Модуль неперервності та його властивості
Модуль неперервності (першого порядку), приклади та властивості. Необхідна і достатня умова рівномірної неперервності. Класи функцій, що визначаються першими модулями неперервності. Властивості і означення модуля неперервності. Аналіз класів функцій.
Рубрика | Математика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 22.01.2013 |
Размер файла | 396,9 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Означення модуля неперервності та його властивості. Дослідження поведінки найкращих наближень неперервної функції алгебраїчними многочленами на базі властивостей введених Діціаном і Тотіка. Вирішення оберненої задачі. Узагальнення теореми Джексона.
курсовая работа [1016,1 K], добавлен 09.07.2015Неперервність функцій в точці, області, на відрізку. Властивості неперервних функцій. Точки розриву, їх класифікація. Знаходження множини значень функції та нулів функції. Розв’язування рівнянь. Дослідження функції на знак. Розв’язування нерівностей.
контрольная работа [179,7 K], добавлен 04.04.2012Суть та значення аксіоматичної побудови геометрії. Аксіоматика Д. Гільберта евклідової геометрії. Аксіоми сполучення, порядку, конгруентності, неперервності та паралельності. Характеристика різних аксіоматик. Векторна аксіоматика еклідової геометрії.
курсовая работа [179,9 K], добавлен 17.03.2012Означення та приклади застосування гармонічних функцій. Субгармонічні функції та їх деякі властивості. Розв’язок задачі Діріхле з використанням функції Гріна. Теореми зростання та спадання функції регулярної в нескінченній області (Фрагмена-Ліндельофа).
курсовая работа [349,0 K], добавлен 10.09.2013Означення і основні властивості інтеграла Стілтьєса, його зв’язок, особливості і відмінності від інших визначених інтегралів і загальні умови існування. Приклади застосування інтеграла для розв’язку різних класів задач. Узагальнення інтегралу Рімана.
курсовая работа [370,2 K], добавлен 21.05.2009Теорія формацій алгебраїчних систем. Основні визначення, позначення й використовувані результати. Властивості централізаторів конгруенції універсальних алгебр. Формаційні властивості нильпотентних алгебр. Класи абелевих алгебр і їхні властивості.
дипломная работа [179,2 K], добавлен 20.01.2011Отримання аналогів теореми порівняння Колмогорова для класу функцій, що задаються обмеженнями на несиметричні норми старших похідних. Випадок класів, які задаються обмеженнями на декілька похідних. Означення екстремальної функції, її властивості.
дипломная работа [1,4 M], добавлен 11.06.2017Диференціальні операції другого порядку. Потік векторного поля. Формула Остроградського-Гаусса в векторній формі. Властивості соленоїдального поля. Інваріантне означення дивергенції. Формула Стокса у векторній формі. Властивості потенціального поля.
реферат [237,9 K], добавлен 15.03.2011Визначення метричного простору. Границя функції у точці. Властивості границь дійсних функцій. Властивості компактних множин. Розв’язок системи лiнiйних рівнянь. Теорема про існування i єдність розв’язку диференціального рівняння. Нумерація формул.
методичка [461,1 K], добавлен 25.04.2014Визначення та властивості упорядкованих множин, приклади діаграм. Дистрибутивні ґрати як один з основних алгебраїчних об'єктів. Поняття нижньої і точної грані, їх властивості та приклади, доказ лем. Застосування та суть топологічних стоунових просторів.
курсовая работа [288,0 K], добавлен 24.03.2011