Нахождение корня нелинейного уравнения. Методы решения системы нелинейных уравнений

Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.

Рубрика Математика
Вид лабораторная работа
Язык русский
Дата добавления 15.07.2009
Размер файла 151,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Вычисление корня функции нелинейного уравнения методом деления отрезка пополам. Способы ввода, вывода и организации данных. Модульная организация программы. Разработка блок-схемы алгоритма задачи. Порядок создания программы на алгоритмическом языке.

    реферат [30,0 K], добавлен 28.10.2010

  • Модифицированный метод Ньютона. Общие замечания о сходимости процесса. Метод простой итерации. Приближенное решение систем нелинейных уравнений различными методами. Быстрота сходимости процесса. Существование корней системы и сходимость процесса Ньютона.

    дипломная работа [1,8 M], добавлен 14.09.2015

  • Сравнение методов простой итерации и Ньютона для решения систем нелинейных уравнений по числу итераций, времени сходимости в зависимости от выбора начального приближения к решению и допустимой ошибки. Описание программного обеспечения и тестовых задач.

    курсовая работа [3,1 M], добавлен 26.02.2011

  • Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.

    курсовая работа [371,6 K], добавлен 14.01.2015

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа [181,1 K], добавлен 13.04.2010

  • Трансцендентное уравнение: понятие и характеристика. Метод половинного деления (дихотомии), его сущность. Применение метода простой итерации для решения уравнения. Геометрический смысл метода Ньютона. Уравнение хорды и касательной, проходящей через точку.

    курсовая работа [515,8 K], добавлен 28.06.2013

  • Приближенные решения кубических уравнений. Работы Диофанта, Ферма и Ньютона. Интерационный метод нахождения корня уравнения. Геометрическое и алгебраическое описания метода хорд. Погрешность приближенного решения. Линейная скорость сходимости метода.

    презентация [255,1 K], добавлен 17.01.2011

  • Графическое решение нелинейного уравнения. Уточнение значение одного из действительных решений уравнения методами половинного деления, Ньютона–Рафсона, секущих, простой итерации, хорд и касательных, конечно-разностным и комбинированным методом Ньютона.

    лабораторная работа [32,7 K], добавлен 11.06.2011

  • Методы решения одного нелинейного уравнения: половинного деления, простой итерации, Ньютона, секущих. Код программы решения перечисленных методов на языке программирования Microsoft Visual C++ 6.0. Применение методов к конкретной задаче и анализ решений.

    реферат [28,4 K], добавлен 24.11.2009

  • Изучение методов уточнения корней нелинейных уравнений (половинного деления, хорд, касательных, простой итерации). Метод хорд и касательных дает высокую скорость сходимости при решении уравнений, и небольшую - метод половинного деления и простой итерации.

    контрольная работа [58,6 K], добавлен 20.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.