Дифференциальное исчисление функций
Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.
Рубрика | Математика |
Вид | задача |
Язык | русский |
Дата добавления | 02.10.2009 |
Размер файла | 484,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
10
Содержание
1. Введение в анализ и дифференциальное исчисление функции одного переменного
2. Дифференциальное исчисление функций и его приложение
3. Интегральное исчисление функции одного переменного
1. Введение в анализ и дифференциальное исчисление функции одного переменного
1. Вычислить предел: .
Решение.
При имеем
Следовательно,
2. Найти асимптоты функции: .
Решение.
Очевидно, что функция не определена при .
Отсюда получаем, что
Следовательно, - вертикальная асимптота.
Теперь найдем наклонные асимптоты.
Следовательно, - наклонная асимптота при .
3. Определить глобальные экстремумы: при .
Решение.
Известно, что глобальные экстремумы функции на отрезке достигаются или в критических точках, принадлежащих отрезку, или на концах отрезка. Поэтому сначала находим .
.
А затем находим критические точки.
Теперь найдем значение функции на концах отрезка.
.
Сравниваем значения и получаем:
4. Исследовать на монотонность, найти локальные экстремумы и построить эскиз графика функции: .
Решение.
Сначала находим .
.
Затем находим критические точки.
x |
-3 |
0 |
||||
- |
0 |
+ |
0 |
+ |
||
убывает |
min |
возрастает |
возрастает |
возрастает |
Отсюда следует, что функция
возрастает при ,
убывает при .
Точка - локальный минимум.
5. Найти промежутки выпуклости и точки перегиба функции: .
Решение
Чтобы найти промежутки выпуклости и точки перегиба, найдем вторую производную функции.
.
.
.
x |
-2 |
1 |
||||
- |
0 |
- |
0 |
+ |
||
вогнутая |
перегиб |
выпуклая |
перегиб |
вогнутая |
Отсюда следует, что функция
выпуклая при ,
вогнутая при .
Точки , - точки перегиба.
2. Дифференциальное исчисление функций и его приложение»
1. Провести полное исследование свойств и построить эскиз графика функции .
Решение.
1) Область определения функции
.
2) Функция не является четной или нечетной, так как
.
3) Теперь найдем точки пересечения с осями:
а) с оx: , б) с oy .
4) Теперь найдем асимптоты.
а)
А значит, является вертикальной асимптотой.
б) Теперь найдем наклонные асимптоты
Отсюда следует, что
является наклонной асимптотой при .
5) Теперь найдем критические точки
не существует при .
6)
не существует при
x |
0 |
2 |
4 |
|||||
+ |
0 |
- |
Не сущ. |
- |
0 |
+ |
||
- |
- |
- |
Не сущ. |
+ |
+ |
+ |
||
y |
возрастает выпуклая |
max |
убывает выпуклая |
не сущ. |
убывает вогнутая |
min |
возрастает вогнутая |
Построим эскиз графика функции
2. Найти локальные экстремумы функции .
Решение.
Сначала найдем частные производные
Известно, что необходимым условием существования экстремума является равенство нулю частных производных.
То есть мы получили одну критическую точку: . Исследуем ее.
Далее проведем исследование этой точки.
Для чего найдем предварительно частные производные второго порядка
Для точки :
.
Следовательно, точка не является точкой экстремума.
Это означает, что точек экстремума у функции
нет.
3. Определить экстремумы функции , если .
Решение.
Сначала запишем функцию Лагранжа
.
И исследуем ее
(Учитываем, что по условию )
То есть мы получили четыре критические точки.
В силу условия нам подходит только первая .
Исследуем эту точку.
Вычислим частные производные второго порядка:
Отсюда получаем, что
Теперь продифференцируем уравнение связи
.
Для точки
Далее получаем
То есть мы получили отрицательно определенную квадратичную форму.
Следовательно, - точка условного локального максимума.
.
3. Интегральное исчисление функции одного переменного
1-3. Найти неопределенный интеграл
1. .
Решение.
.
2. .
Решение.
.
3.
Решение.
.
4. Вычислить .
Решение.
.
5. Определить площадь плоской фигуры, ограниченной кривыми
.
Решение.
.
Подобные документы
Нахождение асимптот функции, локальных и глобальных экстремумов. Промежутки выпуклости и точки перегиба функции. Область определения функции и точки пересечения с осями. Нахождение определенного и неопределенного интегралов. Выполнение деления с остатком.
контрольная работа [312,9 K], добавлен 26.02.2012Введение в анализ и дифференциальное исчисление функции одного переменного. Нахождение локальных экстремумов функции. Интегральное исчисление функции, пределы интегрирования. Практический пример определения площади плоской фигуры, ограниченной кривыми.
контрольная работа [950,4 K], добавлен 20.01.2014Элементы линейной алгебры. Элементы аналитической геометрии и векторной алгебры. Введение в математический анализ. Дифференциальное исчисление функций одной переменной. Дифференциальное исчисление функций нескольких независимых переменных. Интеграл.
методичка [90,5 K], добавлен 02.11.2008Производные функций, заданных в явном и неявном виде. Исследование функций методами дифференциального исчисления. Точки перегиба и экстремума, градиент функции. Объем тела, образованного вращением фигуры и ограниченной графиками функций, вокруг оси.
контрольная работа [77,3 K], добавлен 11.07.2013Исследование функции на четность и периодичность. Нахождение вертикальных, горизонтальных (или наклонных) асимптот, а также экстремумов и интервалов монотонности. Определение интервалов выпуклости и точки перегиба. Построение графика исследуемой функции.
презентация [134,7 K], добавлен 21.09.2013Нахождение пределов функций. Определение значения производных данных функций в заданной точке. Проведение исследования функций с указанием области определения и точек разрыва, экстремумов и асимптот. Построение графиков функций по полученным данным.
контрольная работа [157,0 K], добавлен 11.03.2015Определение вертикальной, горизонтальной и наклонной асимптот графиков функций. Точки разрыва и область определения функции. Нахождение конечного предела функции. Неограниченное удаление точек графика от начала координат. Примеры нахождения асимптот.
презентация [99,6 K], добавлен 21.09.2013Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.
курсовая работа [836,0 K], добавлен 09.12.2013Вычисление и исследование предела и производной функции, построение графиков. Вычисление неопределенных интегралов, площади фигуры, ограниченной графиками функций. Нахождение решения дифференциального уравнения и построение графиков частных решений.
контрольная работа [153,6 K], добавлен 19.01.2010Вычисление пределов функций. Нахождение производные заданных функций, решение неопределенных интегралов. Исследование функции и построение ее графика. Особенности вычисления площади фигуры, ограниченной линиями с использованием определенного интеграла.
контрольная работа [283,1 K], добавлен 01.03.2011