, при этом . Во втором примере в качестве успеха можно рассматривать выпадение грани с номером 1, тогда - невыпадение номера 1, при этом и .

Определим в схеме Бернулли вероятность того, что в серии из испытаний успех наступит раз. Очевидно . Рассмотрим последовательность опытов и будем фиксировать результат каждого опыта, то есть событие или . Тогда последовательность исходов может иметь, например, вид

, (21.1)

то есть ее первые элементов - это события и последующие элементов - события . Другими словами, в первых опытах наступает успех и в последующих опытах - неуспех. По условию исходы в последовательности (21.1) - это независимые события, поэтому по формуле умножения вероятность появления последовательности вида (21.1) равна

. (21.2)

При подсчете вероятности следует учесть все возможные последовательности, состоящие из событий и событий . Вероятность появления любой их этих последовательностей одинакова и равна . Кроме этого последовательности являются несовместными событиями, поскольку в каждой серии опытов реализуется только одна из этих последовательностей. Поэтому по формуле сложения вероятностей:

, (21.3)

где суммирование ведется по всем последовательностям, содержащим событий вида и событий . Число этих последовательностей равно , поскольку может быть определено как число различных перестановок элементов последовательности (21.1), содержащей элементов 1-го типа (событий ) и элементов 2-го типа (событий ) по формуле (19.6). Таким образом, из (21.3) следует

. (21.4)

Это соотношение называется формулой Бернулли или биномиальным распределением вероятностей. Последнее связано с тем, что равно общему члену бинома .

Рассмотрим пример. Бросается монета. Какова вероятность выпадения 0,1,2,3,4 раз герба при 4 бросаниях? Здесь вероятность успеха (появления герба) в одном опыте равна , , По формуле (21.4) вычисляются вероятности , , , , . На рис. 21.1 представлен график зависимости .

Рис. 21.1. График зависимости вероятности от числа успехов в опыте с бросанием монеты.

21.2. Вычислим вероятность того, что в серии из независимых опытов число успехов будет лежать в интервале . В соответствии с формулой сложения вероятностей

. (21.5)

Определим, какова вероятность появления хотя бы одного успеха в серии из опытов. Очевидно, речь идет о вероятности того, что число успехов будет лежать в интервале . Таким образом, искомая вероятность определится формулой (21.5) при и:

. (21.6)

Это выражение можно преобразовать, если учесть равенство

. (21.7)

Левая часть (21.7) согласно формуле сложения вероятностей представляет собой вероятность события, состоящего в том, что число успехов принимает значение из интервала . Это событие является достоверным, поэтому его вероятность равна единице. Теперь (21.6) можно представить в виде:

. (21.8)

Наивероятнейшее число в распределении Бернулли

 

Число , для которого (21.4) достигает максимального значения, называется наивероятнейшим числом в распределении Бернулли. Очевидно, наивероятнейшее число определяется двумя условиями:

, (22.1)

. (22.2)

Для нахождения числа решим систему двух неравенств (22.1), (22.2) относительно . Подставим в первое неравенство формулу (21.4), тогда

. (22.3)

После сокращения в левой части неравенство принимает вид:

,

откуда или

. (22.4)

Аналогично решим второе неравенство:

. (22.5)

После сокращения

,

откуда или . Что сводится к выражению:

. (22.6)

Таким образом, наивероятнейшее число в распределении Бернулли определяется двумя условиями (22.4) и (22.6):

. (22.7)

По условию задачи число - целое по условию задачи и лежит в единичном интервале (22.7). Поэтому решение (22.7) может быть единственным, если - дробное число. Это реализуется в примере с бросанием монеты, где , , тогда . В соответствии с (22.7) , поэтому существует единственное наивероятнейшее число , что иллюстрирует график, представленный на рис.21.1.

Возможна иная ситуация, если - целое число. Тогда единичный интервал (22.7) содержит два целых числа, следовательно, имеется два наивероятнейших числа в распределении Бернулли. Эту ситуацию можно рассмотреть также на примере с бросанием монеты. Пусть , тогда , следовательно (22.7) имеет вид: , то есть имеется два наивероятнейших числа и . При этом и график имеет плоскую вершину.

Полиномиальное распределение

 

Рассмотрим обобщение схемы независимых испытаний, состоящее в том, что исходом каждого опыта является одно из несовместных событий , образующих полную группу. Пусть вероятность , , тогда

. (23.1)

Определим вероятность события , состоящего в том, что в серии из независимых опытов событие произойдет раз, ..., событие произойдет раз. Поскольку исходом каждого опыта является одно и только одно из событий , то справедливо равенство:

. (23.2)

Рассмотрим следующую последовательность исходов в серии из опытов. Пусть в первых опытах исходом было событие , в последующих опытах исходом было событие , ... , в последних опытах исходом было событие . Вероятность появления этой последовательности определяется по формуле умножения:

. (23.3)

Если в последовательности поменять местами первый исход и исход , то получим новую последовательность , которая также состоит из событий вида , ... , событий . Вероятность появления этой последовательности и определяется также формулой (23.3). В общем, каждая последовательность , полученная из путем перестановок между событиями , появляется с одинаковой вероятностью . Событие означает, что происходит событие или , ... . Таким образом,

. (23.4)

Теперь вероятность по формуле сложения вероятностей для несовместных событий определяется соотношением:

, (23.5)

где суммирование по ведется по всем последовательностям . Число таких последовательностей - это число перестановок с повторениями из по :

. (23.6)

Поэтому из (23.5) следует

. (23.7)

Эта формула называется полиномиальным распределением вероятности. Такое название объясняется тем, что вероятность (23.7) является общим членом полинома .

Отметим, что при , , , , из формулы (23.7) следует распределение Бернулли: .

 

Рассмотрим пример вычисления вероятности выпадения чисел при шести бросаниях игральной кости. Здесь имеется последовательность из шести опытов, в каждом опыте возможно шесть исходов. Таким образом, вероятность вычисления по формуле (23.7) при , , :

Этот же результат может быть получен с использованием формулы умножения вероятностей (11.1), действительно, здесь первый множитель - это вероятность того, что в первом опыте исходом будет любое число из шести возможных (достоверное событие). Второй множитель - это условная вероятность того, что при втором бросании появится любое число кроме того, что выпало в первом опыте и т.д.

Гипергеометрическое распределение

 

Пусть дана совокупность объектов, среди которых отмеченных (например, бракованных изделий, белых шаров, выигрышных билетов и т.п.). Извлекается наугад объектов. Определить вероятность того, что среди них окажется отмеченных.

Постановка задачи требует уточнения. Можно рассматривать два следующих варианта дополнительных условий. 1). Извлечение с возвращением. При этом извлечение каждого объекта - это отдельный опыт, после которого объект возвращается в исходную совокупность с последующим перемешиванием всех объектов. Таким образом, задача укладывается в вероятностную схему Бернули с вероятностью успеха в одном опыте и числом опытов . Вероятность можно вычислить по формуле Бернули. 2). Извлечение без возвращения. Этот вариант приводит к новой задаче. Рассмотрим ее решение.

Поскольку порядок расположения извлекаемых объектов не имеет значения, то число способов выбора объектов из совокупности различных объектов равно

, (24.1)

и представляет собой общее число возможных исходов опыта. Из отмеченных объектов можно выбрать объектов способами, причем каждому такому способу соответствует способов добрать еще объектов до общего числа , выбирая их из неотмеченных. Следовательно, число способов, благоприятствующих появлению отмеченных объектов среди выбранных, равно . Поэтому

. (24.2)

Формула (24.2) называется гипергеометрическим распределением вероятностей.

Рассмотрим пример вычисления вероятностей выигрыша в игре «спортлото». В данном случае (число номеров на карточке), - число выигрышных номеров (т.е. отмеченных). По условию игрок выбирает номеров из номеров. При этом игрок может угадать выигрышных номеров, .

Вероятность этого события можно вычислить по формуле (24.2). При получим вероятность максимального выигрыша

.

Отметим, что результат в виде произведения чисел 6/49, ... , 1/44 может быть получен из формулы умножения вероятностей.

Асимптотика Пуассона

 

25.1. Формула Бернули приводит при больших к очень громоздким вычислениям. Поэтому важное значение имеют приближенные, но более простые формулы, которые можно получить из биномиального распределения. Часто встречаются задачи, в которых рассматривается большое число независимых опытов, причем вероятность успеха в каждом отдельном опыте мала. В этом случае вероятности того, что в серии из опытов число успешных опытов будет равно могут быть вычислены по формуле Пуассона, которая получается как асимптотика биномиального распределения, при условии, что число опытов , а вероятность успеха в отдельном опыте , так что параметр

. (25.1)

Рассмотрим вывод формулы Пуассона. Из (25.1) выразим и подставим в формулу Бернули, тогда

. (25.2)

При наивероятнейшее число распределения Бернули равно , а согласно (25.1) . Это означает, что имеет существенные значения только при , а с увеличением вероятность . Поэтому, полагая в (25.2) , получаем

. (25.3)

Разложим в ряд Тейлора функцию при малом :

. (25.4)

Используем эту формулу для преобразования выражения

. (25.5)

Оставляя здесь только первое слагаемое, получим

. (25.6)

Аналогично рассмотрим

. (25.7)

Подставим (25.6), (25.7) в формулу (25.3), тогда

, , . (25.8)

Это равенство называется асимптотической формулой Пуассона или распределением Пуассона.

Отметим, что асимптотику (25.8) можно рассматривать в пределе при и , где не зависит от . Тогда

, . (25.9)

Распределение вероятностей (25.9) удовлетворяет условию

. (25.10)

 

25.2. Определим наивероятнейшее число распределения Пуассона (25.9). Очевидно число удовлетворяет двум условиям:

, . (25.11)

Подставим формулу (25.9) в первое неравенство, тогда

. (25.12)

Отсюда следует . Аналогично решение второго неравенства сводится к условию . Таким образом, наивероятнейшее число распределения Пуассона определяется условием:

. (25.13)

Поток случайных событий на оси времени

 

Пусть на оси времени точками отображаются моменты наступления некоторого случайного события. При этом само событие интереса не представляет, важным является только момент его наступления. Такая вероятностная схема называется потоком случайных событий. Примерами потоков являются: 1) последовательность телефонных вызовов, поступающих на коммутатор; 2) последовательность моментов распада атомов радиоактивного вещества; 3) поток претензий по страхованию и т.п.

Пусть вероятность появления хотя бы одного события потока за интервал времени равна

, (26.1)

где - интенсивность потока, - вероятность появления одного события за интервал и - вероятность появления двух или большего числа событий за интервал . Пусть поток дополнительно удовлетворяет следующим трем условиям. 1). - величина постоянная, не зависимая от времени , тогда поток называется стационарным. 2). В соотношении (26.1) , при этом поток называется ординарным или потоком редких событий. 3). Поток называется потоком с независимыми значениями, если события потока независимы.

Стационарный ординарный поток с независимыми значениями называется простейшим потоком. Определим вероятность появления событий простейшего потока за интервал времени . Интервал длительности разделим на малые интервалы

, (26.2)

где . Тогда в соответствии с (26.1)

(26.3)

- вероятность появления одного события потока за интервал длительности . Теперь имеем последовательность независимых опытов, каждый из которых заключается в просмотре очередного интервала длительности . Результатом каждого опыта может быть появление события потока (с вероятностью ) в интервале или непоявления события потока (с вероятностью ). Поэтому вычисляется по формуле Бернули, как вероятность успехов в серии из опытов, если вероятность успеха в одном опыте определяется соотношением (26.3). Но учитывая, что и можно применить асимптотику Пуассона с параметром , который определяется формулой (26.3):

. (26.4)

Таким образом,

. (26.5)

Ординарный поток с независимыми значениями называется пуассоновским потоком, т.е. пуассоновский поток не обязательно должен быть стационарным. Если поток нестационарный, то его интенсивность - является функцией времени. При этом вероятность - появления событий потока на интервале вычисляется по следующей формуле, обобщающей (26.5):

. (26.6)

Локальная теорема Муавра-Лапласа

 

Как отмечалось в п.25, при большом числе испытаний вычисления вероятностей по формуле Бернулли оказываются весьма громоздкими. Поэтому важные значения имеют приближенные, но более простые формулы, которые можно получить из биномиального распределения. Одной из таких приближенных формул является асимптотика Пуассона, полученная при условии, что число опытов , а вероятность успеха .

Рассмотрим другую асимптотическую формулу биномиального распределения при условиях:

, , . (27.1)

Эти условия эквивалентны неравенству , которое означает, что вероятность успеха в одном опыте не может быть слишком малой величиной , так что величиной невозможно пренебречь по сравнению с единицей, а также не может быть слишком большой величиной, то есть неверным является предположение . Биномиальное распределение вероятностей имеет вид:

. (27.2)

Для представления факториала используем формулу Стирлинга

(27.3)

Эта формула является асимптотикой факториала, то есть получена при большом . Отметим достаточно высокую точность формулы (27.3) даже при небольших . Так в наихудшем случае при (27.3) дает относительную ошибку всего 8%, а при эта ошибка уменьшается до 0,08%. Для произвольного отношение точного значения к асимптотическому, вычисленному по формуле (27.3), находится в интервале

.

Соотношение (27.3) подставим в (27.2), тогда

(27.4)

Введем обозначения:

, (27.5)

Из (22.7) при следует, что наивероятнейшее число , поэтому числитель величины - это уклонение числа успехов от наивероятнейшего числа .

Из (27.5) и условий (27.1) следует

, (27.6)

а также

. (27.7)

Условия (27.6) и (27.7) приводят к ограничению на скорость роста второго слагаемого в выражениях (27.6), (27.7), а именно при большом

, , (27.8)

то есть величина пропорциональна , где число . Скорость ростане может быть большей, то есть параметр , характеризующий скорость роста не может принимать значения . В противном случае нарушаются условия (27.6), (27.7). действительно, при величина растет с увеличением быстрее, чем первое слагаемое в (27.6) и в (27.7), при этом условие (27.6) выполняется: , а условие (27.7) нарушается, поскольку число становится отрицательным с ростом .

Рассмотрим в (27.4) выражение под корнем, в котором числа , представим в виде (27.6), (27.7), тогда

(27.9)

При большом вторые слагаемые в скобках (27.9) является малыми по сравнению с первыми, поскольку выполняется условие (27.8). Поэтому при из (27.9) следует

. (27.10)

Рассмотрим два последних множителя выражения (27.4), причем удобно рассматривать его логарифм:

. (27.11)

Подставим сюда выражения для и (27.6) и (27.7). Тогда

. (27.12)

При малом справедливо разложение в ряд:

, (27.13)

где - величина, малая по сравнению с . Используем разложение с точностью до в соотношении (27.12). Тогда

.

(27.14)

Введем для краткости обозначение , тогда правая часть (27.14) преобразуется следующим образом:

. (27.15)

Здесь второе слагаемое зависит от через . Согласно (27.8) , , поэтому

. (27.16)

При и выражение , поэтому второе слагаемое в (27.15) является малой величиной по сравнению с первым, которое равно . Таким образом, (27.14) при имеет вид

. (27.17)

Полученные результаты (27.10) и (27.17) подставим в (27.4), тогда

, , . (27.18)

Формула (27.18) называется локальной асимптотикой Муавра-Лапласа. Этот же результат может быть сформулирован как следующая локальная теорема Муавра-Лапласа.

Если вероятность успеха в одном опыте удовлетворяет условию , тогда вероятность того, что в последовательности независимых испытаний успех наступит раз удовлетворяет условию:

. (27.19)

Интегральная теорема Муавра-Лапласа

 

Вероятность того, что в последовательности независимых испытаний число успехов находится в интервале определяется выражением

. (28.1)

Получим асимптотику выражения (28.1) при тех же условиях, которые были определены для локальной теоремы Муавра-Лапласа. При этом определяется формулой (27.18). Подставим (27.18) в (28.1), тогда

(28.2)

где

. (28.3)

Поскольку , то при . Пусть

, . (28.4)

Тогда при сумма в выражении (28.2) переходит в интеграл:

. (28.5)

Этот результат носит название интегральная теорема Муавра-Лапласа. Соотношение (28.5) можно представить через функцию Лапласа:

. (28.6)

Практическое применение интегральной теоремы основано на приближенном равенстве:

. (28.7)

Для функции составлены подробные таблицы, которые обычно используются при решении задач. Вместо функции Лапласа (28.6) может быть использован интеграл ошибок:

. (28.8)

Функции и связаны соотношением:

.

Если в таблицах даны значения только для , тогда значения при можно вычислить, используя очевидное равенство

.

Рассмотрим примеры вычисления вероятностей с использованием теоремы Муавра-Лапласа.

1. Какова вероятность того, что при 200 бросаниях монеты герб выпадет 100 раз?

Для вычисления вероятности можно использовать локальную асимптотику (27.18). Здесь , , , , . Поскольку , то . Подставим полученные результаты в (27.18), тогда:

.

2. Какова вероятность того, что при 200 бросаниях герб выпадет в интервале от 80 до 120 раз?

Решать эту задачу удобно, используя интегральную асимптотику из (28.7). Здесь , , , . Необходимо найти . Определим по формулам (28.4)

,

.

Теперь по (28.7): .


Подобные документы

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.

    курсовая работа [328,1 K], добавлен 18.11.2011

  • Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.

    контрольная работа [98,1 K], добавлен 15.06.2012

  • Классическое определение вероятности. Формулы сложения и умножения вероятностей. Дисперсия случайной величины. Число равновозможных событий . Матрица распределения вероятностей системы. Среднее квадратическое отклонение, доверительный интервал.

    контрольная работа [89,7 K], добавлен 07.09.2010

  • Пространство элементарных событий. Совместные и несовместные события. Плотность распределения вероятностей системы двух случайных величин. Эмпирическая функция распределения. Числовые характеристики случайной функции. Условие независимости двух событий.

    контрольная работа [30,0 K], добавлен 15.06.2012

  • Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.

    презентация [77,5 K], добавлен 01.11.2013

  • Решение задач по определению вероятности событий, ряда и функции распределения с помощью формулы умножения вероятностей. Нахождение константы, математического описания и дисперсии непрерывной случайной величины из функции распределения случайной величины.

    контрольная работа [57,3 K], добавлен 07.09.2010

  • Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.

    контрольная работа [106,1 K], добавлен 23.06.2009

  • Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.

    контрольная работа [157,5 K], добавлен 04.02.2012

  • История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.

    контрольная работа [22,6 K], добавлен 20.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.