Основные положения дискретной математики
Графическая интерпретация множеств и операций над ними. Математическая логика, булева алгебра. Совершенная конъюнктивная нормальная форма. Равносильные формулы и их доказательство. Полнота системы булевых функций. Логика предикатов, теория графов.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 01.12.2009 |
Размер файла | 253,7 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Математическая логика (бессмысленная логика), логика "здравого смысла" и современная логика. Математические суждения и умозаключения, их направления. Математическая логика и "Здравый смысл" в XXI веке. Неестественная логика в основаниях математики.
реферат [32,2 K], добавлен 21.12.2008Построение таблицы истинности. Доказательство истинности заключения путём построения дерева доказательства или методом резолюции. Выполнение различных бинарных операций. Построение графа вывода пустой резольвенты. Основные правила исчисления предикатов.
курсовая работа [50,7 K], добавлен 28.05.2015Математическая теория нечетких множеств и нечеткая логика как обобщения классической теории множеств и классической формальной логики. Сферы и особенности применения нечетких экспертных систем. Анализ математического аппарата, способы задания функций.
презентация [1,0 M], добавлен 17.04.2013Определение формулы исчисления высказываний, основные цели математической логики. Построение формул алгебры высказываний. Равносильность формул исчисления высказываний, конъюнктивная и дизъюнктивная нормальная форма. Постановка проблемы разрешимости.
контрольная работа [34,3 K], добавлен 12.08.2010Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.
контрольная работа [133,5 K], добавлен 08.06.2010Минимизация заданного выражения алгебры множеств на основании известных свойств. Анализ заданного бинарного отношения в общем виде. Вывод формул булевых функций для каждого элемента и схемы в целом. Преобразование формулы булевой функции логической схемы.
контрольная работа [286,7 K], добавлен 28.02.2009Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.
реферат [63,3 K], добавлен 06.12.2010Теория графов как раздел дискретной математики, исследующий свойства конечных множеств с заданными отношениями между их элементами. Основные понятия теории графов. Матрицы смежности и инцидентности и их практическое применение при анализе решений.
реферат [368,2 K], добавлен 13.06.2011Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.
контрольная работа [178,2 K], добавлен 20.01.2011Основные формы мышления: понятия, суждения, умозаключения. Сочинение Джорджа Буля, в котором подробно исследовалась логическая алгебра. Значение истинности (т.е. истинность или ложность) высказывания. Логические операции инверсии (отрицания) и конъюнкции.
презентация [399,6 K], добавлен 14.12.2016