Алгебри інваріантності та точні розв’язки математичної моделі хемотаксису
Застосування систем рівнянь хемотаксису в математичній біології. Виведення системи визначальних рівнянь, розв'язання отриманої системи визначальних рівнянь (симетрій Лі). Побудова анзаців максимальних алгебр інваріантності математичної моделі хемотаксису.
Рубрика | Математика |
Вид | дипломная работа |
Язык | украинский |
Дата добавления | 09.09.2012 |
Размер файла | 1,9 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Розв’язання систем лінійних рівнянь методом Жордана-Гауса. Еквівалентні перетворення системи, їх виконання як елемент методів розв’язування системи рівнянь. Базисні та вільні змінні. Лінійна та фундаментальна комбінації розв’язків, таблиці коефіцієнтів.
контрольная работа [170,2 K], добавлен 16.05.2010Розв'язання системи лінійних рівнянь методом повного виключення змінних (метод Гаусса) з використанням розрахункових таблиць. Будування математичної моделі задачі лінійного програмування. Умови для застосування симплекс-методу. Розв'язка спряженої задачі.
практическая работа [42,3 K], добавлен 09.11.2009Історія створення теорії алгебраїчних рівнянь. Сутність системи лінійних алгебраїчних рівнянь в лінійній алгебрі. Повна характеристика методів розв'язання рівнянь: точні, ітераційні та ймовірнісні. Особливості теорем Гауса-Жордана та Габріеля Крамера.
реферат [543,7 K], добавлен 23.04.2015Чисельні методи розв’язання систем нелінійних рівнянь: лінійні і нелінійні рівняння, метод простих ітерацій, метод Ньютона. Практичне використання методів та особливості розв’язання систем нелінійних рівнянь у пакеті Mathcad, Excel та на мові С++.
курсовая работа [2,0 M], добавлен 30.11.2010Аналіз найвідоміших методів розв’язування звичайних диференціальних рівнянь і їх систем, користуючись рекомендованою літературою. Розробка відповідної схеми алгоритму. Розв’язання системи звичайних диференціальних рівнянь в за допомогою MathCAD.
лабораторная работа [412,4 K], добавлен 21.10.2014Системи лінійних алгебраїчних рівнянь, головні означення. Коротка характеристика головних особливостей матричного способу, методу Жордано-Гаусса. Формули Крамера, теорема Кронекера-Капеллі. Практичний приклад розв’язання однорідної системи рівнянь.
курсовая работа [690,9 K], добавлен 25.04.2013Етапи розв'язування інженерних задач на ЕОМ. Цілі, засоби й методи моделювання. Створення математичної моделі. Побудова обчислювальної моделі. Реалізація методу обчислень. Розв’язання нелінійних рівнянь методом дихотомії. Алгоритм метода дихотомії.
контрольная работа [86,1 K], добавлен 06.08.2010Лінійні діофантові рівняння. Невизначені рівняння вищих порядків. Невизначене рівняння Ферма. Приклади розв’язання лінійних діофантових рівнянь та системи лінійних діофантових рівнянь. Алгоритми знаходження всіх цілочисельних розв’язків рівнянь.
курсовая работа [1,7 M], добавлен 29.12.2010Сумісність лінійних алгебраїчних рівнянь. Найвищий порядок відмінних від нуля мінорів матриці. Детермінант квадратної матриці. Фундаментальна система розв’язків та загальний розв'язок системи лінійних однорідних рівнянь. Приклади розв’язання завдань.
курсовая работа [86,0 K], добавлен 15.09.2008Прийоми розв’язання задач в першому і другому степені на Далекому Сході та Греції. Досягнення арабських математиків в області алгебраїчних рівнянь. Розв'язання похідного кубічного рівняння. Найвидатніші теореми про радикали вищих степенів, їх розв’язання.
курсовая работа [536,1 K], добавлен 23.02.2014