Классификация групп с перестановочными обобщенно максимальными подгруппами

Описание ненильпотентных групп с перестановочными обобщенно максимальными подгруппами. Изучение групп с Х-перестановочными I-максимальными подгруппами. Особенности групп, в которых 2-максимальные подгруппы перестановочны с 3-максимальными подгруппами.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 02.03.2010
Размер файла 431,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Республики Беларусь

Учреждение образования

«Гомельский государственный университет им. Ф. Скорины»

Математический факультет

Кафедра алгебры и геометрии

Курсовая работа

Классификация групп с перестановочными обобщенно максимальными подгруппами

Исполнитель:

Студентка группы М-32 Лапухова А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Скиба М.Т.

Гомель 2005

Содержание

  • Перечень условных обозначений
  • Введение
  • 1. Классификация групп с перестановочными обобщенно максимальными подгруппами
  • 2. Группы с -перестановочными -максимальными подгруппами
  • 3. Группы, в которых -максимальные подгруппы перестановочны с -максимальными подгруппами
  • 4. Группы, в которых максимальные подгруппы перестановочны с -максимальными подгруппами
  • Заключение
  • Литература

Перечень условных обозначений

В работе все рассматриваемые группы предполагаются конечными. Используются обозначения, принятые в книгах. Буквами обозначаются простые числа.

Будем различать знак включения множеств и знак строгого включения ;

и - соответственно знаки пересечения и объединения множеств;

- пустое множество;

- множество всех для которых выполняется условие ;

- множество всех натуральных чисел;

- множество всех простых чисел;

- некоторое множество простых чисел, т.е. ;

- дополнение к во множестве всех простых чисел; в частности, ;

примарное число - любое число вида ;

Пусть - группа. Тогда:

- порядок группы ;

- порядок элемента группы ;

- единичный элемент и единичная подгруппа группы ;

- множество всех простых делителей порядка группы ;

- множество всех различных простых делителей натурального числа ;

-группа - группа , для которой ;

-группа - группа , для которой ;

- подгруппа Фраттини группы , т.е. пересечение всех максимальных подгрупп группы ;

- подгруппа Фиттинга группы , т.е. произведение всех нормальных нильпотентных подгрупп группы ;

- наибольшая нормальная -нильпотентная подгруппа группы ;

- коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;

- -ый коммутант группы ;

- наибольшая нормальная -подгруппа группы ;

- -холловская подгруппа группы ;

- силовская -подгруппа группы ;

- дополнение к силовской -подгруппе в группе , т.е. -холловская подгруппа группы ;

- группа всех автоморфизмов группы ;

- является подгруппой группы ;

- является собственной подгруппой группы ;

- является максимальной подгруппой группы ;

нетривиальная подгруппа - неединичная собственная подгруппа;

- является нормальной подгруппой группы ;

- подгруппа характеристична в группе , т.е. для любого автоморфизма ;

- индекс подгруппы в группе ;

;

- централизатор подгруппы в группе ;

- нормализатор подгруппы в группе ;

- центр группы ;

- циклическая группа порядка ;

- ядро подгруппы в группе , т.е. пересечение всех подгрупп, сопряжённых с в .

Если и - подгруппы группы , то:

- прямое произведение подгрупп и ;

- полупрямое произведение нормальной подгруппы и подгруппы ;

- и изоморфны.

Группа называется:

примарной, если ;

бипримарной, если .

Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

- подгруппа, порожденная всеми , для которых выполняется .

, где .

Группу называют:

-замкнутой, если силовская -подгруппа группы нормальна в ;

-нильпотентной, если -холловская подгруппа группы нормальна в ;

-разрешимой, если существует нормальный ряд, факторы которого либо -группы, либо -группы;

-сверхразрешимой, если каждый ее главный фактор является либо -группой, либо циклической группой;

нильпотентной, если все ее силовские подгруппы нормальны;

метанильпотентной, если существует нормальная нильпотентная подгруппа группы такая, что нильпотентна.

разрешимой, если существует номер такой, что ;

сверхразрешимой, если она обладает главным рядом, все индексы которого являются простыми числами.

Группа Шмидта - это конечная ненильпотентная группа, все собственные группы которой нильпотентны.

Добавлением к подгруппе группы называется такая подгруппа из , что .

Минимальная нормальная подгруппа группы - неединичная нормальная подгруппа группы , не содержащая собственных неединичных нормальных подгрупп группы .

Цоколь группы - произведение всех минимальных нормальных подгрупп группы .

- цоколь группы .

Экспонента группы - это наименьшее общее кратное порядков всех ее элементов.

Цепь - это совокупность вложенных друг в друга подгрупп. Ряд подгрупп - это цепь, состоящая из конечного числа членов и проходящая через единицу.

Ряд подгрупп называется:

субнормальным, если для любого ;

нормальным, если для любого ;

главным, если является минимальной нормальной подгруппой в для всех .

Классы групп, т.е. совокупности групп, замкнутые относительно изоморфизмов, обозначаются прописными готическими буквами. Также обозначаются формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений. За некоторыми классами закреплены стандартные обозначения:

- класс всех групп;

- класс всех абелевых групп;

- класс всех нильпотентных групп;

- класс всех разрешимых групп;

- класс всех -групп;

- класс всех сверхразрешимых групп;

- класс всех абелевых групп экспоненты, делящей .

Формации - это классы конечных групп, замкнутые относительно взятия гомоморфных образов и конечных подпрямых произведений.

Пусть - некоторый класс групп и - группа, тогда:

- -корадикал группы , т.е. пересечение всех тех нормальных подгрупп из , для которых . Если - формация, то является наименьшей нормальной подгруппой группы , факторгруппа по которой принадлежит . Если - формация всех сверхразрешимых групп, то называется сверхразрешимым корадикалом группы .

Формация называется насыщенной, если всегда из следует, что и .

Класс групп называется наследственным или замкнутым относительно подгрупп, если из того, что следует, что и каждая подгруппа группы также принадлежит .

Произведение формаций и состоит из всех групп , для которых , т.е. .

Пусть - некоторая непустая формация. Максимальная подгруппа группы называется -абнормальной, если .

Подгруппы и группы называются перестановочными, если .

Пусть , -подгруппы группы и . Тогда называется:

(1) -перестановочной с , если в имеется такой элемент , что ;

(2) наследственно -перестановочной с , если в имеется такой элемент , что .

Пусть - максимальная подгруппа группы . Нормальным индексом подгруппы называют порядок главного фактора , где и , и обозначают символом .

Подгруппа группы называется -максимальной подгруппой или иначе второй максимальной подгруппой в , если в найдется такая максимальная подгруппа , в которой является максимальной подгруппой. Аналогично определяют -максимальные (третьи максимальные) подгруппы, -максимальные подгруппы и т.д.

Введение

Подгруппы и группы называются перестановочными, если . Подгруппа группы называется перестановочной или квазинормальной в , если перестановочна с каждой подгруппой группы .

Перестановочные подгруппы обладают рядом интересных свойств, чем был и вызван широкий интерес к анализу перестановочных и частично перестановочных подгрупп в целом. Изучение перестановочных подгрупп было начато в классической работе Оре, где было доказано, что любая перестановочная подгруппа является субнормальной. Подгруппы, перестановочные с силовскими подгруппами, впервые изучались в работе С.А. Чунихина . Отметим, что подгруппы такого типа были названы позднее в работе Кегеля -квазинормальными. В 60-70-х годах прошлого столетия появились ряд ключевых работ по теории перестановочных подгрупп, которые предопределили основные направления развития теории перестановочных подгрупп в последующие годы. Уточняя отмеченный выше результат Оре, Ито и Сеп в работе доказали, что для каждой перестановочной подгруппы группы факторгруппа нильпотентна. В другом направлении этот результат Оре получил развитие в работах Кегеля и Дескинса. Кегель доказал, что любая -квазинормальная подгруппа является субнормальной и показал, что подгруппы, перестановочные с силовскими подгруппами, образуют решетку. Первый из этих двух результатов Дескинс обобщил следующим образом, если порождается своими -элементами и -подгруппа группы -квазинормальна в , то факторгруппа нильпотентна. В этой работе Дескинс высказал предположение о том, что для квазинормальной в подгруппы факторгруппа абелева. Отрицательное решение этой задачи было получено Томпсоном в работе.

Отметим, что после выхода работ, частично перестановочные подгруппы стали активно использоваться в исследованиях многих авторов. В частности, в работе Э.М. Пальчик исследовал свойства -квазинормальных подгрупп, т. е. подгрупп перестановочных со всеми бипримарными подгруппами группы . Существенно усиливая результат работы, Майер и Шмид доказали, что если - квазинормальная подгруппа конечной группы , то факторгруппа содержится в гиперцентре факторгруппы , где - ядро подгруппы . Отметим, что аналогичный результат для подгрупп, перестановочных с силовскими подгруппами, был получен лишь в недавней работе П. Шмидта. Стоунхьюер в работе обобщил результат Оре на случай бесконечных групп. Он доказал, что каждая перестановочная подгруппа конечно порожденной группы субнормальна.

Значительные успехи, достигнутые в изучении перестановочных подгрупп, в 1960-1980 годах послужили основой для дальнейшего изучения групп по наличию в них тех или иных систем перестановочных подгрупп. В частности, Хупперт доказал, что разрешимая группа сверхразрешима, если все максимальные подгруппы всех силовских подгрупп из перестановочны с силовскими подгруппами из , и группа разрешима, если в ней имеется такая силовская подгруппа и такое ее дополнение , что перестановочна со всеми максимальными подгруппами из . Эти два результата Хупперта дали толчок большому числу публикаций, cвязанных с исследованием влияния на строение основой группы максимальных подгрупп силовских подгрупп и, в частности, с исследованием перестановочности таких подгрупп. Другой результат, давший значительный импульс к исследованию групп с заданными системами перестановочных подгрупп был получен Асаадом и Шаланом в их совместной работе, где была доказана сверхразрешимость конечной группы при условии, что , где все подгруппы из перестановочны со всеми подгруппами из . Идеи этой работы и, в частности, отмеченный здесь результат этой работы были развиты во многих направлениях в исследованиях многих авторов, где на основе перестановочности были описаны многие важные классы конечных и бесконечных групп .

В работе Го Вэньбиня, Шама и А.Н. Скибы было рассмотрено новое обобщение понятия перестановочной подгруппы. Согласно, погруппы и называются -перестановочными, где , если в имеется такой элемент , что . Используя понятие -перестановочности можно охарактеризовать многие важные классы групп по наличию в них тех или иных -перестановочных подгрупп для подходящих . Согласно, группа является сверхразрешимой тогда и только тогда, когда все ее максимальные подгруппы -перестановочны со всеми другими подгруппами этой группы. Новые характеризации в терминах -перестановочных подгрупп для класов разрешимых, сверхразрешимых и нильпотентных групп можно найти в работах.

Таким образом, задача изучения групп с заданной системой перестановочных и обобщенно перестановочных подгрупп вполне актуальна, и дальнейшей ее реализации посвящена данная работа.

1. Классификация групп с перестановочными обобщенно максимальными подгруппами

Результаты, связанные с изучением максимальных подгрупп, составили одно из самых содержательных направлений в теории конечных групп. Это связано прежде всего с тем, что многие известные классы групп допускают описания на основе свойств максимальных подгрупп. Отметим, например, что группа нильпотентна тогда и только тогда, когда все ее максимальные подгруппы нормальны; сверхразрешима тогда и только тогда, когда индексы всех ее максимальных подгрупп просты ; разрешима тогда и только тогда, когда у любой ее максимальной подгруппы нормальный индекс совпадает с обычным индексом . Отметим также, что максимальные подгруппы лежат в основе многих важных признаков принадлежности группы выделенному классу групп. Наиболее известными результатами в этом направлении являются теорема Дескинса-Томпсона-Янко о том, что группа разрешима, если она обладает максимальной нильпотентной подгруппой, у которой класс нильпотентности силовских -подгрупп не превосходит 2 и теорема О.Ю. Шмидта о разрешимости группы, у которой все максимальные подгруппы нильпотентны. Отметим, что разрешимость групп, у которых все максимальные подгруппы сверхразрешимы, была установлена Хуппертом.

По мере развития теории максимальных подгрупп многими авторами предпринимались также попытки изучения и применения -максимальных, -максимальных и т.д. подгрупп. При этом, как и для максимальных подгрупп, с одной стороны рассматривались группы с различными ограничениями на способ вложения обобщенно максимальных подгрупп в эти группы, с другой стороны исследовались свойства основной группы в зависимости от условий, накладываемых на внутреннее строение -максимальных, -максимальных и т.д. подгрупп. Пожалуй, наиболее ранний результат, относящийся к этому направлению, был получен Хуппертом, установившим сверхразрешимость группы, у которой все вторые максимальные подгруппы нормальны. В дальнейшем этот результат был развит в нескольких направлениях. В частности, сверхразрешимость разрешимых групп, у которых все вторые максимальные подгруппы перестановочны со всеми силовскими подгруппами было установлена Агровалем , а в работе Л.А. Поляков доказал, что группа сверхразрешима, если любая ее -максимальная подгруппа перестановочна со всеми максимальными подгруппами этой группы .

Оказалось, что группы, у которых все -максимальные подгруппы нильпотентны, не обязательно разрешимы и полное описание групп с таким свойством в неразрешимом случае было получено Янком, а в разрешимом случае В.А. Белоноговым. Группы, у которых все -максимальные подгруппы абелевы, были описаны Я.Г. Берковичем в работе. Эти результаты получили развитие в работе В.Н. Семенчука, который дал полное описание разрешимых групп, у которых все их -максимальные подгруппы сверхразрешимы.

В последние годы получен ряд новых интересных результатов о -максимальных подгруппах, связанных с изучением их способа вложения в основную группу. В этой связи, прежде всего , в которых на языке -максимальных подгрупп получены описания ряда важных классов групп. Напомним, что подгруппа группы обладает свойством покрытия-изолирования, если для любого главного фактора группы выполняется одно из двух условий или . В работе доказано, что группа разрешима тогда и только тогда, когда в имеется такая -максимальная разрешимая подгруппа, которая обладает свойством покрытия-изолирования. Отметим также, что в работе, а также в работе изучалось строение групп, в зависимоси от -максимальных подгрупп их силовских подгрупп.

Пусть и - подгруппы группы . Тогда подгруппа называется -перестановочной с , если в найдется такой элемент , что . В работе найдены новые описания нильпотентных и сверхразрешимых групп на основе условия -перестановочности для -максимальных подгрупп. В частности, доказано, что: Группа нильпотентна тогда и только тогда, когда для любой -максимальной подгруппы группы , имеющей непримарный индекс, в найдется такая нильпотентная подгруппа , что и -перестановочна со всеми подгруппами из .

Пусть - набор всех -максимальных подгрупп группы .

Как показывают упомянутые выше результаты работ, условия перестановочности, накладываемые на подгруппы из , существенно определяют строение основной группы. В работе Л.Я. Полякова было доказано, что группа разрешима, если любая подгруппа из перестановочна со всеми подгруппами из для всех , где . В связи с этим результатом естественно возникает вопрос о полном описании групп с таким свойством. Решению данной задачи и посвящена настоящая глава.

2. Группы с -перестановочными -максимальными подгруппами

Отмеченные выше результаты работы допускают следующие уточнения.

[2.1]. Пусть - группа, - ее подгруппа Фиттинга. Если любая -максимальная подгруппа группы -перестановочна со всеми максимальными подгруппами группы , то группа метанильпотентна.

Доказательство. Предположим, что теорема не верна, и пусть - контрпример минимального порядка. Доказательство разобьем на следующие этапы.

(1) Для любой неединичной нормальной в подгруппы факторгруппа метанильпотентна.

Рассмотрим факторгруппу . Пусть - произвольная максимальная в подгруппа и - произвольная -максимальная подгруппа. Тогда максимальна в и -максимальна в , а значит, по условию подгруппа -перестановочна с подгруппой . Но тогда, согласно лемме , подгруппа -перестановочна с подгруппой . Итак, условие теоремы выполняется в . Но и поэтому согласно выбора группы , мы имеем (1).

(2) - разрешимая группа.

Если в группе существует единичная -максимальная подгруппа, то теорема очевидно справедлива. Предположим, что в группе все -максимальные подгруппы отличны от единицы. Докажем, что для каждой максимальной подгруппы группы , . Пусть - максимальная подгруппа группы . Тогда по условию для каждого , мы имеем . Ввиду леммы , и, следовательно, . Значит, . Поскольку , то и поэтому по выбору группы мы заключаем, что - разрешимая группа. Это означает, что разрешима, и следовательно, - разрешимая группа.

(3) Группа имеет единственную минимальную нормальную подгруппу и , где и - максимальная в подгруппа, которая не является нильпотентной группой.

Пусть - произвольная минимальная нормальная подгруппа группы . Так как класс всех метанильпотентных групп образует насыщенную формацию (см. лемму ), то - единственная минимальная нормальная подгруппа в , причем . В силу (2), является элементарной абелевой -группой для некоторого простого . Пусть - максимальная подгруппа в такая, что . Пусть . Ясно, что . Так как , мы видим, что . Это показывает, что и, следовательно, . Ясно, что и поэтому по выбору группы , не является нильпотентной группой.

(4) Заключительное противоречие.

В силу (3), в группе имеется максимальная подгруппа , которая не является нормальной подгруппой в . Поскольку для любого , - максимальная в подгруппа и - максимальная подгруппа в , то - -максимальная в подгруппа. Если - нормальная подгруппа в , то . Значит, не является нормальной подгруппой в . Покажем, что - максимальная подгруппа группы . Пусть . Пусть - такая максимальная подгруппа группы , что . Тогда . Значит, или . Первый случай, очевидно, невозможен. Следовательно, . Так как , то - максимальная в подгруппа. Тогда для любого , -перестановочна с . Поскольку , то ввиду леммы (6), перестановочна с . Из максимальности подгруппы следует, что или . Если , то ввиду леммы , . Полученное противоречие показывает, что . Тогда для любого и поэтому . Следовательно, . Это означает, что - нормальная подгруппа в , противоречие. Теорема доказана.

[2.1]. Каждая -максимальная подгруппа группы перестановочна с любой максимальной подгруппой в тогда и только тогда, когда либо нильпотентна, либо - такая ненильпотентная группа с , что циклическая силовская -подгруппа группы не нормальна в , а максимальная подгруппа группы нормальна в .

Доказательство. Необходимость. Разрешимость группы следует из теоремы . Предположим теперь, что не является нильпотентной группой. Пусть - максимальная подгруппа группы , которая не является нормальной в . Пусть и - максимальная подгруппа группы . Рассуждая как выше видим, что . Следовательно, , и - циклическая примарная группа. Пусть . Покажем, что . Допустим, что . Пусть - силовская -подгруппа группы и - максимальная подгруппа группы . Тогда - -максимальная подгруппа группы и, следовательно, по условию - подгруппа группы , что противоречит максимальности подгруппы . Отсюда следует, что .

Достаточность очевидна. Следствие доказано.

[2.2]. Если в группе любая ее максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы и , то - нильпотентная группа.

В дальнейшем нам потребуется следующая теорема.

[2.2]. Пусть - группа, - ее подгруппа Фиттинга. Если любая -максимальная подгруппа группы -перестановочна со всеми -максимальными подгруппами группы , то группа разрешима и для каждого простого .

Доказательство. Предположим, что данная теорема не верна, и пусть - контрпример минимального порядка. Доказательство разобьем на следующие этапы.

(1) - разрешимая группа.

Действительно, если , то каждая -максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы . Тогда по следствию , каждая максимальная подгруппа группы сверхразрешима. Согласно известной теоремы Хупперта о разрешимости группы, в которой все собственные подгруппы сверхразрешимы, - разрешимая группа.

Пусть теперь . Так как условие теоремы справедливо для группы , то группа разрешима и поэтому - разрешимая группа.

(2) Группа имеет единственную минимальную нормальную подгруппу

и ,

где - такая максимальная в подгруппа, что , и .

Так как класс всех разрешимых групп с образует насыщенную формацию , то ввиду (1), и поэтому в группе существует единственная минимальная нормальная подгруппа . Из леммы вытекает, что , где - такая максимальная в подгруппа, что и . Покажем, что делит . Если не делит , то - -группа, и поэтому , что противоречит выбору группы . Итак, делит . Допустим, что . Тогда факторгруппа изоморфна подгруппе группы автоморфизмов . Так как группа абелева, то - сверхразрешимая группа, и поэтому . Полученное противоречие с выбором группы показывает, что .

(3) Заключительное противоречие.

Пусть - -максимальная подгруппа группы и - максимальная подгруппа группы . Тогда и . Пусть - максимальная подгруппа группы такая, что является максимальной подгруппой группы . Покажем, что - максимальная подгруппы группы и - максимальная подгруппа группы . Так как , то - собственная подгруппа группы . Предположим, что в существует подгруппа такая, что . Тогда из того, что - максимальная подгруппа группы , следует, что либо , либо . Если , то , противоречие. Используя приведенные выше рассуждения видим, что . Следовательно, - максимальная подгруппа в . Рассуждая как выше, мы видим, что и - максимальные подгруппы группы . Отсюда следует, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . По условию существует элемент такой, что . Следовательно,

и поэтому . Таким образом, каждая -максимальная подгруппа группы перестановочна с каждой максимальной подгруппой группы . Ввиду (2) и следствия , получаем, что , где силовская -подгруппа нормальна в группе . Значит, , где и . Пусть - силовская -подгруппа и - силовская -подгруппа группы . Пусть - -максимальная подгруппа группы такая, что . Так как , то - неединичная подгруппа. Ясно, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . Следовательно, по условию подгруппа -перестановочна с , и поэтому для некоторого мы имеем - подгруппа группы . Поскольку , то - нормальная подгруппа в группе . Так как , то - нормальная подгруппа в группе . Получили противоречие с тем, что - минимальная нормальная подгруппа. Теорема доказана.

Для доказательства теоремы [2.3] нам понадобятся следующие две леммы.

Если все максимальные подгруппы группы имеют простые порядки, то сверхразрешима.

Доказательство. Так как в группе все -максимальные подгруппы единичны, то ввиду следствия группа либо нильпотентна, либо , где - подгруппа простого порядка и - циклическая -подгруппа, которая не является нормальной в подгруппой ( - различные простые числа). Предположим, что не является нильпотентной группой. Тогда . Поскольку , то - максимальная подгруппа группы и поэтому . Так как группа порядка разрешима, то группа разрешима. Значит, - нормальная в подгруппа и поэтому главные факторы группы имеют простые порядки. Следовательно, - сверхразрешимая группа. Лемма доказана.

Если в группе каждая максимальная подгруппа , индекс которой является степенью числа , нормальна в , то - -нильпотентная группа.

Доказательство. Предположим, что данная лемма не верна, и пусть - контрпример минимального порядка. Тогда:

(1) Для любой неединичной нормальной подгруппы группы факторгруппа -нильпотентна.

Пусть - максимальная подгруппа группы такая, что явяется степенью числа . Тогда - максимальная в подгруппа и является степенью числа . По условию, нормальна в , и поэтому нормальна в . Так как , то - -нильпотентная группа.

(2) Группа имеет единственную минимальную нормальную подгруппу и - -подгруппа.

Пусть - минимальная нормальная подгруппа группы . Так как класс всех -нильпотентных групп образует насыщенную формацию, то ввиду (1), и - единственная минимальная нормальная подгруппа группы . Предположим, что - -подгруппа. Тогда для некоторой -холловой подруппы группы . Поскольку ввиду (1), нормальна в , то - нормальная подгруппа в группе , противоречие. Следовательно, - элементарная абелева -подгруппа.

(3) Заключительное противоречие.

Пусть - максимальная подгруппа группы , не содержащая . Поскольку абелева, то и поэтому . Это влечет . Следовательно, для некоторого . Значит, - нормальная в подгруппа и поэтому , противоречие. Лемма доказана.

Дополнением к теореме [2.2] является следующий факт.

[2.3]. Пусть - группа, - ее подгруппа Фиттинга. Если любая максимальная подгруппа группы -перестановочна со всеми -максимальными подгруппами группы , то группа разрешима и для каждого простого .

Доказательство. Предположим, что теорема не верна, и пусть - контрпример минимального порядка.

(1) - непростая группа. Допустим, что . Поскольку ввиду леммы (3), условие теоремы выполняется для факторгруппы , то по выбору группы , разрешима и поэтому - разрешимая группа. Полученное противоречие показывает, что и, следовательно, любая максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами в .

Предположим, что все -максимальные подгруппы группы единичны. Тогда порядок каждой -максимальной подгруппа группы является делителем простого числа. Следовательно, любая максимальная подгруппа группы либо нильпотентна (порядка или ), либо является ненильпотентной подгруппой и имеет порядок . Значит, все максимальные подгруппы сверхразрешимы. Но ввиду теоремы , мы получаем, что разрешима. Это противоречие показывает, что в группе существует неединичная -максимальная подгруппа . Пусть - максимальная подгруппа группы , содержащая . Тогда для любого , . Если , то ввиду леммы , . Полученное противоречие показывает, что . Тогда , что влечет . Следовательно, - неединичная нормальная подгруппа в и поэтому группа непроста.

(2) Для любой неединичной нормальной в подгруппы факторгруппа разрешима (это прямо вытекает из леммы (3)).

(3) Группа имеет единственную минимальную нормальную подгруппу и , где - такая максимальная в подгруппа, что .

Пусть - произвольная минимальная нормальная подгруппа группы . Так как ввиду леммы , класс всех разрешимых групп c -длиной образует насыщенную формацию, то - единственная минимальная нормальная подгруппа в , причем . Пусть - максимальная подгруппа группы такая, что . Ясно, что . Поскольку - единственная минимальная нормальная подгруппа в , то .

(4) - разрешимая группа.

Допустим, что - неразрешимая группа. Тогда и по выбору группы мы заключаем, что - прямое произведение изоморфных простых неабелевых групп. Кроме того, и единичная подгруппа не содержится среди -максимальных подгрупп группы .

Пусть - произвольная -максимальная подгруппа, содержащаяся в . Используя приведенные выше рассуждения, видим, что . Следовательно, порядок любой -максимальной подгруппы группы , содержащейся в , равен простому числу. Ввиду леммы , - разрешимая группа. Пусть - максимальная подгруппа группы , содержащая . Так - простое число, то либо , либо . Пусть имеет место первый случай. Тогда , и поскольку - простое число, то - максимальная подгруппа группы . Из того, что индекс равен простому числу, следует, что - максимальная подгруппа группы и поэтому - -максимальная подгруппа в . Так как - неабелевая подгруппа, то в ней существует неединичная максимальная подгруппа . Понятно, что - -максимальная подгруппа в и поэтому по условию перестановочна с . В таком случае, . Но - собственная подгруппа в и поэтому . Это противоречие показывает, что . Следовательно, . Поскольку - простое число, то - максимальная подгруппа в . Из того, что группа есть прямое произведение изоморфных простых неабелевых групп, следует, что в имеется неединичная -максимальная подгруппа . Тогда -максимальна в и следовательно, . Таким образом . Это влечет . Полученное противоречие показывает, что - разрешимая группа.

(5) Заключительное противоречие.

Из (3) и (4) следует, что - элементарная абелева -группа для некоторого простого числа и поэтому . Покажем, что делит . Если не делит , то - -группа, и поэтому , что противоречит выбору группы . Итак, делит . Ввиду леммы , .

Пусть - произвольная максимальная в подгруппа с индексом , где и . Тогда , где - силовская -подгруппа группы .

Предположим, что не является нормальной в подгруппой. Ясно, что - максимальная в подгруппа. Если - нормальная подгруппа в , то . Значит, не является нормальной подгруппой в . Пусть - произвольная максимальная подгруппа группы . Тогда - -максимальная в подгруппа и поэтому - -максимальная в подгруппа для любого . Поскольку по условию -перестановочна с подгруппой и , то перестановочна с подгруппой и поэтому . Ясно, что - -максимальная в подгруппа. Так как и не является нормальной подгруппой в , то и поэтому - нормальная погруппа в . Следовательно, - нормальная в подгруппа. Это влечет, что . Ввиду произвольного выбора , получаем, что каждая максимальная подгруппа группы нормальна в . Значит, - нильпотентная группа и любая максимальная подгруппа в нормальна в . Предположим, что . Поскольку и разрешима, то в группе существует минимальная нормальная -подгруппа , где . Так как - максимальная в подгруппа, то . Это влечет, что . Следовательно, группа обладает главным рядом

и поэтому . Полученное противоречие с выбором группы показывает, что . Пусть - такая максимальная подгруппа группы , что . Тогда . Это влечет , что противоречие тому, что .

Следовательно, - нормальная подгруппа в . Согласно лемме , - -нильпотентная группа и поэтому . Ввиду произвольного выбора , получаем, что для любого и . Ясно, что , что противоречит . Теорема доказана.

3. Группы, в которых -максимальные подгруппы перестановочны с -максимальными подгруппами

Целью данного раздела является описание ненильпотентных групп, у которых каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами.

Для доказательства основного результата данного раздела нам понадобится следующая лемма.

[3.1]. Пусть - группа Шмидта. Тогда в том и только том случае каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы , когда группа имеет вид:

(1) - группа Миллера-Морено;

(2) , где - группа кватернионов порядка , - группа порядка .

Доказательство. Необходимость. Предположим, что - группа Шмидта, у которой каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы . Докажем, что в этом случае, либо - группа Миллера-Морено, либо , где - группа кватернионов порядка и - группа порядка . Предположим, что это не так и пусть - контрпример минимального порядка.

Так как - группа Шмидта, то ввиду леммы (I), , где - силовская -подгруппа в , - циклическая -подгруппа.

Покажем, что - группа простого порядка. Предположим, что это не так. Тогда в группе имеется собственная подгруппа простого порядка. Ввиду леммы (IV), и, следовательно, - нормальная подгруппа в группе и - группа Шмидта.

Понятно, что в группе каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы .

Поскольку , то и поэтому по выбору группы мы заключаем, что либо - группа Миллера-Морено, либо , где - группа кватернионов порядка и - группа порядка .

В первом случае - абелева подгруппа и, следовательно, - группа Миллера-Морено. Полученное противоречие с выбором группы показывает, что , где - группа кватернионов порядка и - группа порядка . Тогда , где - группа кватернионов порядка и - циклическая группа порядка . Пусть - такая максимальная подгруппа группы , что . Если , то . Поскольку - группа Шмидта, то нильпотентна, и поэтому . Это означает, что - нормальная подгруппа в группе . Полученное противоречие показывает, что . Следовательно, - максимальная подгруппа группы . Понятно, что - -максимальная подгруппа группы . Пусть - подгруппа группы с индексом . Ясно, что - -макимальная подгруппа группы . Так как по условию и перестановочны, то - подгруппа группы , индекс которой равен . Рассуждая как выше, видим, что - нормальная подгруппа группы . Полученное противоречие показывает, что - группа простого порядка.

Пусть - произвольная максимальная подгрупа в и - максимальная подгруппа в . Так как неабелева, то - неединичная подгруппа. Из того, что - максимальная подгруппа в , следует, что - 3-максимальная подгруппа в .

Ввиду леммы (II), - максимальная подгруппа в . Рассмотрим максимальную в подгруппу , такую что . Тогда

и - 2-максимальная подгруппа в . По условию подгруппы и перестановочны. Если , то используя лемму (V), имеем

Из того, что получаем, что порядок делит . Поскольку , то полученное противоречие показывает, что - собственная подгруппа группы . Следовательно, нильпотентна, и поэтому

Значит, либо - максимальная подгруппа в , либо . В первом случае получаем, что является единственной максимальной подгруппой в . Это означает, что - циклическая подгруппа, что противоречит выбору группы . Следовательно, первый случай невозможен. Итак, . Ввиду произвольного выбора получаем, что - единственная -максимальная подгруппа в группе . Из теоремы следует, что - либо циклическая группа, либо группа кватернионов порядка . Так как первый случай очевидно невозможен, то - группа кватернионов порядка . Поскольку подгруппа изоморфна погруппе группы автоморфизмов , то . Полученное противоречие с выбором группы доказывает, что либо - группа Миллера-Морена, либо , где - группа кватернионов порядка и - группа порядка .

Достаточность очевидна. Лемма доказана.

. В ненильпотентной группе каждая -максимальная подгруппа группы перестановочна со всеми -максимальными подгруппами группы тогда и только тогда, когда группа имеет вид:

(1) - группа Миллера-Морена;

(2) - группа Шмидта, где - группа кватернионов порядка и - группа порядка ;

(3) и ,

где - группа простого порядка , - нециклическая -группа и все ее максимальные подгруппы, отличные от , цикличны;

(4) ,

где - группа порядка , - группа простого порядка , отличного от ;

(5) ,

где - группа порядка , каждая подгруппа которой нормальна в группе , - циклическая -группа и ;

(6) ,

где - примарная циклическая группа порядка , - группа простого порядка , где и ;

(7) ,

где и - группы простых порядков и (), - циклическая -подгруппа в (), которая не является нормальной в , но максимальная подгруппа которой нормальна в .

Доказательство. Необходимость. Пусть - ненильпотентная группа, у которой каждая 2-максимальная подгруппа группы перестановочна со всеми 3-максимальными подгруппами группы .

Если в группе все максимальные подгруппы нильпотентны, то группа является группой Шмидта. Ввиду леммы, группа оказывается группой типа (1) или типа (2).

Итак, мы можем предположить, что в группе существует ненильпотентная максимальная подгруппа.

Из теоремы следует, что группа разрешима. Так как в разрешимой группе индекс любой максимальной подгруппы является степенью простого числа, то .

I. .

Пусть - некоторая силовская -подгруппа в и - некоторая силовская -подгруппа в , где .

Предположим, что в группе нет нормальных силовских подгрупп. Так как группа разрешима, то в существует нормальная подгруппа простого индекса, скажем индекса , и она не является нильпотентной группой. Действительно, если нильпотентна, то в ней нормальна силовская -подгруппа . Так как , то - нормальная подгруппа в . Из того, что следует, что - нормальная силовская -подгруппа в . Полученное противоречие показывает, что не является нильпотентной подгруппой.

Так как является максимальной подгруппой в , то по условию все 2-максимальные подгруппы группы перестановочны с каждой максимальной подгруппой группы . Ввиду следствия , группа имеет вид , где - группа простого порядка и - циклическая -подгруппа.

Так как

и факторгруппа изоморфна подгруппе из , то больше .

Если - нильпотентная группа, то и поэтому согласно теореме Бернсайда , группа -нильпотентна. Но тогда . Полученное противоречие показывает, что является ненильпотентной группой. Так как - нормальная подгруппа в , то ввиду следствия , подгруппа имеет вид , где - циклическая -подгруппа, и, следовательно, . Полученное противоречие показывает, что в группе существует нормальная силовская подгруппа.

Пусть, например, такой является силовская -подгруппа группы . Пусть . Ясно, что .

Если в группе существует подгруппа Шмидта , индекс которой равен , то . Ввиду следствия , - группа порядка .

Пусь . Допустим, что - циклическая подгруппа. В этом случае, группа является группой Шмидта. Полученное противоречие с выбором группы показывает, что - нециклическая подгруппа. Пусть - произвольная максимальная подгруппа группы , отличная от . Если - нильпотентная подгруппа, то группа нильпотентна, противоречие. Следовательно, - группа Шмидта, и поэтому - циклическая подгруппа. Таким образом, группа относится к типу (3).

Пусть . Тогда . Следовательно, - -максимальная подгруппа группы . Пусть - произвольная максимальная подгруппа группы . Если - нильпотентная подгруппа, то , и поэтому . Полученное противоречие показывает, что - группа Шмидта. Значит, - циклическая подгруппа. Пусть - произвольная максимальная подгруппа группы , отличная от . Так как , то - единственная -максимальная подгруппа группы . Следовательно, . Факторгруппа , где - элементарная абелева подгруппа порядка и . Так как - неприводимая абелева группа автоморфизмов группы , то - циклическая группа, и поэтому подгруппа циклическая, противоречие.

Предположим теперь, что у всех подгрупп Шмидта индекс в группе является степенью числа .

Так как в группе существуют собственные подгруппы Шмидта, то . Пусть - подгруппа Шмидта группы . Тогда для некоторого . Понятно, что для некоторого имеет место и поэтому не теряя общности мы может полагать, что . Поскольку , то . Из того, что , следует, что .

Так как - максимальная подгруппа группы , то по условию 2-максимальные подгруппы группы перестановочны со всеми максимальными подгруппами в . Используя следствие, мы видим, что - группа простого порядка и - циклическая подгруппа, причем все собственные подгруппы группы нормальны в . Следовательно, является максимальной подгруппой группы .

Предположим, что . Пусть - максимальная подгруппа группы . Тогда . Из того, что , следует, что - нильпотентная максимальная подгруппа в . Значит, - нормальная подгруппа в . Поскольку нормальна в , то - нормальная подгруппа группы . Так как , то в группе существует 2-максимальная подгруппа такая, что . Тогда - -максимальная подгруппа в , и следовательно, - -максимальная подгруппа в . Поскольку по условию перестановочна с , то

что приводит к противоречию с максимальностью подгруппы . Следовательно, .

Предположим теперь, что . Допустим, что . Пусть - произвольная максимальная подгруппа группы и - произвольная -максимальная подгруппа группы . Рассуждая как выше видим, что - нормальная подгруппа в группе и поэтому - подгруппа группы . Используя приведенные выше рассуждения видим, что . Полученное противоречие с максимальностью подгруппы показывает, что . Пусть - максимальная подгруппа группы , такая что . Так как , то - абелева и поэтому . Следовательно, . Так как , то . Из того, что

получаем, что , и поэтому - нормальная подгруппа в группе .

Предположим, что в группе существует подгруппа порядка , отличная от . Из того, что порядок следует, что - максимальная подгруппа группы . Отсюда следует, что - -максимальная подгруппа группы . Так как по условию подгруппы и перестановочны, то мы имеем

Следовательно, - подгруппа группы , и поэтому

Это противоречие показывает, что в группе существует единственная подгруппа порядка . Ввиду теоремы , группа является либо группой кватернионов порядка , либо является циклической группой порядка . В первом случае, подгруппа порядка группы содержится в центре группы , и поэтому подгруппа не является группой Шмидта, противоречие. Следовательно, мы имеем второй случай. Значит, - циклическая подгруппа порядка . Понятно, что . Если , то подгруппа нормальна в группе , и поэтому . Полученное противоречие показывает, что . Таким образом, - группа типа (6). Пусть теперь . Если порядок , то , и поэтому - группа типа (4). Предположим, что порядок . Пусть - максимальная подгруппа группы и - максимальная подгруппа группы . Из того, что , следует, что - неединичная подгруппа. Так как подгруппа нильпотентна, то . Но как мы уже знаем, - циклическая подгруппа и поэтому . Следовательно, . Пусть - произвольная подгруппа порядка группы . Ясно, что - -максимальная подгруппа группы и - -максимальная подгруппа группы . Значит, по условию подгруппы и перестановочны. Так как - абелева подгруппа, то - нормальная подгруппа в группе . Заметим, что поскольку , то

является нормальной подгруппой в и поэтому - нормальная подгруппа в группе . Это означает, что - группа типа (5).

II. .

Пусть - некоторая силовская -подгруппа группы , - некоторая силовская -подгруппа группы и - некоторая силовская -подгруппа группы , где - различные простые делители порядка группы . Пусть - произвольная нормальная максимальная подгруппа группы . Так как - разрешимая группа, то индекс подгруппы в группе равен некоторому простому числу. Пусть, например, индекс равен . Ввиду следствия , - либо нильпотентная подгруппа, либо ненильпотентная группа порядка .

1. Предположим, что - нильпотентная подгруппа. Пусть - силовская -подгруппа группы , - силовская -подгруппа группы и - силовская -подгруппа группы . Тогда . Так как и , то и - нормальные подгруппы в группе . Из того, что индекс подгруппы равен , следует, что и - силовские подгруппы группы и поэтому и . Понятно, что для некоторого имеет место и поэтому, не теряя общности, мы можем полагать, что . Следовательно, . Ясно, что не является нормальной подгруппой в группе .

Если подгруппы и нильпотентны, то и , и поэтому - нормальная подгруппа в группе . Значит, подгруппы и не могут быть обе нильпотентными подгруппами. Следовательно, возможны следующие случаи.

а) и - группы Шмидта.

Так как , то ввиду следствия , - подгруппа простого порядка и - циклическая подгруппа, которая не является нормальной в группе , но максимальная подгруппа группы нормальна в . Аналогично видим, что - подгруппа простого порядка и - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в , и поэтому является группой типа (7).

б) Одна из подгрупп , является нильпотентной, а другая - группой Шмидта.

Пусть например, - группа Шмидта и - нильпотентная подгруппа. Из следствия следует, что - группа простого порядка , - циклическая группа и максимальная подгруппа из нормальна в . Так как - нильпотентная группа, то . Из того, что следует, что - нормальная подгруппа в группе . Значит, ввиду леммы , - нормальная максимальная подгруппа в группе и поэтому . Следовательно, - группа простого порядка .

Из того, что - нильпотентная подгруппа и - циклическая группа следует, что - нормальная подгруппа в . Следовательно, - нормальная подгруппа в группе , т.е. - группа типа (7).

2. Предположим теперь, что - ненильпотентная группа.

Из следствия следует, что , где - группа простого порядка и - циклическая группа, которая не является нормальной в группе , но максимальная подгруппа из нормальна в . Так как - характеристическая подгруппа в и - нормальная подгруппа в , то - нормальная подгруппа в . Из того, что - нормальная максимальная подгруппа в группе , следует, что - группа простого порядка .

Покажем теперь, что - нормальная подгруппа в группе . Так как , то - -максимальная подгруппа группы . Пусть - -максимальная подгруппа группы . Тогда - -максимальная подгруппа группы для любого . По условию - подгруппа группы . Поскольку порядок

делит , то . Таким образом для любого , т.е. . Так как - нормальная подгруппа в группе , то , и поэтому . Отсюда получаем, что - нормальная подгруппа в группе . Поскольку - -максимальная подгруппа, то согласно следствия, - нильпотентная группа, и поэтому . Это означает, что - нормальная подгруппа в группе . Таким образом, группа является группой типа (7).

Итак, - группа одного из типов (1) - (7) теоремы.

Достаточность. Покажем, что в группе каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы .

Пусть - группа типа (1) или (2). Ввиду леммы , в группе каждая -максимальная подгруппа перестановочна со всеми -максимальными подгруппами группы .

Пусть - группа типа (3). Тогда и , где - группа простого порядка , - нециклическая группа и все ее максимальные подгруппы, отличные от , цикличны. Пусть .

Так как , то , и поэтому в группе существует нильпотентная максимальная подгруппа, индекс которой равен . Пусть - произвольная нильпотентная максимальная подгруппа группы с индексом . Тогда . Так как - максимальная подгруппа группы , то - нормальная подгруппа в , и следовательно,

Значит, - единственная нильпотентная максимальная подгруппа, индекс которой равен .

Пусть - произвольная максимальная подгруппа в и - максимальная подгруппа в . Пусть - произвольная максимальная подгруппа в , - максимальная подгруппа в , - максимальная подгруппа в .

1. Если и - нильпотентные подгруппы группы индекса , то . Так как - максимальная подгруппа группы , то - нормальная подгруппа в , и следовательно, перестановочна с .

2. Предположим, что является ненильпотентной подгруппой. Так как , то . Из того, что , следует, что - циклическая подгруппа. Так как , то - максимальная подгруппа группы , и поэтому - нормальная подгруппа в группе . Из того, что , следует, что . Следовательно, - нильпотентная максимальная подгруппа группы , индекс которой равен . Если - максимальная подгруппа группы такая, что , то - -подгруппа, и поэтому - нильпотентная подгруппа. Пусть - произвольная максимльная подгруппа группы , индекс которой равен . Так как , то . Следовательно, для некоторого мы имеем . Без ограничения общности можно полагать, что . Так как - максимальная подгруппа циклической группы , то , и поэтому - нильпотентная максимальная подгруппа. Следовательно, - группа Шмидта. Значит, и поэтому , где - циклическая -подгруппа.

Если , то . Так как - подгруппа циклической группы , то . Из того, что - максимальная подгруппа группы , следует, что - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в группе и поэтому . Это означает, что подгруппа перестановочна со всеми 2-максимальными подгруппами группы .

Если , то - подгруппа циклической группы и поэтому - нормальная подгруппа в . Так как группа нильпотентна, то - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в и поэтому перестановочна со всеми 2-максимальными подгруппами группы .

3. Предположим теперь, что - нильпотентная группа, такая что , и не является нильпотентнай подгруппой. Тогда . Рассуждая как выше видим, что - группа Шмидта. Так как , то имеет вид

,

где - циклическая -группа.

Если , то . Но - подгруппа циклической группы и поэтому . Из того, что - максимальная подгруппа группы , следует, что - нормальная подгруппа в . Отсюда следует, что - нормальная подгруппа в группе и поэтому мы имеем , что влечет перестановочность подгруппы со всеми -максимальными подгруппами группы , в частности с .

Если , то подгруппа содержится в некоторой силовской -подгруппе группы . Так как - максимальная подгруппа группы , то и поэтому . Следовательно, - максимальная подгруппа группы . Значит, - нормальная подгруппа в . Так как - нильпотентная группа, такая что , то . Ясно, что - нормальная подгруппа группы . Если , то имеет вид . Так как , то имеет место и поэтому


Подобные документы

  • Понятие и виды бинарной алгебраической операции. Определения, примеры и общие свойства -перестановочных подгрупп. Характеристика и методика решения конечных групп с заданными -перестановочными подгруппами. Доказательство p-разрешимости конечных групп.

    курсовая работа [1,1 M], добавлен 22.09.2009

  • Конечные группы со сверхразрешимыми подгруппами четного и непримарного индекса. Неразрешимые группы с заданными подгруппами непримарного индекса. Классификация и строение конечных минимальных несверхразрешимых групп. Доказательство теорем и лемм.

    курсовая работа [427,2 K], добавлен 18.09.2009

  • Факторизуемые группы с Х-перестановочными силовскими подгруппами. Классическая теорема Холла о разрешимых группах. Нахождение признаков сверхразрешимости группы на основе условий Х-перестановочности ее подгрупп. Доказательство тождества Дедекинда.

    курсовая работа [229,4 K], добавлен 02.03.2010

  • Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.

    дипломная работа [288,7 K], добавлен 20.12.2009

  • Рассмотрение методов экстремальных классов (Картер, Фишер, Хоукс), и критических групп (Семенчук). Классификация наследственных насыщенных формаций F, замкнутых относительно произведения обобщенно субнормальных F-подгрупп с взаимно простыми индексами.

    курсовая работа [191,3 K], добавлен 14.02.2010

  • Изучение строения групп по заданным свойствам системы их подгрупп как направлениt в теории конечных групп. Обзор конечных групп с плотной системой F-субнормальных подгрупп в случаях, когда F - произвольная S-замкнутая формация p-нильпотентных групп.

    курсовая работа [163,6 K], добавлен 07.03.2010

  • Разрешимости, сверхразрешимости и изоморфизма конечных групп. Доказательства теорем о произведении двух групп, одна из которых содержит циклическую подгруппу индекса менее или равную двум. Произведение разрешимой и циклической групп, рассмотрение лемм.

    курсовая работа [523,5 K], добавлен 26.09.2009

  • Изучение свойств критических групп и субнормальных подгрупп. Нахождение серии наследственных насыщенных формаций Шеметкова (минимальная не F-группа тут группа Шмидта, либо простого порядка) и Фиттинга (замкнутые относительно произведения F-подгрупп).

    дипломная работа [272,8 K], добавлен 14.02.2010

  • Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.

    курсовая работа [241,0 K], добавлен 06.03.2014

  • Формации как классы групп, замкнутые относительно фактор-групп и подпрямых произведений, методика их произведения. Операции на классах групп, приводящие к формациям. Виды простейших свойств локальной формации всех групп с нильпотентным компонентом.

    курсовая работа [461,6 K], добавлен 20.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.