Дифференциальное исчисление функций

Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.

Рубрика Математика
Вид задача
Язык русский
Дата добавления 02.10.2009
Размер файла 484,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

10

Содержание

1. Введение в анализ и дифференциальное исчисление функции одного переменного

2. Дифференциальное исчисление функций и его приложение

3. Интегральное исчисление функции одного переменного

1. Введение в анализ и дифференциальное исчисление функции одного переменного

1. Вычислить предел: .

Решение.

При имеем

Следовательно,

2. Найти асимптоты функции: .

Решение.

Очевидно, что функция не определена при .

Отсюда получаем, что

Следовательно, - вертикальная асимптота.

Теперь найдем наклонные асимптоты.

Следовательно, - наклонная асимптота при .

3. Определить глобальные экстремумы: при .

Решение.

Известно, что глобальные экстремумы функции на отрезке достигаются или в критических точках, принадлежащих отрезку, или на концах отрезка. Поэтому сначала находим .

.

А затем находим критические точки.

Теперь найдем значение функции на концах отрезка.

.

Сравниваем значения и получаем:

4. Исследовать на монотонность, найти локальные экстремумы и построить эскиз графика функции: .

Решение.

Сначала находим .

.

Затем находим критические точки.

x

-3

0

-

0

+

0

+

убывает

min

возрастает

возрастает

возрастает

Отсюда следует, что функция

возрастает при ,

убывает при .

Точка - локальный минимум.

5. Найти промежутки выпуклости и точки перегиба функции: .

Решение

Чтобы найти промежутки выпуклости и точки перегиба, найдем вторую производную функции.

.

.

.

x

-2

1

-

0

-

0

+

вогнутая

перегиб

выпуклая

перегиб

вогнутая

Отсюда следует, что функция

выпуклая при ,

вогнутая при .

Точки , - точки перегиба.

2. Дифференциальное исчисление функций и его приложение»

1. Провести полное исследование свойств и построить эскиз графика функции .

Решение.

1) Область определения функции

.

2) Функция не является четной или нечетной, так как

.

3) Теперь найдем точки пересечения с осями:

а) с оx: , б) с oy .

4) Теперь найдем асимптоты.

а)

А значит, является вертикальной асимптотой.

б) Теперь найдем наклонные асимптоты

Отсюда следует, что

является наклонной асимптотой при .

5) Теперь найдем критические точки

не существует при .

6)

не существует при

x

0

2

4

+

0

-

Не сущ.

-

0

+

-

-

-

Не сущ.

+

+

+

y

возрастает

выпуклая

max

убывает

выпуклая

не сущ.

убывает

вогнутая

min

возрастает

вогнутая

Построим эскиз графика функции

2. Найти локальные экстремумы функции .

Решение.

Сначала найдем частные производные

Известно, что необходимым условием существования экстремума является равенство нулю частных производных.

То есть мы получили одну критическую точку: . Исследуем ее.

Далее проведем исследование этой точки.

Для чего найдем предварительно частные производные второго порядка

Для точки :

.

Следовательно, точка не является точкой экстремума.

Это означает, что точек экстремума у функции

нет.

3. Определить экстремумы функции , если .

Решение.

Сначала запишем функцию Лагранжа

.

И исследуем ее

(Учитываем, что по условию )

То есть мы получили четыре критические точки.

В силу условия нам подходит только первая .

Исследуем эту точку.

Вычислим частные производные второго порядка:

Отсюда получаем, что

Теперь продифференцируем уравнение связи

.

Для точки

Далее получаем

То есть мы получили отрицательно определенную квадратичную форму.

Следовательно, - точка условного локального максимума.

.

3. Интегральное исчисление функции одного переменного

1-3. Найти неопределенный интеграл

1. .

Решение.

.

2. .

Решение.

.

3.

Решение.

.

4. Вычислить .

Решение.

.

5. Определить площадь плоской фигуры, ограниченной кривыми

.

Решение.

.


Подобные документы

  • Нахождение асимптот функции, локальных и глобальных экстремумов. Промежутки выпуклости и точки перегиба функции. Область определения функции и точки пересечения с осями. Нахождение определенного и неопределенного интегралов. Выполнение деления с остатком.

    контрольная работа [312,9 K], добавлен 26.02.2012

  • Введение в анализ и дифференциальное исчисление функции одного переменного. Нахождение локальных экстремумов функции. Интегральное исчисление функции, пределы интегрирования. Практический пример определения площади плоской фигуры, ограниченной кривыми.

    контрольная работа [950,4 K], добавлен 20.01.2014

  • Элементы линейной алгебры. Элементы аналитической геометрии и векторной алгебры. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Дифференциальное исчисление функций нескольких независимых переменных. Интеграл.

    методичка [90,5 K], добавлен 02.11.2008

  • Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.

    контрольная работа [77,3 K], добавлен 11.07.2013

  • Исследование функции на четность и периодичность. Нахождение вертикальных, горизонтальных (или наклонных) асимптот, а также экстремумов и интервалов монотонности. Определение интервалов выпуклости и точки перегиба. Построение графика исследуемой функции.

    презентация [134,7 K], добавлен 21.09.2013

  • Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.

    контрольная работа [157,0 K], добавлен 11.03.2015

  • Определение вертикальной, горизонтальной и наклонной асимптот графиков функций. Точки разрыва и область определения функции. Нахождение конечного предела функции. Неограниченное удаление точек графика от начала координат. Примеры нахождения асимптот.

    презентация [99,6 K], добавлен 21.09.2013

  • Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.

    курсовая работа [836,0 K], добавлен 09.12.2013

  • Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.

    контрольная работа [153,6 K], добавлен 19.01.2010

  • Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.

    контрольная работа [283,1 K], добавлен 01.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.