Практическое применение интерполирования гладких функций
Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 10.04.2011 |
Размер файла | 157,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Специальность
«Математические методы в экономике»
КУРСОВАЯ РАБОТА
Практическое применение интерполирования гладких функций
- 2010
- Содержание
- Введение
- 1. Постановка задачи интерполяции
- 1.1 Определение термина интерполяции
- 1.2 Как выбрать интерполянт
- 1.3 Полиноминальная интерполяция
- 1.4 Интерполяционный полином Лагранжа
- 1.5 Про погрешность полинома
- 2. Один вид обобщенной интерполяции
- 2.1 Обобщенная интерполяция
- 2.2 Важное представление гладкой функции
- Заключение
- Список использованной литературы
Введение
В вычислительной математике существенную роль играет интерполяция функций, т.е. построение по заданной функции другой (как правило, более простой), значения которой совпадают со значениями заданной функции в некотором числе точек. Причем интерполяция имеет как практическое, так и теоретическое значение. На практике часто возникает задача о восстановлении непрерывной функции по ее табличным значениям, например полученным в ходе некоторого эксперимента. Для вычисления многих функций, оказывается, эффективно приблизить их полиномами или дробно-рациональными функциями. Теория интерполирования используется при построении и исследовании квадратурных формул для численного интегрирования, для получения методов решения дифференциальных и интегральных уравнений.
В нашем случае для более полного раскрытия данной темы подробно рассмотрим для начала само понятие интерполяции, далее интерполирование непосредственно гладкой функции и интерполирование гладкой функции в точке.
Цель работы: изучение интерполирования гладких функций и практическое применение интерполирования функций.
1. Постановка задачи интерполяции
интерполяция погрешность полином
1.1 Определение термина интерполяции
Пусть для функции f(x), определенной на какой - либо части R, известны её значения на некотором конечном множестве точек x1, x2, …, xn [a,b], и в этих точках функция f(x) определена как:
,
Требуется вычислить, хотя бы приближенно, значения при всех x.
Такая задача может возникнуть при проведении различных экспериментов, когда значения искомой функции определяются в дискретные моменты времени, либо в теории приближения, когда сложная функция сравнительно просто вычисляется при некоторых значениях аргумента, для функций заданных таблицей или графически и т.п.
Обычно функцию g(xi), xi [a,b], , с помощью которой осуществляется приближение, находят так, чтобы:
(1) ()
Такой способ приближения называют интерполяцией или интерполированием. Точки x1, x2, …, xn называют узлами интерполяции, если точка x, в которой вычисляется f(x), лежит вне отрезка [a,b], то употребляют термин экстраполяции. Функцию g(xi), , называют интерполянтом.
При этом следует ответить на следующий вопрос.
1.2 Как выбрать интерполянт
Такие функции строятся на основе комбинаций из элементарных функций.
(2) ,
- фиксированная линейно- независимая система, а () - пока неизвестные параметры.
Математическая постановка задачи интерполирования заключается в следующем. Пусть R - пространство действительных функций, определенных на отрезке [a,b], и - заданная конечная или счетная система функций из R, такая, что их любая конечная подсистема является линейно-независимой. Для данной конечной совокупности точек x1, x2, …, xn (xi ? xj при i?j), принадлежащих отрезку [a,b], и данной функции f(x) из R найти функцию ц, являющуюся линейной комбинацией функций так, чтобы в заданных точках значения f и ц совпадали. Другими словами, определить константы a1, a2, …, an так, чтобы
(3) ()
Совершенно ясно, почему число коэффициентов должно совпадать с числом узлов интерполяции xi. Это нужно для того, чтобы матрица системы была квадратной (т.е. число неизвестных совпадало бы с числом условий, из которых находятся эти неизвестные). Кроме того, для однозначной разрешимости данной системы (при произвольной правой части) необходимо и достаточно, чтобы ее определитель был отличен от нуля, т.е.:
:
Естественно, интерполянт необходимо построить в виде более легкой учетной функции, поэтому за часто берут такие системы как:
{1, х, х2, …, хn}, {1, sinx, cosx, sin2x, cos2x, …, sin(nx), cos(nx)} ,
{1, e x1, e x2, …, e xn} (i R, i?j (i?j), nN).
1.3 Полиноминальная интерполяция
Если являются степенями {1, х, х2, …, хn}, то говорят об алгебраической интерполяции, а функцию называют интерполяционным полиномом и обозначим как:
(4)
Если
() (5),
то можно построить интерполяционный полином степени n и притом только один.
Найдем интерполяционный полином из вида (4). В это время, на основе (5), для нахождения неопределённых коэффициентов используем систему линейных уравнений:
a0x0 + a1x0 + a2x02 + …+ anx0n= f0 ,
a0x0 + a1x1 + a2x12 + …+ anx1n= f1 , (6)
………………………………………………………….
a0x0 + a1xn + a2xn2 + …+ anxnn= fn ,
В этом случае определитель системы линейных алгебраических уравнений выглядит так:
.
Этот определитель является определителем Вандермонда и отличен от нуля в случае, когда все узлы xi различны. Поскольку матрица системы невырождена, то решение системы существует и единственно.
Единственность интерполяционного полинома можно доказать следующим способом. Предположим, что есть два интерполяционных полинома
Ln и Pn Hn Здесь Hn - это множество всех алгебраических многочленов степени n. : Ln ? Pn.
Из (5) : Ln(xi) - Pn(xi) 0 и Ln(xi) Pn(xi) ().
так, выходит противоречие. Единственность установлена. А так как полином единственный, то у соответствующей системы линейных алгебраических уравнений есть только одно решение.
1.4 Интерполяционный полином Лагранжа
Сейчас перед нами задача, которая состоит из нахождения такого многочлена, степени n, который совпадает с заданной f(x) в точках x1, x2, …, xn [a,b], т.е. чтобы выполнялось равенство
(6) f(xj)=Ln(xj) ().
Чтобы решить эту задачу, введем многочлены степени n, которые в точках при i?j равны нулю, а в точке при i=j равны единице. Очевидно, что:
(7) jHn, j(x)=Aj(x-x0)(x-x1)…(x-xj-1)(x-xj+1)…(x-xn)= ,
где постоянная А находится из условия j(xj)=1, тогда
Таким образом, получаем, что
j(x)
Получаем, что поставленную задачу решает многочлен
(8)
Многочлен (8) называется интерполяционным многочленом Лагранжа.
Задача 1.
Пусть задана интерполяционная таблица:
i |
0 |
1 |
2 |
3 |
|
0 |
2 |
3 |
5 |
||
1 |
3 |
2 |
5 |
Построить интерполяционный полином Лагранжа.
Решение. Из (8) следует:
Задача 2.
Пользуясь интерполяционной формулой Лагранжа, составить уравнение прямой, проходящей через точки Р0(х0, у0) и Р1(х1, у1), если х0=-1, у0=-3, х1=2, у1=4.
Решение. В данном случае многочлен Лагранжа примет вид
.
Уравнение искомой прямой есть .
1.5 Про погрешность полинома
По строению (). Но, в общем, это не так и (,), так как интерполирование предполагает приближенное нахождение:
()
И в связи с этим необходимо говорить о погрешности интерполирования. Заранее сказав, разность этого выражения нужно найти.
Замечание 1.
()
чем постоянно записывать равенство, слагаемое называют остаточным членом (или погрешность интерполяции).
Теорема 1.
Если [a,b] На непрерывном отрезке и в точке обозначили множество функции, имеющей производную по Тейлору m-го порядка.
(естественно,
Верно следующее соответствие:
здесь
(9) (,), где
[a,b] в промежутке беспрерывно n+1 раз объясняет совокупность дифференцируемых функций.
[a,b] [a,b];
Берем любую точку и зафиксируем ее (,), рассмотрим вспомогательную функцию:
(10) , ().
- свободный параметр, который открыто объясняет ().
Значение берем проходящим через равенство . В это время концы , будучи точками промежутка, можно использовать теорему Ролля.
Существует : ()
Сейчас для этой теоремы берем точки :
Существует : ()
Когда закончим этот процесс, то получим следующее:
:
Итак, при t = x из (10) вытекает (9). Что и требовалось доказать.
Следствие 1:
Пусть .
В то время (); над ними: .
Задача 3:
С помощью узлов построить полином для этой функции, при:
1) . Оценить погрешность полинома;
2) в [a,b] найти максимальную погрешность полинома.
Решение:
1) На основании Следствия 1 в непрерывном виде находим:
2) Использовав второе равенство из Следствия 1 получаем:
.
Замечание 2:
Полученные с помощью этой формулы множества полиномов называются полиномами Чебышева. В отдельных случаях:
В теории приближения функции хорошо известен следующий факт: если в качестве узлов интерполяции взять корни полинома , то ()
В этом случае из Следствия 1 следует, что
. Если свободная интерполяция находится в отрезке [a,b], то с помощью замены этот отрезок можно заменить на [-1;1]. В это время точки
(11) (, )
будут однородными с корнями , а остаточный член записывается следующим образом:
.
Последнее неравенство полностью дает оптимальную оценку на отрезке [a,b], т.е. мы оцениваем погрешность интерполяции на отрезке [a,b], чтобы узлы (11) были оптимальными.
2. Один вид обобщенной интерполяции
2.1 Обобщенная интерполяция
Рассмотрим пример интерполяции для элементов множества . Для простоты и краткости возьмем [a,b]=[-1;1], .
Пусть точки и будут разными между собой. Поставим такую задачу:
(12)
построить многочлен , удовлетворяющий данным условиям. Здесь «собственный» оператор класса :
Теорема 2.
Если взять в произвольной форме fC{m;0}, удовлетворяющее условию (12), то существует «обобщенный» интерполяционный полином и он единственен.
Доказательство:
Найдем интерполяционный полином в стандартном виде:
(13)
Затем, учитывая (13) для того, чтобы найти коэффициенты (), приходим к следующей алгебраической системе:
(14)
Эту систему упорядочим в матрицу S, являющуюся прямой суммой двух квадратных матриц размерностью m и n+1.
Здесь
Значит, основываясь на фактах линейной алгебры, определяем
Что и требовалось доказать.
Сейчас поставим перед собой цель записать многочлен G(x) в явном виде. Будет полезно рассмотреть стандартный вид многочлена Лагранжа. Из (13) видно, что
Поэтому имеет место следующее:
(14)
Возьмем параметры из (13):
(15)
Таким образом, из (13), (14), (15) следует, что
(16)
Замечание 3:
Если m=0, C{0;0}C[-1;1], (). Значит, рассмотрев функцию в задаче (11) приводится к обычной интерполяционной задаче, а многочлен Лагранжа (16) превращается в обычный интерполяционный многочлен. Таким образом, задача (11), действительно, в значении одного определения становится обобщенной задачей интерполирования.
Сейчас поговорим о погрешности обобщенной интерполяции.
В этом случае нужно дать оценку побольше. Выше приведены размышления и следствия, полученные в целях определения одной системы функций.
.
Теорема 3.
Если
Здесь
Доказательство:
Приняв во внимание (16) получаем
(17)
Следующие приведения к формуле теоремы легко доказываются из (17) и теоремы 1.
Следствие 2.
Пусть
В это время:
2.2 Важное представление гладкой функции
Теорема 4.
Верна следующая связь:
(18)
Вдобавок
(19)
Доказательство:
Пусть . По (19) получим в последовательной форме используем метод интегрирования по частям, и изменяем его:
Отсюда выходит следующее неравенство:
(20)
называют формулой Тейлора с остаточным членом в интегральной форме.
Возьмем некоторую функцию , чтобы равенство (18) было правильным . При рассмотрении второго слагаемого полинома, достаточно показать что С(m).
При изучении производной полезно использовать дифференцирование интеграла, зависящего от параметра. Эта формула в математическом анализе очень известна и определяет следующее:
(21)
здесь вдобавок
Таким образом, находим в нашем случае необходимый вид:
Значит .
Замечание 6.
Рассмотрев, оператор из последнего размышления вытекает полезное рассуждение:
(22)
Заключение
Мы убедились, что в вычислительной математике существенную роль играет интерполяция функций, значения которой совпадают со значениями заданной функции в некотором числе точек.
В данной курсовой работе рассматривается интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке, определили понятие погрешности интерполяции.
У нас возникла задача о восстановлении непрерывной функции по ее табличным значениям, поэтому в данной работе были приведены конкретные примеры по построению интерполяционного полинома Лагранжа, по оцениванию погрешности интерполяционного полинома.
В нашем случае для более полного раскрытия данной темы подробно проиллюстрировано само понятие интерполяции, далее интерполирование непосредственно гладкой функции и интерполирование гладкой функции в точке.
Список использованной литературы
1. Н.С.Габбасов. Некоторые применения производной. Наб.Челны, 1998г.
2. Я.С.Бугров, С.М.Никольский. Дифференциальное и интегральное исчисление. М.: «Наука», 1984г.
3. С.М.Никольский. Курс математического анализа. М.: «Наука», 1990г.
4. Л.Д.Кудрявцев. Краткий курс математического анализа. М.: «Наука», 1989г.
5. И.А.Марон. Дифференциальное и интегральное исчисление. М.: «Наука», 1970г.
6. А.А.Самарский. Введение в численные методы. М.: «Наука», 1987.
Размещено на Allbest.ru
Подобные документы
Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.
контрольная работа [157,0 K], добавлен 11.03.2015Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.
контрольная работа [155,2 K], добавлен 02.06.2011Отражение посредством математической функции связи между какими-либо значениями. Представление числовых функций на рисунках в виде графиков. Особенности алгебраической функции и многочленов. Практическое применение линейных и квадратических функций.
презентация [251,3 K], добавлен 07.10.2014Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).
презентация [30,4 K], добавлен 18.09.2013Определение второго замечательного предела. Понятие бесконечно малых функций. Математическое описание непрерывности зависимости одной переменной величины от другой в точке. Точки разрыва функции. Свойства и непрерывность ее в интервале и на отрезке.
презентация [314,4 K], добавлен 14.11.2014Определение минимальной и максимальной точек для функции, имеющей на отрезке [a; b] конечное число критических точек. Ознакомление с примерами нахождения наибольшего и наименьшего значений квадратической, кубической, логарифмической и иных функций.
презентация [355,9 K], добавлен 20.12.2011Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.
задача [484,3 K], добавлен 02.10.2009Понятие интерполяций функций и их роль в вычислительной математике. Рассмотрение метода интерполяции кубическими сплайнами, составление алгоритма и программного модуля. Описание тестовых примеров. Достоинства и недостатки метода сплайн-интерполяции.
курсовая работа [195,1 K], добавлен 08.06.2013Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.
контрольная работа [61,5 K], добавлен 14.01.2015Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.
курсовая работа [434,5 K], добавлен 14.03.2014