Область определения функции
Применение метода интервалов для решения неравенств. Формула перехода от простейшего логарифмического неравенства к двойному. Формула решения тригонометрического уравнения. Нахождение множества всех первообразных функции f(x) на области определения.
Рубрика | Математика |
Предмет | Математика |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | Yan |
Дата добавления | 03.06.2010 |
Размер файла | 11,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основные понятия и определения кубических уравнений, способы их решения. Формула Кардано и тригонометрическая формула Виета, сущность метода перебора. Применение формулы сокращенного умножения разности кубов. Определение корня квадратного трехчлена.
курсовая работа [478,4 K], добавлен 21.10.2013Основные определения. Алгоритм решения. Неравенства с параметрами. Основные определения. Алгоритм решения. Это всего лишь один из алгоритмов решения неравенств с параметрами, с использованием системы координат хОа.
курсовая работа [124,0 K], добавлен 11.12.2002Метод интервалов как один из важнейших методов математической деятельности, связанный с вопросами нахождения нулей функции или промежутков ее знак постоянства для неравенства. Алгоритм решения дробно-рационального неравенства методом интервалов.
курсовая работа [630,7 K], добавлен 12.04.2015Задача на нахождение модуля и аргумента заданных чисел, пример решения. Область дифференцируемости заданной функции, действительная часть производной. Правило для определения уравнения образа кривой. Нахождение действительной и мнимой части функции.
методичка [693,0 K], добавлен 21.12.2011Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.
контрольная работа [209,4 K], добавлен 15.12.2011Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа [1,4 M], добавлен 07.09.2010Теоретические сведения о числовых неравенствах и их свойствах. Линейные неравенства с одной переменной. Квадратные и рациональные неравенства. Особенности решения различных неравенств, содержащих знак модуля. Нестандартные методы решения неравенств.
реферат [2,0 M], добавлен 18.01.2011Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.
методичка [303,7 K], добавлен 14.03.2011Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.
лабораторная работа [481,0 K], добавлен 14.10.2013Пример решения задачи на нахождение корня уравнения. Определение веса бетонного шара. Коэффициент полезного действия: понятие, формула. Нахождение значения функции. Плоскость основания цилиндра. Угол между плоскостью сечения и основания цилиндра.
контрольная работа [57,2 K], добавлен 27.12.2013