Незалежні випробування

Формула Бернуллі та її використання при невеликому числі випробувань. Застосування локальної формули Муавра-Лапласа при необмеженому зростанні числа випробувань, коли ймовірність настання події не занадто близька до нуля або одиниці. Формула Пуассона.

Рубрика Математика
Вид курсовая работа
Язык украинский
Дата добавления 21.03.2011
Размер файла 256,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Характеристика послідовності незалежних випробувань, застосування формул Бернуллі, Пусона, локальної та інтегральної теореми Лапласа. Аналіз моментів біноміального розподілу. Оцінка дисперсії. Математична теорія експерименту у техніко-економічних задачах.

    контрольная работа [94,5 K], добавлен 19.02.2010

  • Предмет теорії ймовірностей. Означення та властивості імовірності та частості. Поняття та принципи комбінаторики. Формули повної імовірності та Байєса. Схема та формула Бернуллі. Проста течія подій. Послідовність випробувань з різними ймовірностями.

    курс лекций [328,9 K], добавлен 18.02.2012

  • Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.

    презентация [611,2 K], добавлен 17.08.2015

  • Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.

    контрольная работа [55,2 K], добавлен 19.12.2013

  • Знаходження ймовірності настання події у кожному з незалежних випробувань. Знаходження функції розподілу випадкової величини. Побудова полігону, гістограми та кумуляти для вибірки, поданої у вигляді таблиці частот. Числові характеристики ряду розподілу.

    контрольная работа [47,2 K], добавлен 20.11.2009

  • Знаходження імовірності за локальною теоремою Муавра-Лапласа. Формула Муавра-Лапласа, інтегральна теорема Лапласа. Дискретна випадкова величина, знаходження функції розподілу. Математичне сподівання і дисперсія випадкової величини; закон розподілу.

    контрольная работа [209,3 K], добавлен 10.04.2009

  • Коротка біографія видатного математика Б. Тейлора. Тейлорова формула із залишковим членом у формі Пеано та у Лагранжовій формі. Розвинення деяких елементарних функцій за формулою Тейлора. Формула Тейлора для многочлена та для функції однієї змінної.

    курсовая работа [547,0 K], добавлен 20.05.2015

  • Визначення ймовірності виходу приладу з ладу. Розв’язок задачі з використанням інтегральної формули Бернуллі та формулу Пуассона. Визначення математичного сподівання, середньоквадратичного відхилення, дисперсії, функції розподілу випадкової величини.

    контрольная работа [84,2 K], добавлен 23.09.2014

  • Сутність інтерполяційних поліномів. Оцінка похибок інтерполяційних формул, їх застосування. Програма обчислення наближених значень функції у випадку, коли функція задана таблично, використовуючи інтерполяційні формули для рівновіддалених вузлів.

    курсовая работа [956,4 K], добавлен 29.04.2011

  • Основні поняття теорії ймовірностей, означення випробування, випадкової, масової, вірогідної та неможливої події. Правило суми і множення. Теорема додавання і теорема добутку ймовірностей. Використання геометричної ймовірності, Парадокс Бертрана.

    научная работа [139,9 K], добавлен 28.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.