Логика

Понятие – это форма мышление, отражающая предмет в его необходимых, существенных признаках. Суждение – мысль, содержащая утверждения о наличии в действительности некоторого положения дел. Логический квадрат. Силлогизм – дедуктивное умозаключение.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 21.04.2008
Размер файла 25,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

8

Логика вариант 4

ПЛАН:

1. ПОНЯТИЯ

2. СУЖДЕНИЕ

3. СЛОЖНЫЕ СУЖДЕНИЯ

4. ЛОГИЧЕСКИЙ КВАДРАТ

5. СИЛЛОГИЗМ

6. ИНДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ

ЛИТЕРАТУРА

1. ПОНЯТИЯ

Понятие - есть мысль, которая посредством указания на некоторый признак выделяет из универсума и собирает в класс (обобщает) предметы, обладающие этим признаком. Понятие - это форма мышление, отражающая предмет в его необходимых, существенных признаках. Понятия выражаются и закрепляются в словах и словосочетаниях, без которых невозможно ни формирование понятий, ни оперирование ими. Единство понятия и слова не означает их полного совпадения. Понятие - это результат более или менее сложной мыслительной деятельности. Понятие выражается в определенной знаковой форме. Это определенная форма отражения действительности на ступени абстрактного мышления. В процессе той или иной научной деятельности или в повседневной жизни человек вводит некоторые понятия, выделяя интересующий его класс предметов, и затем подбирает какое-нибудь сокращающее слово - общее имя для этих предметов. Может быть и наоборот, имеется уже более или менее точно интуитивно употребляемое в научном или повседневном обиходе некоторое имя, и затем образуется понятие о соответствующих предметах, отвечающее на вопрос, что представляют собой эти предметы. Обобщить понятие - значит перейти от понятия с меньшим объемом (но с большим содержанием) к понятию с большим объемом (но меньшим содержанием). Ограничить понятие - перейти от понятия с большим объемом к понятию с меньшим объемом.

а) мастер - квалифицированный работник в какой-нибудь промышленной (тяжелая, легкая) области. Обобщение: работник. Ограничение: мастер спорта.

б) шантажист - человек, который занимается шантажом (неблаговидными или преступными действиями (угроза разоблачения, разглашения компрометирующих сведений) с целью вымогательства, а также вообще угроза, запугивание чем-нибудь с целью создать выгодную для себя обстановку). Обобщение: человек. Ограничение: шантажистка.

в) оторванный рукав пиджака - часть пиджака, покрывавшая руку.

Обобщение: пиджак. Ограничение: пуговица от оторванного рукава пиджака.

2. СУЖДЕНИЕ

Суждение - мысль, содержащая утверждения о наличии в действительности некоторого положения дел. Суждения выражаются в языке с помощью повествовательных (декларативных) предложений. Эти предложения могут выражать суждения о присущности или неприсущности свойств предметов, о наличии или отсутствии отношений между предметами, о связях между ситуациями. Следует иметь в виду, что одно и то же суждение может быть выражено в языке с помощью различных предложений. Например, одна и та же мысль передается в предложениях «Снег бел», «Снег относится к числу белых предметов», «Свойства белизны присущи снегу». Всякое высказывание может быть оценено как истинное или ложное. Итак, суждение - это форма мышления, в которой утверждается или отрицается связь между предметом и его признаком, отношения между предметами или факт существования предметов; суждение может быть либо истинным, либо ложным. Различают три вида простых суждений:

1. Суждение о связи предмета с его признаком называется атрибутивным. Оно состоит из субъекта (S), предиката (P) и связки (глаголы - есть, не есть, является, не является, представляет собой, признается, не признается). Субъект суждения - это понятие о предмете суждения. Предикат суждения - понятие о признаке предмета. Связка выражает связь между субъектом и предикатом суждения. Она выражается глаголами «есть», «не есть», «является», «не является», «представляет собой», «признается», «не признается». Связка может быть выражена тире или подразумеваться. S - P.

2. Суждение об отношении предметов. Оно состоит из членов отношения (понятий о предметах), которые обозначаются символами x, y, z и т. д., и отношения между ними: символ R, который обозначает любое отношение: равенство, неравенство, больше, меньше, отношение родства. Схема суждения об отношении x R y.

3. Суждение, выражающее факт существования или несуществования предмета. S (S1 S2 S3) есть P; S есть P (P1 P2 P3), называется суждением существования.

В логике принято сокращенное обозначение суждений по их объединенной классификации. Утвердительные суждения обозначаются символом А - общеутвердительные, I - частноутвердительные, Е - общеотрицательные, О - частноотрицательные.

2.1. «Армия без полководца - тело без души» (Курций). Все S есть P. Общеутвердительное суждение А. Это суждение общее по количеству и утвердительное по качеству. Субъект и предикат имеют одинаковый объем.

2.2. «Привычка и с рабством примиряет» (Пифагор). Некоторые S есть P. Частноутвердительное I. Субъект этого суждения не распределен, объем предиката лишь частично включается в объем субъекта.

2.3. «У некоторых людей ветер так же легко уносит головы, как и шляпы» (Ч. Галифакс). Некоторые S есть P. Частноутвердительное I. Субъект этого суждения не распределен, объем предиката лишь частично включается в объем субъекта.

2.4. Не все люди имеют преступные наклонности. Некоторые S есть P. Частноутвердительное I. Субъект этого суждения не распределен, объем предиката лишь частично включается в объем субъекта.

3. СЛОЖНЫЕ СУЖДЕНИЯ

Суждение, образованное из нескольких простых с помощью логического союза (связки), называется сложным. Элементами сложного суждения являются простые суждения, состав которых, их количественная и качественная характеристика не учитываются. Их истинность или ложность зависит от истинности или ложности простых суждений. В зависимости от вида связок различают соединительные, разделительные, условные и эквивалентные суждения. В суждениях употребляются союзы «и», «а», «да», «не только, но и», «а также», «или», «если…, то…», «если, только если…, то…».

3.1. «Маленькие люди становятся великими, когда великие переводятся» (В. Шекспир). Условное (импликативное) суждение. Суждение, образованное из нескольких простых с помощью логической связки «когда». Условное умозаключение выражается схемой p > q, где p - основание, q - следствие, > - символ импликации.

p

q

p > q

И

И

И

И

Л

И

Л

И

И

Л

Л

И

Таблица истинности

1-я строка: p-истинно, q-истинно,p>q-истинно1

2-я строка: p- истинно,q-ложно, p>q-истинно 2

3-я строка: p-ложно, q-истинно, p>q-истинно 3

4- я строка:p - ложно, q- ложно, p>q-истинно 4

И - истинно, Л - ложно

Простые суждения: маленькие люди становятся великими; большие переводятся.

3.2. «Бытие только тогда и есть, когда ему грозит небытие» (Ф. Достоевский). Эквивалентное суждение (равнозначное). Включает в состав слова «только тогда», помогающие отличить его от условного суждения. Эквивалентное умозаключение выражается схемой p ? q, где p - основание, q - следствие, ? - символ эквивалентной связи.

p

q

p ? q

И

И

И

И

Л

Л

Л

И

Л

Л

Л

И

Таблица истинности

1-я строка: p-истинно, q-истинно, p? q-истинно1

2-я строка: p- истинно,q-ложно, p ? q- ложно 2

3-я строка: p-ложно, q-истинно, p ? q-ложно 3

4- я строка:p - ложно, q- ложно, p ? q-истинно 4

И - истинно, Л - ложно

Простые суждения: бытие только тогда есть; если бытию грозит небытие.

4. ЛОГИЧЕСКИЙ КВАДРАТ

Логические суждения делятся на несравнимые и сравнимые. К несравнимым относятся суждения, имеющие разные термины или различия в одном из них. К сравнимым относятся суждения, имеющие одинаковые термины, но различающиеся по своим количественным и качественным характеристикам. Устанавливая отношения между сравнимыми суждениями, различными по количеству и качеству: общеутвердительными (А), общеотрицательными (Е), частноутвердительными (I), частноотрицательными (О), определяют зависимость истинности или ложности одних суждений от истинности или ложности других. Преобразование суждения в суждение, противоположное по качеству с предикатом, противоречащим предикату исходного суждения, называется превращением. Непосредственные умозаключения можно представить в форме логического квадрата.

ПРОТИВОПОЛОЖНОСТЬ

А Е

П П

О О

Д Д

Ч Ч

И И

Н Н

Е Е

Н Н

И И

Е Е

I ЧАСТИЧНАЯ СОВМЕСТИМОСТЬ О

Логический квадрат - диаграмма (логическая схема), предложенная Византийским философом 11 в. Михаилом Пселлом, для иллюстрации и запоминания логических отношений между суждениями А, Е, О, I.

А. «У некоторых адвокатов отсутствует в рассуждениях логика» - ложно. Некоторые S есть P. I л > Е и, где > - следование. Противоречащее суждение (Е и): Ни у одного адвоката не отсутствует в рассуждениях логика. Подчинимое суждение (А л): У всех адвокатов отсутствует в рассуждениях логика.

Б. «Коней на переправе не меняют» - истинно. Аи > Ел. Противоположное суждение (Е): Не всех коней на переправе не меняют - ложно (л). Противоречащее суждение (О): Некоторых коней на переправе меняют - ложно (л). Аи > Ол.

5. СИЛЛОГИЗМ

Силлогизм (от греч. сосчитывание) - дедуктивное умозаключение, в котором из двух суждений, имеющих субъектно-предикатную форму, следует новое суждение (заключение), имеющее также субъектно-предикатную форму. Посылки должны быть распределены, во-первых, по логическому квадрату, во-вторых, иметь средний термин Простой категорический силлогизм - это умозаключение об отношении двух крайних терминов на основании их отношения к среднему термину. Силлогизм состоит из трех категорических суждений, два из которых называются посылками, третье - заключением. Понятия, входящие в состав силлогизма, называются терминами силлогизма. Различают больший, меньший и средний термины. Большим термином называется понятие, соответствующее предикату заключения (Р). Меньшим термином называется понятие, соответствующее субъекту заключения (S). Средний термин, понятие, входящие в обе посылки и отсутствующее в заключении (М). Слова «так как», «потому что», «поскольку» указывают, что заключение располагается перед посылками; слова «следовательно», «поэтому», «значит» - на заключение. Посылки стоят над чертой, а заключение - под чертой. В силлогизме (в умозаключении), как и во всяком логическом выводе, есть свои правила. Их можно проиллюстрировать с помощью кругов Эйлера:

5.1. «И дикие звери в Италии имеют логово и норы, куда они могут прятаться, а люди, которые сражаются и умирают за Италию, не владеют в ней ничем. Значит, есть в Италии люди, которые живут хуже, чем звери» (Тиберий Гракх).

Определяем посылки и заключение. Посылки: И дикие звери в Италии имеют логово и норы, куда они могут прятаться; люди, которые сражаются и умирают за Италию, не владеют в ней ничем. Заключение: есть в Италии люди, которые живут хуже, чем звери. Построим силлогизм, определим термины:

И дикие звери (P) в Италии имеют логово и норы, куда они могут прятаться (M)

Люди (S), которые сражаются и умирают за Италию, не владеют в ней ничем (M)

Есть в Италии люди (S), которые живут хуже, чем звери (P)

5.2. Только тот свободен, кто самостоятельно мыслит. Этот человек не свободен, так как самостоятельно не мыслит.

Определяем посылки и заключение. Только тот свободен, кто самостоятельно мыслит; Этот человек самостоятельно не мыслит. Заключение: Этот человек не свободен.

Построим силлогизм, определим термины:

Только тот свободен (P), кто самостоятельно мыслит (M)

Этот человек (S) самостоятельно не мыслит (M)

Этот человек (S) не свободен (P)

6. ИНДУКТИВНЫЕ УМОЗАКЛЮЧЕНИЯ

К числу основных форм мышления относится суждение. Суждение - мысль, выражаемая повествовательным предложением и являющаяся истинной или ложной. Суждение в современной логике называют высказыванием. Все суждения делятся на два вида: простые и сложные, образующиеся с помощью логических союзов конъюнкции, дизъюнкции, эквиваленции и отрицания. Индуктивным называется умозаключение, в котором вывод о принадлежности признака всем предметам класса делается на основании принадлежности этого признака некоторым предметам класса. Если в класс К входят предметы и каждому из них принадлежит признак Р, то из посылок: «S1 принадлежит признак Р», «S2 принадлежит признак Р», «S3 принадлежит признак Р»,… «Sn принадлежит признак Р» заключают «Всем принадлежит признак Р». В общем виде индуктивное умозаключение можно представить схемой:

S1 принадлежит признак Р

S2 принадлежит признак Р

S3 принадлежит признак Р

Sn принадлежит признак Р

S1, S2, S3.…Sn - элементы множества (класса) К

Все S имеют признак Р

6.1. Ошибка в мыслях (a) вызывает ошибку в словах (b), ошибка в словах (b) вызывает ошибку в делах (c). Значит, ошибка в мыслях (a) вызывает ошибку в делах (c). Это чисто условное умозаключение, обе посылки которого являются условным суждением.

Схема: (a > b) ^ (b > c) => a > c

Ошибка в мыслях (a) вызывает ошибку в словах (b)

Ошибка в словах (b) вызывает ошибку в делах (c)

Значит, ошибка в мыслях (a) вызывает ошибку в делах (c)

6.2. На картине И. Репина «Торжественное заседание Государственного Совета» (a) изображено 82 человека (b). Д. Н. Набоков (c) - член Государственного Совета (a). Д. П. Голицын (d) - член Государственного Совета (a). Д. А. Философов, П. А. Марков, Н. П. Петров, Н. Н. Обручев (e) - тоже члены Государственного Совета (a). Значит, все персонажи картины (b)- члены Государственного Совета (a). Это простая конструктивная дилемма. Логическая схема:

(a > b) ^ (c > a), (d > a), (e > a)

-------------------------------------------

b > a

Истинность умозаключения возможна, с другой стороны, на картине могли быть изображены и почетные гости торжественного заседания.

На картине И. Репина «Торжественное заседание Государственного Совета» (a) изображено 82 человека (b)

Д. Н. Набоков (c) - член Государственного Совета (a)

Д. П. Голицын (d) - член Государственного Совета (a)

Д. А. Философов, П. А. Марков, Н. П. Петров, Н. Н. Обручев (e) - тоже члены Государственного Совета (a)

Значит, все персонажи картины (b)- члены Государственного Совета (a)

ЛИТЕРАТУРА:

1. Е. К. Войшвилло, М. Г. Дегтярев. Логика. М. 2001.

2. В. И. Кириллов. Логика. М. 2002.

3. Логика. Дедуктивные умозаключения. Учебное пособие. Хабаровск. 1997.


Подобные документы

  • Операции логики с понятием "суд". Объединённая классификация суждений, их логические обозначения. Составные части сложного суждения, запись их с помощью символов, пропозициональных союзов. Полный разбор силлогизма. Запись формально-логического закона.

    контрольная работа [131,4 K], добавлен 23.10.2013

  • Графическая интерпретация множеств и операций над ними. Математическая логика, булева алгебра. Совершенная конъюнктивная нормальная форма. Равносильные формулы и их доказательство. Полнота системы булевых функций. Логика предикатов, теория графов.

    лекция [253,7 K], добавлен 01.12.2009

  • Математическая логика (бессмысленная логика), логика "здравого смысла" и современная логика. Математические суждения и умозаключения, их направления. Математическая логика и "Здравый смысл" в XXI веке. Неестественная логика в основаниях математики.

    реферат [32,2 K], добавлен 21.12.2008

  • Изучение истинности суждений. Определение отношений понятий с использованием иллюстрации кругов Л. Эйлера. Виды, структура сложных суждений. Противоположные и противоречащие модальности. Структурная схема силлогизмов. Определение правил доказательства.

    контрольная работа [34,4 K], добавлен 02.01.2011

  • Объединенная классификация суждений, их анализ и практическое применение круговых схем Эйлера. Установление вида сложного суждения, оценка его составных частей и составление его логической схемы. Определение формально-логического закона и его нарушений.

    контрольная работа [48,3 K], добавлен 26.08.2011

  • Определение отношений между понятиями, изображение их с помощью кругов Эйлера. Установление видов данных суждений, их отношений по логическому квадрату. Определение правильности простого категорического силлогизма. Установление правильности энтимемы.

    контрольная работа [131,8 K], добавлен 09.05.2016

  • Составление таблицы значений функции алгебры логики и нахождение всех существенных переменных. Связный ориентированный и взвешенный граф. Построение функции полиномом Жегалкина. Текст программы для алгоритма Дейкстры. Определение единиц и нулей функции.

    контрольная работа [43,2 K], добавлен 27.04.2011

  • Понятие алгебры логики, ее сущность и особенности, основные понятия и определения, предмет и методика изучения. Законы алгебры логики и следствия из них, методы построения формул по заданной таблице истинности. Формы представления булевых функций.

    учебное пособие [702,6 K], добавлен 29.04.2009

  • Нечёткие системы логического вывода. Исследование основных понятий теории нечетких множеств. Операции над нечёткими множествами. Нечёткие соответствия и отношения. Описания особенностей логических операций: конъюнкции, дизъюнкции, отрицания и импликации.

    презентация [191,0 K], добавлен 29.10.2013

  • Математическая теория нечетких множеств и нечеткая логика как обобщения классической теории множеств и классической формальной логики. Сферы и особенности применения нечетких экспертных систем. Анализ математического аппарата, способы задания функций.

    презентация [1,0 M], добавлен 17.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.