Интерполяция сплайнами
Понятие интерполяций функций и их роль в вычислительной математике. Рассмотрение метода интерполяции кубическими сплайнами, составление алгоритма и программного модуля. Описание тестовых примеров. Достоинства и недостатки метода сплайн-интерполяции.
Рубрика | Математика |
Предмет | Методы вычисления |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Моисеенко Александр Николаевич |
Дата добавления | 08.06.2013 |
Размер файла | 195,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Вычислительные методы линейной алгебры. Интерполяция функций. Интерполяционный многочлен Ньютона. Узлы интерполяции. Интерполяционный многочлен Лагранжа. Интерполяция сплайнами. Коэффициенты кубических сплайнов.
лабораторная работа [70,5 K], добавлен 06.02.2004В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.
контрольная работа [131,6 K], добавлен 05.01.2011Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Построить интерполяционный многочлен Лагранжа. Выполнить интерполяцию сплайнами третьей степени.
лабораторная работа [70,8 K], добавлен 06.02.2004Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.
курсовая работа [157,4 K], добавлен 10.04.2011Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.
курсовая работа [434,5 K], добавлен 14.03.2014Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа [416,0 K], добавлен 09.08.2015Проблеми глобальної та локальної інтерполяції за Лагранжем і Ньютоном; коливна поведінка інтерполяційного многочлена; функції Рунге. Сплайн – група пов'язаних кубічних многочленів з неперервною першою і другою похідною, переваги сплайн-інтерполяції.
презентация [1,3 M], добавлен 06.02.2014Методы численного дифференцирования. Вычисление производной, простейшими формулами. Численное дифференцирование, основанное на интерполяции алгебраическими многочленами. Аппроксимация многочленом Лагранжа. Дифференцирование, с использованием интерполяции.
курсовая работа [1,3 M], добавлен 15.02.2016Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.
лабораторная работа [4,9 M], добавлен 06.12.2011Задача нахождения экстремума: сущность и содержание, оптимизация. Решение методами квадратичной интерполяции и золотого сечения, их сравнительная характеристика, определение основных преимуществ и недостатков. Количество итераций и оценка точности.
курсовая работа [779,5 K], добавлен 25.08.2014