Численные методы решения типовых математических задач
Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 14.04.2009 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
outputgraph((b+a)/2,b,a,b,1);
outputgraph(a,b,a,b,1);
closegraph;
end;
var sel:integer;
eps:real;
begin
repeat
clrscr;
sel:=main_menu;
case sel of
1:begin
aaa:=0.1;bbb:=1.2;kkk:=10;
eps:=1e-4;
equateit(eps);
end;
2:begin
inputnum('a',aaa,0,1000);
inputnum('b',bbb,-1000,1000);
inputnum('k',kkk,-1000,1000);
inputnum('точность',eps,0.000000001,1);
equateit(eps);
end;
end;
until sel=0;
end.
4.7 Тестовый пример
Используя семиточечную формулу вычислить интеграл .
(Точное решение - 2,3201169227)
Заключение
В данной работе описаны и реализованы с помощью блок-схем и языка программирования Turbo Pascal базовые задачи вычислительной математики: решение систем линейных алгебраических уравнений, полиномиальная интерполяция, среднеквадратичное приближение функции, численное интегрирование функций. Представленные методы и реализованные алгоритмы достаточно просты, но в тоже время эффективны для большого количества задач.
Список использованных источников
1. Бахвалов Н., Жидков Н., Кобельков Г. Численные методы. М.: Лаборатория базовых знаний, 2001. 632 с.
2. Вержбицкий В.М., Численных методы. Линейная алгебра и нелинейные уравнения. М.: Высшая школа, 2000. 266 с.
3. Вержбицкий В.М., Основы численных методов. М.: Высшая школа, 2002. 840 с.
4. Пирумов У.Г. Численные методы . М.: Дрофа, 2003. 224 с.
5. Буслов В.А., Яковлев С.Л. Яисленные методы и решение уравнений. Санкт-Петербург, 2001. 44 с.
6. Фаронов В.В. Турбо Паскаль 7.0. Начальный курс. Учебное пособие. - М.: Нолидж, 1997. - 616 с.
Подобные документы
Решение задач вычислительными методами. Решение нелинейных уравнений, систем линейных алгебраических уравнений (метод исключения Гаусса, простой итерации Якоби, метод Зейделя). Приближение функций. Численное интегрирование функций одной переменной.
учебное пособие [581,1 K], добавлен 08.02.2010Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа [508,1 K], добавлен 16.12.2015Численные методы решения систем линейных уравнений: Гаусса, простой итерации, Зейделя. Методы аппроксимации и интерполяции функций: неопределенных коэффициентов, наименьших квадратов. Решения нелинейных уравнений и вычисление определенных интегралов.
курсовая работа [322,7 K], добавлен 27.04.2011Математическая формулировка задачи, существующие численные методы и схемы алгоритмов. Интерполирование функции, заданной в узлах, методом Вандермонда. Среднеквадратичное приближение функции. Вычисление интеграла функций по составной формуле трапеций.
курсовая работа [3,4 M], добавлен 14.04.2009Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.
курсовая работа [118,4 K], добавлен 04.05.2014Решение системы линейных уравнений с неизвестными методами Гаусса, Зейделя и простой итерации. Вычисление корня уравнения методами дихотомии, хорды и простой итерации. Нахождение приближённого значения интеграла с точностью до 0,001 методом Симпсона.
контрольная работа [1,7 M], добавлен 05.07.2014Решение систем линейных алгебраических уравнений методом исключения Гаусса. Табулирование и аппроксимация функций. Численное решение обыкновенных дифференциальных уравнений. Приближенное вычисление определенных интегралов. Решение оптимизационных задач.
курсовая работа [1,6 M], добавлен 21.11.2013Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.
курс лекций [871,5 K], добавлен 11.02.2012Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.
контрольная работа [397,2 K], добавлен 13.12.2010Методы численного интегрирования, основанные на том, что интеграл представляется в виде предела суммы площадей. Геометрическое представление метода Гаусса с двумя ординатами. Численные примеры и сравнение методов. Решение систем алгебраических уравнений.
курсовая работа [413,4 K], добавлен 11.06.2014