Интегрирование и производная функций

Осуществление интерполяции с помощью полинома Ньютона. Уточнение значения корня на заданном интервале тремя итерациями и нахождение погрешности вычисления. Применение методов Ньютона, Сампсона и Эйлера при решении задач. Вычисление производной функции.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 02.06.2011
Размер файла 155,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Задание 1

Осуществить интерполяцию с помощью полинома Ньютона исходных данных из табл. 1 вычислить значение интерполяционного полинома в точке .

Таблица 1

Порядковый номер исходных данных

1

2

3

4

5

6

7

8

9

10

Х

1,415

1,420

1,425

1,430

1,435

1,440

1,445

1,450

1,455

1,460

У

0,888

0,889

0,89

0,891

0,892

0,893

0,894

0,895

0,896

0,897

интерполяция погрешность производная

Решение

Интерполяционный многочлен Ньютона для равноотстоящих узлов записывается в виде

- конечная разность первого порядка

- конечная разность К-го порядка.

Таблица конечных разностей для экспериментальных данных:

1

1,415

0,888

0,001

0

0

0

0

0

0

0

0

2

1,420

0,889

0,001

0

0

0

0

0

0

0

3

1,425

0,89

0,001

0

0

0

0

0

0

4

1,430

0,891

0,001

0

0

0

0

0

5

1,435

0,892

0,001

0

0

0

0

6

1,440

0,893

0,001

0

0

0

7

1,445

0,894

0,001

0

0

8

1,450

0,895

0,001

0

9

1,455

0,896

0,001

10

1,460

0,897

.

Задание 2

Уточнить значение корня на заданном интервале тремя итерациями и найти погрешность вычисления.

, [0,4].

Решение

Вычислим первую и вторую производную функции

. Получим и .

Итерационное уравнение запишется так:

.

В качестве начального приближения возьмем правый конец отрезка .

Проверяем условие сходимости:

.

Условие сходимости метода Ньютона выполнено.

Таблица значений корня уравнения:

i

1

3,083

2

2,606

3

2,453

Уточненное значение корня .

В качестве оценки абсолютной погрешности полученного результата можно использовать величину

.

Задание 3

Методами треугольников, трапеций и Симпсона вычислить определенный интеграл.

Решение

Метод прямоугольников

Значение интеграла на интервале определяется следующей формулой:

слева

справа

1

0,25

0,2

2

0,2

0,1667

3

0,1667

0,1429

4

0,1429

0,125

0,7595

0,6345

Значение интеграла: .

Метод трапеций

Площадь трапеции равняется полусумме оснований, умноженной на высоту, которая равна расстоянию между точками по оси х. интеграл равен сумме площадей всех трапеций.

1

0,25

2

0,2

3

0,1667

4

0,1429

5

0,125

Значение интеграла: .

Метод Симпсона

1

0,25

2

0,2

3

0,1667

4

0,1429

Значение интеграла: .

Задание 4

Проинтегрировать уравнение методом Эйлера на интервале [0.2, 1.2] . Начальное условие у(0,2)=0,25.

Решение

Все вычисления удобно представить в виде таблицы:

0

0,2

0,2500

0,2751

0,0688

0,3188

1

0,45

0,3188

0,4091

0,1023

0,4211

2

0,7

0,4211

0,5634

0,1408

0,5619

3

0,95

0,5619

0,7359

0,1840

0,7459

4

1,2

0,7459

0,9318

0,2329

Таким образом, задача решена.

Задание 5

Задача 1. Вычислить сумму и разность комплексных чисел, заданных в показательной форме. Переведя их в алгебраическую форму. Построить операнды и результаты на комплексной плоскости.

Задача 2. Вычислить произведение и частное комплексных чисел. Операнды и результаты изобразить на комплексной плоскости.

Решение

Задача 1.

Задача 2.

Задание 6

Вычислить производную функции f(z) в точке .

Решение

Так как для аналитических функций справедливы все формулы и правила дифференцирования действительного аргумента, то

Задание 7

Вычислить интеграл по замкнутым контурам а) и б), считая обход контура в положительном направлении. Нарисовать область интегрирования, указать на рисунке особые точки.

Решение

а)

Подынтегральная функция имеет особые точки: . Тогда интеграл вычистится по следующей формуле:

.

б)

Подынтегральная функция имеет особые точки: . Тогда интеграл вычистится по следующей формуле:

.

Размещено на Allbest.ru


Подобные документы

  • Интерполяция с помощью полинома Ньютона исходных данных. Значение интерполяционного полинома в заданной точке. Уточнение значения корня на заданном интервале тремя итерациями и поиск погрешности вычисления. Методы треугольников, трапеций и Симпсона.

    контрольная работа [225,2 K], добавлен 06.06.2011

  • Контрольный пример к алгоритму метода хорд. Вычисление и уточнение корня методом хорд и касательных. Нахождение второй производной заданной функции. Уточненное значение корня решаемого уравнения на заданном интервале. Код программы данного примера.

    лабораторная работа [276,9 K], добавлен 02.12.2014

  • Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.

    лабораторная работа [481,0 K], добавлен 14.10.2013

  • Определение производной, понятие интеграла и определение предела функции. Дифференцирование и применение производной к решению задач. Исследование функции, вычисление интегралов и доказательство неравенств. Порядок вычисления пределов, Правило Лопиталя.

    курсовая работа [612,2 K], добавлен 01.06.2014

  • Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат [71,6 K], добавлен 06.03.2011

  • Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.

    статья [122,0 K], добавлен 11.01.2004

  • Введение в математический анализ. Индивидуальные домашние задания по теме "Предел функции и непрерывность» и по теме "Производная". Комбинаторика, бином Ньютона, математическая индукция и комплексные числа. Применение производной при исследовании функции.

    учебное пособие [950,8 K], добавлен 25.08.2009

  • Нахождение произведения для заданных множеств. Вычисление предела функции с использованием основных теорем. Раскрытие неопределенности с использованием правила Лопиталя. Нахождение производной и вычисление неопределенного интеграла методом подстановки.

    контрольная работа [260,0 K], добавлен 02.02.2011

  • Понятие производной, правила её применения, геометрический и физический смысл производной. Применение производной в науке и технике и о решении задач в этой области. Актуальность дифференциального исчисления в связи с научно-техническим прогрессом.

    реферат [458,8 K], добавлен 17.05.2009

  • Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.

    курсовая работа [157,4 K], добавлен 10.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.