Опиоидергические механизмы тревожных расстройств
Влияние пептидного анксиолитика селанка и его пептидных фрагментов на активность ЭДФ. Способность энкефалинов даларгина и селанка препятствовать развитию стресс-индуцированных соматических нарушений на уровне сердечнососудистой и иммунной систем.
Рубрика | Медицина |
Вид | автореферат |
Язык | русский |
Дата добавления | 19.07.2009 |
Размер файла | 388,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Удалось также обнаружить взаимосвязь между поведенческими характеристиками и активностью ЭДФ, а также содержании эндогенных опиоидов в плазме крови животных. Так, разделение крыс на 3 группы в соответствии с исходной двигательной активностью в ATS продемонстрировало, что в условиях стресса тестирования в «челночной камере» у крыс с высокой двигательной активностью (ВА) содержание лигандов ОР ?-типа в плазме крови достоверно выше, чем у остальных животных. У низкоактивных (НА) крыс обнаружено пониженное содержание лигандов ОР ?-типа (табл. 5).
Таблица 5. Активность лигандов ОР (пмоль-экв. ДАГО или ДАДЛЭ/мл) в плазме крови крыс с различной двигательной активностью в ATS
Тип лигандов ОР |
Двигательная активность животных |
|||
низкая (n=28) |
средняя (n=28) |
высокая (n=28) |
||
? - (3Н-ДАГО) |
55,5±3,1 ** |
57,8±3,0 |
70,7±4,1 |
|
? - (3Н-ДАДЛЭ) |
57.6±2.4 ** ++ |
76.6±6.1 |
82.0±5.1 |
** - p<0.01 - отличие от высокоактивных крыс,
++-p<0.01, +-p<0.05 - отличие от крыс со средней двигательной активностью,
Приведены средние значения ошибка среднего.
Обнаружены различия в активности ЭДФ плазмы крови мышей Balb/c и C57black/6 в условиях тестирования их в ОП, эмоционально-стрессовая реакция на которое у мышей этих линий кардинально отличается. Скорость деградации лей-энкефалина (150 нМ) в плазме крови мышей линии Balb/с, проявляющих повышенный уровень тревожности в ОП, составляет 506 нМ/мин, что на 30% выше (p<0.05), чем у низкотревожных в этом тесте мышей C57Black/6 (385 нМ/мин). Можно предположить, что повышенная скорость гидролиза эндогенных опиоидных пептидов является одной из биологических причин высокой тревожности животных, а фармакологические воздействия, направленные на замедление гидролиза энкефалинов, могут оказывать анксиолитическое действие.
Влияние селанка на опиоидную систему
Новый пептидный препарат селанк, синтезированный в ИМГ РАН, в преклинических испытаниях, проведенных в ГУ НИИ Фармакологии им. В.В. Закусова РАМН, проявил себя как анксиолитик, обладающий также ноотропным и стресс-протективным действием (Середенин и соавт., 1995, 1996, 1998). Вместе с тем, биологический механизм его действия до конца не изучен. Мы исследовали возможность участия опиоидной системы в механизме анксиолитического эффекта селанка.
Радиорецепторным способом было показано, что селанк и его тетрапептидный фрагмент тафтсин способны вытеснять Н-ДАДЛЭ из ОР головного мозга крыс, но в концентрациях, в 10000 и в 200 раз, соответственно, превышающих концентрацию метки. То есть мало вероятно, что механизм действия селанка опосредован его взаимодействием ОР, обладающими выраженной аффинностью к ДАДЛЭ (? и ?-ОР).
В то же время, была продемонстрирована способность селанка и его пептидных фрагментов, тафтсина и Pro-Arg-Pro-Gly-Pro, замедлять скорость гидролиза лей-энкефалина ферментами плазмы крови человека и Р2 мембранной фракции мозга крысы (рис. 2). Способность ингибировать ЭДФ у селанка была более выражена, чем у таких известных ингибиторов энкефалиназ, как N-CMPL, D-PAM, лейпептин и пуромицин, но менее выражена, чем у бацитрацина (рис. 2).
Более подробное исследование с использованием ВЭЖХ продуктов гидролиза [G3H] - лей-энкефалина показало, что в тех условиях, когда селанк в 2 раза снижает активность аминопептидаз (основной группы ферментов, участвующих в деградации энкефалинов), он полностью блокирует гидролиз лей-энкефалина карбокси- и дикарбоксипептидазами (табл. 6). То есть можно предположить, что его сродство к ферментам последних двух групп выше, чем к аминопептидазам.
Б
Рисунок 2. Ингибирующее действие селанка на энкефалиндеградирующие ферменты сыворотки крови человека (А) и Р2 мембранной фракции мозга крысы (Б)
При изучении процесса биодеградации [G3H] - селанка в плазме крови крысы in vitro обнаружилось, что в первую очередь его гидролиз происходит под действием дикарбоксипептидаз с последовательным отщеплением Gly-Pro, и Arg-Pro с С-конца. По этому же пути происходит гидролиз селанка в присутствии одной из основных дикарбоксипептидаз, участвующих в деградации энкефалинов - АПФ.
Таблица 6. Влияние селанка на активность ЭДФ плазмы крови человека in vitro
Группы ЭДФ |
фрагменты |
Концентрация фрагментов (нМ) |
||||
t гидролиза (мин) |
Контроль |
селанк 15 мкМ |
||||
30 |
30 |
90 |
120 |
|||
субстрат |
YGGFL |
167 |
297 |
154 |
146 |
|
Амино- |
Y |
250 |
127 |
253 |
273 |
|
пептидазы |
GGFL |
216 |
100 |
202 |
228 |
|
Диамино- |
YG |
9 |
4 |
11 |
14 |
|
пептидазы |
GFL |
7 |
0 |
0 |
0 |
|
Дикарбокси- |
YGG |
19 |
1 |
3 |
5 |
|
пептидазы |
FL |
38 |
3 |
12 |
17 |
|
Карбоксипептидазы |
YGGF |
30 |
0 |
0 |
0 |
|
другие фрагменты |
GGF |
8 |
0 |
0 |
0 |
|
GF |
21 |
0 |
0 |
0 |
||
F |
0 |
0 |
16 |
27 |
Исходная концентрация 3Н-лей-энкефалина в инкубационной среде - 560 нМ.
Разделение продуктов ферментативного гидролиза проводили методом ВЭЖХ на колонке «Хромасил» 4x150 мм. Элюцию вели в линейном градиенте ацетонитрила в 0.1% ТФУ, скорость элюции 1 мл/мин при комнатной температуре.
Представлены типичные результаты одного из трех независимых экспериментов.
Среди продуктов деградации [G3H] - селанка в плазме крови крысы не обнаружен гексапептид KPRPGP, что свидетельствует о том, что моноаминопептидазы не участвуют в его гидролизе. Таким образом, селанк ингибирует ЭДФ, являясь субстратом для дикарбоксипептидаз, но не для моноаминопептидаз. Субстратами этих пептидаз являются, кроме энкефалинов, ряд других регуляторных пептидов, которые также участвуют в регуляции тревожности. Тем не менее, некоторые поведенческие эффекты селанка обусловлены его воздействием именно на опиоидную систему, о чем свидетельствует способность налоксона блокировать эти эффекты. Так, налоксон блокирует депримирующий эффект селанка на индуцированные апоморфином поведенческие проявления гиперфункции дофаминовой системы в тесте «вертикализации» мышей (Мешавкин и соавт., 2006).
Роль опиоидной системы в реализации анксиолитического действия селанка была подтверждена в экспериментальных исследованиях in vivo. На фоне повышенного уровня тревожности, вызванного процедурным стрессом внутрибрюшинного введения препарата, селанк оказывал блокируемое налоксоном анксиолитическое действие на мышей Balb/c в тесте ПКЛ (рис. 3). Причем этот эффект был значительно более выражен у мышей с исходно высокой спонтанной двигательной активностью в системе Rat-o-Matic (рис. 3), аналогично анксиолитическому эффекту даларгина, наблюдавшемуся в ПКЛ лишь у ВА (в ATS) крыс (табл. 1). Отсутствие снижения тревожности НА крыс под действием даларгина мы связывали с недостаточной экспрессией ?-ОР в некоторых отделах их мозга. Возможно, у НА мышей Balb/c наблюдается сходная картина: энкефалины, скорость гидролиза которых замедляет селанк, способны взаимодействовать как с ?-, так и с ?-ОР, оказывая через первые «противо-», а через вторые - «протревожное» действие. У НА мышей налоксон не блокирует, а наоборот, сам оказывает и усиливает анксиолитическое действие селанка (рис. 3), по-видимому, за счет блокады ?-ОР. Снижение тревожности при введении налоксона наблюдается у мышей с нокаут геном ?-ОР (Filliol et al., 2000), а также у высокотревожных мышей 129S2/SvHsd, не чувствительных к бензодиазепинам (Rodgers et al., 2006).
Анализ поведения мышей Balb/c в центральном квадрате ПКЛ, которое, с некоторой долей условности, можно рассматривать как аналог психомоторной активности животных, показал, что помимо анксиолитического селанк может оказывать психостимулирующее действие. Причем этот эффект более выражен у НА мышей и не блокируется, а наоборот усиливается налоксоном, хотя в данном случае сам налоксон не влиял на эту форму поведения животных. По литературным данным, как эндогенные (Gaveriaux-Ruff, Kieffer, 2002), так и экзогенно вводимые опиоиды влияют на локомоторную активность животных (Sandi, 1992, Baamonde et al., 1992, Jang et al., 2001, Schad et al., 2002). То есть психостимулирующий эффект селанка также может быть связан с активацией опиоидной системы.
Рисунок 3. Влияние селанка на время нахождения в «открытых рукавах» ПКЛ мышей Balb/c с высокй (ВА) и низкой (НА) исходной двигательной активностью в системе Rat-o-Matic
Рисунок 4. Влияние селанка на активность ЭДФ плазмы крови мышей Balb/с и C57Black/6, в условиях тестирования в «открытом поле» - эффект селанка, р<0.05
Как было продемонстрировано ранее, активность ЭДФ в плазме крови мышей Balb/с с фенотипом повышенной тревожности в тесте ОП существенно выше, чем у C57Black/6, эмоционально стабильных в этом тесте. При этом показано, что в тесте ОП селанк оказывает анксиолитическое действие на мышей Balb/с, но не C57Black/6 (Середенин и соавт., 1996). Мы воспроизвели вышеупомянутый поведенческий эксперимент, а затем у тех же животных измерили скорость гидролиза Н-лей-энкефалина в плазме крови и гомогенате мозга. Было установлено, что введение селанка (внутрибрюшинно, 100 мкг/кг) параллельно со снижением тревожности достоверно снижает скорость распада энкефалина в плазме крови мышей линии Balb/с. Вместе с тем, препарат не изменяет поведение мышей C57Black/6 и не влияет на активность энкефалиндеградирующих ферментов в плазме их крови (рис. 3). При этом достоверных изменений в активности ЭДФ гомогената мозга при введении селанка, ни у Balb/с, ни у C57Black/6 не наблюдается. Таким образом, можно утверждать, что один из механизмов поведенческих эффектов селанка связан с действием на опиоидную систему, поскольку анксиолитическое действие селанка на мышей Balb/с, регистрируемое в тесте ПКЛ, блокируется антагонистом ОР налоксоном, а анксиолитический эффект препарата на поведение мышей Balb/с, но не C57Black/6 в тесте «открытое поле» сопровождается снижением скорости распада энкефалинов в крови мышей Balb/с, но не C57Black/6.
Учитывая продемонстрированные в данном исследовании (табл. 1, 2) и неоднократно подтвержденные в дальнейшем другими авторами данные о «противотревожной» роли экзогенно вводимых агонистов ?-ОР (Vivian, Miczek, 1998, Saitoh et al., 2005, Perrine et al., 2006) и эндогенных опиоидных пептидов, в частности, энкефалинов (Ragnauth et al., 2001, Bilkei-Gorzo et al., 2004, McNally et al., 2004, Saitoh et al., 2004, 2005, Narita et al., 2006, Perrine et al., 2006), можно предположить, что высокая скорость гидролиза последних является одной из патогенетических причин повышенной тревожности. В связи с этим нами было проведено исследование активности ЭДФ в плазме крови здоровых людей с различными личностными проявлениями тревожности и больных с разными формами тревожных расстройств.
Известно, что гидролиз энкефалинов в организме происходит по всем пептидным связям и катализируется целым рядом ферментов. В данном разделе исследования оценивали суммарную активность ЭДФ в плазме крови людей in vitro по скорости гидролиза равномерно меченного тритием лей-энкефалина. Активность ЭДФ оценивали по двум параметрам: при насыщающих концентрации субстрата определяли максимальную скорость реакции (Vmax, по кривой Михаэлиса-Ментен), являющуюся суммой действующих концентраций всех ЭДФ, при малых концентрациях субстрата - время полупревращения энкефалина (?1/2), отражающее реальную скорость гидролиза этого пептида в биологических объектах.
На первом этапе были рассмотрены возможные связи параметров энкефалиназной активности с данными психологического тестирования по тесту Айзенка. Данный тест позволяет определить уровень невротизации и интровертированности личности (рис. 5). Известно, что в зависимости от конституционально-личностных особенностей организма в условиях стресса возможно развитие широчайшего спектра психоэмоциональных и соматических реакций. На одном полюсе этого спектра - «репрессивный стиль преодоления» людей-интровертов, сопровождающийся подавлением внешних проявлений эмоционального напряжения, угнетением секреции катехоламинов и активация гипофизарно-надпочечниковой системы, приводящая к выбросу опиоидных пептидов в кровь. На другом - «экспрессивная стратегия преодоления» экстравертов, сопровождающаяся высоким уровнем активации симпатоадреналовой системы при отсутствии выраженной реакции со стороны опиоидной системы (Bandura et al. 1990; Schroeder et al., 2000, Зозуля и соавт., 2006).
В подтверждение этого обнаружена обратная корреляционная связь уровня экстравертированности личности с ? 1/2 энкефалина по всей выборке обследованных людей (R = -0.41, p<0.01). Вероятно, у экстравертированных личностей, к которым относятся сангвиники, не существует, так называемой, сдерживающей реакции опиоидов, что подтверждается низким значением ? 1/2 лей-энкефалина. И, наоборот, у таких интровертов, как флегматики, реакция опиоидной системы гораздо более выражена, именно здесь она выступает в роли стресс-лимитирующей системы, подавляя вегетативные реакции на стресс или тревогу.
По-видимому, в условиях адекватного функционирования опиоидной системы не происходит избыточной активации симпатоадреналовой системы, эмоциональных срывов, перехода физиологической фазы стресса в патофизиологическую. Можно полагать, что высокое ? 1/2 лей-энкефалина в плазме крови флегматиков является фактором, повышающим их адаптационные возможности. Напротив, у меланхоликов ? 1/2 лей-энкефалина достоверно ниже, чем у флегматиков (рис. 5). Адаптационные возможности людей с этим типом темперамента снижены и они наиболее предрасположены к тревожным расстройствам (Gershuny, 1998).
Аналогичное предположение можно было бы сделать и относительно холериков и, особенно, сангвиников, обладающих минимальным ? 1/2 лей-энкефалина (рис. 5). Однако, существуют данные, что у экстравертов (холериков и сангвиников) опиоидная система в условиях развития хронической стрессовой реакции, по-видимому, не играет ключевой роли (Bohnen et al., 1991; Biondi et.al, 1994; Bruehl et al., 1994). Здесь, возможно, стресс-лимитирующую роль играют другие системы.
Обнаруженная зависимость ? 1/2 лей-энкефалина от темперамента людей не распространяется на Vmax, значение которого во всех группах неизменно (рис. 5). То есть, высокое значение ? 1/2 лей-энкефалина в крови флегматиков обусловлено, по-видимому, не низкой активностью ферментов, а повышенным содержанием их эндогенных ингибиторов. Полученные данные согласуются с данными Marini и соавт. (1999), также обнаружившими индивидуальную вариабельность в активности ЭДФ плазмы крови здоровых доноров, связанную, по мнению авторов, с различиями в концентрации эндогенных ингибиторов. Однако попыток связать полученные данные с определенными конституционально-личностными характеристиками обследованных доноров авторы не предприняли.
Шкала невротизма (эмоциональной нестабильности) в определённой степени отражает уровень тревожности, предрасположенности к тревожным расстройствам, которые формируются под воздействием как генетически обусловленных факторов, так и факторов окружающей среды. В подтверждение этому, в нашем исследовании была обнаружена корреляционная связь между уровнем личностной (врожденной) тревожности по тесту Спилбергера и показателями теста Айзенка у обследованных людей: положительная с невротизмом и отрицательная с экстравертированностью. Свидетельством компенсаторной роли опиоидной системы, видимо, можно считать достоверную прямую корреляцию между ? 1/2 лей-энкефалина в плазме крови и уровнем личностной тревожности, определяемой по тесту Спилбергера, т.е. высокий уровень врожденной тревожности у здоровых людей компенсируется низкой скоростью деградации энкефалина (табл. 7). Как видно из таблицы 7, высокий уровень врожденной тревожности по Спилбергеру сопровождается максимально высоким ? 1/2 энкефалина в крови, а лица с низким уровнем врожденной тревожности характеризуются минимальным значением этого параметра. При этом высокая скорость гидролиза лей-энкефалина в плазме крови людей с низким уровнем тревожности не связана с повышенным содержанием ЭДФ, т. к. значение Vmax, отражающее истинную концентрацию этих ферментов, в плазме крови этих людей достоверно ниже, чем у лиц с умеренной тревожностью. По-видимому, относительно высокое ?1/2 лей-энкефалина у людей с умеренной и высокой тревожностью поддерживается за счет наличия в их крови эндогенных ингибиторов энкефалиназ.
Таблица 7. Зависимость активности ЭДФ плазмы крови человека от уровня личностной тревожности, определяемой по тесту Спилбергера
Уровень личностной тревожности |
||||
низкая |
умеренная |
Высокая |
||
?1/2, (мин) |
2.500.20* # (n=12) |
3.110.18 (n=24) |
3.650.22* (n=14) |
|
Vmax, (мМ/мин) |
0.140.02* (n=12) |
0.210.02 (n=26) |
0.170.03 (n=14) |
* - p < 0.05, отличие от лиц с умеренной тревожностью,
# - p < 0.01, отличие между людьми с высокой и низкой тревожностью.
Итак, энкефалиназная активность плазмы крови связана с темпераментом здоровых людей (рис. 5), ?1/2 лей-энкефалина в плазме крови обратно коррелирует с уровнем экстравертированности и прямо - с уровнем личностной тревожности (табл. 7). Предполагается, что эти отличия, в первую очередь, обусловлены уровнем эндогенных ингибиторов энкефалиназ.
На следующем этапе были обследованы больные с различными формами тревожно-фобических расстройств по DSM_4 (табл. 8). Выяснилось, что достоверные отличия показателей активности ЭДФ от регистрируемых в контроле величин наблюдаются при генерализованном тревожном расстройстве (ГТР). При паническом расстройстве значения параметров приближаются к норме, а при агорафобии даже превышают контрольный уровень (таблица 8), что, по-видимому, отражает поведенческую адаптацию: поведение избегания позволяет исключить стрессогенную при агорафобии ситуацию. Обнаружены корреляционные связи показателей активности ЭДФ со степенью выраженности вегетативных расстройств по Вейну и характеристиками панических атак, определяемых по методу Шихана, которые являются, по-видимому, отражением компенсаторной роли опиоидов в условиях реактивных расстройств, наблюдаемых у обследуемых больных.
Следует отметить, что при ГТР наблюдается одновременное снижение величин ? 1/2 и Vmax лей-энкефалина в плазме крови (табл. 8), что может быть связано с недостатком ингибиторов энкефалиназ при ГТР. То есть, истощение эндогенной опиоидной системы, выражающееся в недостатке эндогенных ингибиторов ЭДФ, по-видимому, является одним из механизмов стресс-индуцированных нарушений, существенных в патогенезе некоторых видов тревожных расстройств. Полученные в нашем исследовании данные позволяют предполагать, что ГТР является одной из таких нозологий. То есть стимуляция опиоидной системы с использованием синтетических аналогов опиоидных пептидов и / или ингибиторов энкефалиназ может рассматриваться в качестве патогенетически обоснованной терапии ГТР.
Таблица 8. Активность ЭДФ плазмы крови больных с разными формами ТФР
Диагноз по DSM_4 |
?1/2 (мин) |
Vmax, (мМ/мин) |
|
Генерализованное тревожное расстройство (n=13) |
2.60.2 # |
0.120.03 # |
|
Паническое расстройство (n=14) |
3.20.2 * |
0.160.04 |
|
Агорафобия (n=11) |
4.00.3 * |
0.180.04 |
|
Здоровые доноры (n=15) |
3.10.3 |
0.200.02 |
# - p < 0.01 отличие от здоровых доноров, * - р < 0.01 отличие от ГТР, - р < 0.05 отличие от панического расстройства.
Приведены средние значения ошибка среднего.
Было высказано предположение, что для этих больных терапия селанком может оказаться эффективной (Зозуля и соавт., 2001). Действительно, вторая фаза клинических испытаний селанка показала его эффективность при лечении ГТР (Neznamov et al., 2005). Более того, по данным, любезно предоставленным А.В. Андрющенко (НЦ ПЗ РАМН), эффективность селанка при ГТР более выражена, чем при смешанном тревожно-депрессивном расстройстве и депрессивном эпизоде. Изучение зависимости биологических эффектов селанка от темперамента больных показало, что в результате лечения этим препаратом ? 1/2 лей-энкефалина в плазме крови интровертированных (по Айзенку) больных возрастает. Напротив, у больных с преобладанием экстраверсии этот параметр после лечения селанком не изменяется или даже снижается.
Данные, полученные в рамках третьей фазы клинических испытаний этого препарата, показали, что у больных ГТР и неврастенией наблюдается пониженный уровень ? 1/2 лей-энкефалина в сыворотке крови, который коррелирует с длительностью заболевания и выраженностью проявлений тревоги, астении и ряда других симптомов, а также вегетативных расстройств. Обнаруженный в данном исследовании преимущественно положительный характер корреляций между ? 1/2 и клиническими показателями можно трактовать двояко. На первый взгляд, тот факт, что чем ниже скорость деградации лей-энкефалина в крови больных, тем сильнее выражена тревожность и / или другие сопутствующие ей симптомы, свидетельствует о противотревожной роли энкефалиндеградирующих ферментов. Однако в настоящее время существуют многочисленные экспериментальные данные о том, что эндогенные опиоидные пептиды, в частности, энкефалины выполняют противотревожные функции в ЦНС, а ингибиторы ферментов деградации энкефалинов оказывают анксиолитическое действие (Gaveriaux-Ruff, Kieffer, 2002, Perrine, 2006).
В данном исследовании мы оценивали скорость гидролиза лей-энкефалина в сыворотке крови больных, что является косвенным отражением процессов, происходящих в ЦНС. Известно, что опиоидная система, наряду с другими пептидергическими системами, выполняет стресс-лимитирующие функции в организме. В частности, в условиях стресса происходит выброс опиоидных пептидов, в том числе, энкефалинов в кровь, через которую они реализуют свои компенсаторные функции на периферии. Наличие эндогенных энкефалинов в сыворотке крови должно уменьшать наблюдаемую скорость гидролиза меченого лей-энкефалина, по которой мы определяем ? 1/2 в данном исследовании. Возможно, в регуляции тревоги опиоидная система играет такую же компенсаторную роль, как и в стресс-реакции. Для адекватного функционирования организма в условиях повышенной тревожности нормальным является пропорциональная активация стресс-реализующих (катехоламины и глюкокортикоиды) и стресс-лимитирующих (регуляторные пептиды) систем. Примером может служить полученная нами ранее положительная корреляция между ? 1/2 лей-энкефалина в плазме крови здоровых людей и уровнем их врожденной тревожности по Спилбергеру (R=0.32, p<0.05, n=27) и концентрацией кортизола в плазме крови (r=0.58, p<0.05, n=27). По-видимому, в норме этой компенсаторной функции достаточно, для предотвращения развития патологических симптомов, а при ГТР, на фоне сниженного среднего значения ? ?, т.е. повышенной скорости ферментативного гидролиза энкефалинов, опиоидная система не обеспечивает подобной компенсации.
Кроме того, известно, что эти ферменты участвуют в гидролизе не только энкефалинов, но и многих других регуляторных пептидов, секретируемых в кровь в условиях стресса (Соколов и соавт., 2007). Эти пептиды могут замедлять процесс деградации лей-энкефалина по механизму субстратной конкуренции. Многие регуляторные пептиды, как и энкефалины выполняют стресс-лимитирующие функции, а в сумме они играют роль буфера, поддерживающего нормальное функционирование организма в условиях отклонения от гомеостаза. Таким образом, исследуемый нами параметр косвенно отражает степень активации системы регуляторных пептидов, ее способность поддерживать гомеостаз в условиях повышенной тревожности.
Клинические испытания продемонстрировали высокую эффективность селанка при терапии больных ГТР и неврастенией. Анксиолитическое действие этого препарата сравнимо с действием бензодиазепинового транквилизатора медазепама (рис. 9). При этом в отличие от медазепама селанк также оказывает антиастеническое и психостимулирующее действие (рис. 9). Как упоминалось ранее, один из механизмов анксиолитического действия селанка связан с ингибированием ферментов деградации энкефалинов, а также других пептидов, выполняющих противотревожные функции в ЦНС (Кост и соавт., 2007). Энкефалины могут участвовать и в реализации психостимулирующего эффекта селанка, поскольку в эксперименте с использованием других ингибиторов ферментов, их расщепляющих, показана способность этих пептидов стимулировать двигательную активность животных (Michael-Titus, 1990, Cordonnier, 2005). Этот механизм действия селанка кажется более вероятным при его интраназальном введении, сопровождающемся непосредственным попаданием препарата в мозг (Золотарев и соавт., 2006).
Рисунок 9. Процент редукции выраженности основных симптомов, характерных для ГТР и неврастении в результате терапии селанком и медазепамом
Изменение ? ? лей-энкефалина в сыворотке крови больных в результате лечения скорее является косвенным отражением процессов, происходящих в ЦНС, чем результатом действия селанка на периферические ферменты деградации энкефалинов. Тем не менее, в результате лечения селанком, но не медазепамом происходит повышение среднего значения ? 1/2 лей-энкефалина в сыворотке крови больных (рис. 10). Увеличение этого параметра происходит преимущественно у больных ГТР. Анализ индивидуальных данных выявил возрастание ? 1/2 лей-энкефалина в сыворотке крови 13 из 16 больных ГТР. Следует отметить большую продолжительность заболевания у 3 больных ГТР, ? 1/2 лей-энкефалина в сыворотке крови которых в результате лечения снизилось (>1 года). Возможно, при длительном течении ГТР происходит более основательная перестройка пептидергических систем, косвенным подтверждением чему можно считать положительную корреляцию между ? 1/2 и продолжительностью заболевания. У больных неврастенией увеличение ? 1/2 лей-энкефалина в сыворотке крови в результате лечения селанком происходит лишь в половине случаев, а у остальных больных наблюдается снижение значений этого параметра. В результате при этой нозологии клинический эффект селанка не сопровождается увеличением среднего времени циркуляции регуляторных пептидов в крови (рис. 10).
О положительном прогностическом значении исследуемого параметра свидетельствует корреляция между исходными величинами ? 1/2 лей-энкефалина в сыворотке крови больных и степенью редукции астении и гиперестезии при терапии селанком (табл. 9). При терапии медазепамом (n=14) такая закономерность наблюдалась для ряда симптомов: тревога (по шкале Гамильтона, R=0.66, p=0.01), повышенная раздражительность (R=0.79, p<0.001), аффективная лабильность (R=0.61, p=0.02), локальные витальные ощущения (R=0.85, p=0.0001). По общей выборке больных исходные значения ? ? коррелируют с эффективностью терапии к концу курса, оцениваемой по одноименной субшкале шкалы общего клинического впечатления (R=-0.30, p<0.05, n=48), и величиной изменения «выраженности заболевания» по той же шкале (R=0.29, p<0.05, n=47).
Рисунок 10. Влияние терапии селанком на период полупревращения лей-энкефалина в сыворотке крови больных ГТР и неврастенией (1 - до, 2 - после терапии)
Степень редукции выраженности тревоги, астении, гипотимии и ряда других симптомов в результате терапии селанком коррелирует с ? 1/2 лей-энкефалина в сыворотке крови больных после лечения (табл. 9). Характер этих корреляций свидетельствует о том, что при низкой степени редукции симптоматики сохраняется повышенная активность симпатоадреналовой и гипоталамо-гипофизарной систем, которая, в случае терапии селанком компенсируется относительно высоким содержанием регуляторных пептидов в крови. По-видимому, в наибольшей степени это касается тревоги, потому что степень редукции преимущественно ее симптомов коррелирует со степенью увеличения времени полужизни энкефалина в крови (?? ?) (табл. 9).
Таблица 9. Взаимосвязь редукции показателей выраженности симптоматики и активности ЭДФ в крови больных при терапии препаратом селанк
Степень редукции симптомов |
? ? до |
? ? после |
?? ? |
|
Тревога по шкале Цунга |
-0,37 * (34) |
-0.38 * (33) |
||
Тревога по ШОВС (N) |
-0.52 ** (30) |
|||
Повышенная раздражительность (N) |
-0,41 * (31) |
-0.37 * (30) |
||
Аффективная лабильность (N) |
-0,39 * (30) |
|||
Пониженное настроение (N) |
-0.56 * (20) |
|||
Астения |
0,34 * (36) |
|||
Апатия (N) |
-0,49 * (20) |
|||
Сонливость |
-0,34 * (34) |
|||
Гиперестезия |
0,39 * (36) |
-0.40 * (33) |
достоверность корреляций * р<0.05, ** р<0.01
(N) - степень редукции данного симптома нормирована на исходное значение показателя шкалы
Приведены лишь достоверные показатели значений коэффициента корреляции (R).
Итак, экспериментальные и клинико-биологические данные свидетельствуют о наибольшей выраженности анксиолитического эффекта селанка в условиях повышенной активности энкефалиндеградирующих ферментов. При этом эффект селанка сопровождается увеличением времени полужизни энкефалина в крови. Это является дополнительным подтверждением связи одного из механизмов действия селанка с его способностью влиять на активность ферментов деградации энкефалина.
Воздействие на эндогенную опиоидную систему как способ коррекции соматических проявлений тревоги
Поведенческие проявления тревоги у животных и тревожные расстройства у людей, как правило, сопровождаются различного рода изменениями на соматическом уровне. Нами на уровне экспериментальных исследований было продемонстрировано, что анксиолитическое действие селанка и даларгина у животных сопровождается коррекцией стресс-индуцированных соматических нарушений сердечно-сосудистой и иммунной систем. На данном этапе работы были выбраны те же условия, в которых проводилось тестирование анксиолитического действия даларгина и селанка.
Так, ранее при тестировании тревожности мышей Balb/c в ПКЛ было обнаружено, что внутрибрюшинные уколы физиологического раствора значительно повышают их тревожность и на этом фоне селанк оказывает выраженное анксиолитическое действие, которое блокируется налоксоном (рис. 3). В исследовании, проведенном по той же схеме на 48 мышах-самцах линии Balb/c, удалось обнаружить кардиотропный эффект селанка. Повышение тревожности, вызванное введением физиологического раствора, сопровождалось стойким повышением ЧСС мышей по сравнению с контрольными животными (632±25 и 527±16 ударов/мин в среднем за 5 мин наблюдения, соответственно, p<0.01). На этом фоне однократное введение селанка (100 мкг/кг) достоверно снижает ЧСС мышей (496±26 ударов/мин в среднем за 5 мин наблюдения) по сравнению с животными, получившими уколы физиологического раствора (p<0.01).
На рисунке 11 представлена динамика сердечного ритма мышей, наблюдавшаяся в течение 5 мин с момента введения электродов мышам, не получавшим до этого никаких инъекций («интактные»), и животным, которым за 30 мин до этого ввели физиологический раствор или селанк. Из рисунка видно, что непосредственно после введения электродов ЧСС «интактных» мышей значительно выше, чем на 2-5 минутах наблюдения (622±17 и 478±23 ударов/мин в первые и последние 30 сек из 5 мин наблюдения, соответственно, p<0.01). Очевидно, это связано с процедурным стрессом введения электродов. Судя по ЧСС, этот стресс сопоставим со стрессом уколов физиологический раствор. Однако, в отличие от «интактных» животных, у мышей, получивших укол физиологический раствор в течение 5 мин тестирования не наблюдается релаксации (снижения сердечного ритма), что соответствует поведенческим данным о повышенной тревожности мышей этой линии, наблюдаемой через 30 мин после укола физиологический раствор (рис. 3).
Введение селанка предотвращает повышение ЧСС мышей в момент введения электродов (460±34 ударов/мин в первые 30 сек наблюдения, p<0.01 по сравнению с тем же показателем у «интактных» животных) и на всем протяжении тестирования достоверно снижает ЧСС мышей по сравнению с животными, получившими уколы физиологический раствор. Сердечный ритм мышей, получивших селанк, в течение 5 минут тестирования достоверно не меняется и остается на уровне ЧСС «интактных» мышей к моменту релаксации после процедурного стресса.
Таким образом, в данном исследовании нам удалось обнаружить кардиотропный эффект селанка, который проявляется в том, что введение этого препарата снижает тахикардию, вызванную как анксиогенным для мышей Balb/c стрессом внутрибрюшинно введения физиологический раствор, так и процедурным стрессом введения электродов.
Рисунок 11. Влияние селанка на динамику сердечного ритма мышей Balb/c в условиях процедурного стресса. ЧСС измеряли в течение 5 мин с момента подкожного введения электродов «интактным» мышам и мышам, получившим внутрибрюшинно инъекции физиологический раствор или селанка (100 мкг/кг) за 30 мин до начала тестирования
*, **, *** - p<0.05, 0.01, 0.001 - отличие от ЧСС мышей, получавших физиологический раствор, измеренной в тот же временной интервал.
В настоящее время доказано, что эндогенные опиоидные пептиды, в частности, лей- и мет-энкефалины обладают кардиопротективными свойствами. Помимо центрального действия на эмоциогенные зоны мозга и ядра, отвечающие за вегетативную регуляцию сердечно-сосудистой системы, опиоидные пептиды влияют на симпатическую и парасимпатическую регуляцию сердца и кровеносных сосудов, предотвращая избыточный выброс медиаторов из нервных окончаний соответствующих вегетативных нейронов и нивелируя гиперактивацию адренергических рецепторов на уровне трансмембранной передачи. Считается, что таким путем эндогенные опиоиды предотвращают развитие аритмии, гипертрофии сердца и апоптоз кардиомиоцитов в условиях гиперактивации симпатической нервной системы, например, при хроническом стрессе (Pepe et al., 2004). Кроме того, опиоидные пептиды играют существенную роль в кардиогенезе, выживаемости кардиоцитов в условиях ишемии, репаративных процессах при инфаркте миокарда (Peart et al., 2005).
Таким образом, использование Селанка как ингибитора ферментов деградации эндогенных опиоидных пептидов (энкефалинов) при лечении больных, у которых тревожные расстройства сопровождаются сердечно-сосудистыми заболеваниями, патогенетически вполне обоснованно.
Исследование иммуномодулирующего действия даларгина также проводили в условиях анксиогенного стресса, сопровождающего тестирование животных в «челночных камерах». Изучали пролиферативную активность лимфоцитов крови 84 крыс-самцов популяции Wistar, прошедших обучение в «челночной камере» и получивших после этого пятидневный курс внутрибрюшинного введения физиологического раствора (контрольная группа) или даларгина (20 мкг/кг). В процессе исследования определяли спонтанную пролиферацию лимфоцитов и пролиферативную активность, стимулированную КонА в различных дозах. Затем экстраполяцией кривой доза-эффект вычисляли ту дозу митогена, при которой наблюдается максимальная пролиферация, и определяли индекс стимуляции лимфоцитов по соотношению оптимальной и спонтанной пролиферации. По общей выборке не было обнаружено достоверных отличий между уровнем пролиферации лимфоцитов крови контрольных крыс и крыс, получавших даларгин. Введение даларгина лишь понизило чувствительность клеток к митогену: оптимальная концентрация КонА повысилась от 10.8±1.2 (в контрольной группе) до 14.1±1.0 мкг/мл (p<0,05).
В процессе статистической обработки результатов животные были разбиты на 3 подгруппы в соответствии с их исходной двигательной активностью в ATS. В результате обнаружилось, что спонтанная пролиферация лимфоцитов крыс со «средней» двигательной активностью (СА) значительно ниже, чем у высоко - (ВА) и низко - (НА) активных животных (табл. 10). Величина спонтанной пролиферации в значительной степени отражает функциональную активность лимфоцитов in vivo. Ее изменение может происходить не только под воздействием попадающих в организм антигенов (вирусы, бактерии, искусственная иммунизация и т.д.), но и в результате действия стрессогенных факторов, воздействующих на иммунную систему через ЦНС и нейроэндокринную систему (Pedersen, 1991). Повышение спонтанной пролиферации лимфоцитов НА и ВА крыс по сравнению с СА животными говорит о включении последнего механизма, поскольку с точки зрения антигенных воздействий все животные находились в одинаковых условиях. Возможно, это результат стресса, вызванного обучением в «челночных камерах».
Таблица 10. Влияние даларгина (внутрибрюшинно, 5 дней, 20 мкг/кг ежедневно) на пролиферативную активность лимфоцитов крови крыс популяции Wistar, прошедших курс обучения в «челночной камере»
показатели пролиф. активн. |
Вводимый препарат |
Двигательная активность животных |
|||
низкая (n=28) |
средняя (n=28) |
высокая (n=28) |
|||
Спонтанная пролиферация |
физ. р-р |
1114±172 ** |
453±98 |
783±110 * |
|
даларгин |
639±55 ** # |
399±44 |
834±135 ** |
||
Оптимальная пролиферация |
физ. р-р |
18380±3873 ** |
39680±3490 |
55247±10860++ |
|
даларгин |
38899±9375 # |
38502±5073 |
39871±8231 |
||
Индекс стимуляции |
физ. р-р |
24±6 ** |
128±26 |
80±19 * ++ |
|
даларгин |
49±8 ** # |
102±13 |
63±12 * |
||
Оптимальная конц. КонА |
физ. р-р |
11.4±1.6 |
10.4±1.5 |
10.6±1.2 |
|
даларгин |
15.9±1.7 |
12.2±0.8 |
14.2±1.0 # |
** p<0.01, * p<0.05 - отличие от среднеактивных,
++ p<0.01 - отличие между высоко- и низкоактивными,
# p<0.05 - эффект даларгина.
Приведены средние значения ошибка среднего.
Введение даларгина практически в 2 раза снижает спонтанную пролиферацию лимфоцитов крови НА крыс и не влияет на этот параметр у СА и ВА животных (табл. 10).
Пролиферативный ответ лимфоцитов крови на оптимальную дозу КонА возрастает по мере увеличения исходной двигательной активности исследуемых животных. Оптимальная пролиферация лимфоцитов крови НА крыс в 2 раза ниже, чем у СА крыс, и в 3 раза ниже, чем в группе ВА животных (табл. 10). Введение даларгина оказывает нормализующий эффект на этот параметр: в 2 раза увеличивает его у НА, не влияет на СА и снижает, хотя и в виде тенденции, у ВА крыс. В результате после введения даларгина пролиферация лимфоцитов в присутствии оптимальной дозы КонА во всех группах крыс становится одинаковой (табл. 10). Еще один параметр пролиферативного иммунного ответа - индекс стимуляции лимфоцитов оптимальной дозой митогена - отражает функциональный резерв ответа иммунокомпетентных клеток на митогенный стимул с учетом их исходного состояния. С точки зрения «резервных» способностей лимфоцитов крови, оцениваемых по этому параметру, в наиболее выгодном состоянии находится иммунная система СА крыс: по сравнению с ними индекс стимуляции лимфоцитов у ВА крыс снижен в 1.5 раза, а у НА - в 5 раз (табл. 10). Курсовое введение даларгина в 2 раза повышает индекс стимуляции в группе НА и не влияет достоверно на остальных животных (табл. 10).
Анализ индивидуальных величин концентраций КонА, при которых наблюдается максимальный пролиферативный ответ лимфоцитов крови, показал отсутствие различий по этому параметру между животными выделенных групп (табл. 10). Введение даларгина понизило чувствительность лимфоцитов к митогену у всех животных, но наиболее выражено этот эффект наблюдался у ВА крыс (табл. 10).
Обучение в «челночной камере» является тестом, основанным на выработке условного рефлекса, подкрепляемого аверсивным стимулом, предъявление которого, по определению, сопровождается тревожной реакцией у животного. Анксиолитический эффект даларгина в этом тесте, выражающийся в снижении реактивности на условный сигнал, был обнаружен лишь у ВА крыс. В этой же группе животных под действием даларгина снизилась повышенная в результате стресса реактивность лифоцитов на КонА (табл. 10). Несмотря на отсутствие видимых поведенческих эффектов даларгина на НА крыс в тесте «челночная камера», этот пептид оказал выраженное стимулирующее влияние на иммунную систему НА животных, подавленную в результате хронического анксиогенного воздействия.
Таким образом, анксиолитическое действие селанка и даларгина на животных сопровождается коррекцией стресс-индуцированных соматических нарушений на уровне сердечно-сосудистой и иммунной систем. Селанк снижает тахикардию, индуцированную процедурным стрессом у мышей Balb/c, а курсовое введение даларгина оказывает нормализующий иммуномодулирующий эффект на фоне стресса, вызванного обучением в «челночной камере».
Заключение
Таким образом, собственные и литературные данные свидетельствуют об участии опиоидной системы в регуляции уровня тревожности. Биологические механизмы вариабельности анксиолитических эффектов препаратов, воздействующих на опиоидную систему, связаны с гетерогенностью опиоидных рецепторов, соотношением процессов экспрессии и десенситизации различных их подтипов, синтеза и деградации эндогенных опиоидов. Так, связанный с модуляцией опиоидной системы анксиолитический эффект селанка проявляется в условиях повышенной активности ферментов деградации эндогенных опиоидов. Установлено, что коррекция состояния опиоидной системы с использованием пептидных препаратов может с успехом применяться при терапии некоторых форм тревожных расстройств, сопровождающихся истощением эндогенной опиоидной системы, в частности, ГТР. В заключение можно сказать, что стимуляция опиоидной системы агонистами ОР дельта-типа и ингибиторами ЭДФ сопровождается анксиолитическим эффектом на фоне генетически обусловленной или определяемой внешней средой недостаточности функциональной активности эндогенной опиоидной системы.
Выводы
1. Синтетический аналог энкефалинов даларгин, преимущественно взаимодействующий с опиоидными рецепторами (ОР) дельта-типа, но не ДАГО, лиганд ОР мю-типа, снижает поведенческие проявления тревожности животных в тестах «Открытое поле», «Приподнятый крестообразный лабиринт» (ПКЛ), «Конфликтный тест Вогеля», «Челночная камера» как при центральном, так и при периферическом введении. Анксиолитический эффект даларгина наблюдается на фоне дополнительных стрессорных воздействий, приводящих к повышению уровня тревожности, и зависит от исходного поведенческого статуса животных.
2. Обнаружены отличия в плотности и аффинности центральных ОР к лиганду ?- и ?-ОР ДАДЛЭ, активности эндогенных лигандов ОР в гиппокампе и в плазме крови, скорости деградации лей-энкефалина в плазме крови животных с различными поведенческими проявлениями тревожности.
3. Обнаружена взаимосвязь между активностью энкефалиндеградирующих ферментов (ЭДФ) плазмы крови и конституционально-личностными характеристиками людей. Время полупревращения (?1/2) лей-энкефалина в плазме крови здоровых людей прямо коррелирует с уровнем личностной тревожности по Спилбергеру и обратно - с уровнем экстравертированности по Айзенку. В условия развития генерализованного тревожного расстройства (ГТР) различия по ?1/2 между пациентами с различным уровнем экстравертированности нивелируются. При этом ?1/2 лей-энкефалина в плазме крови больных ГТР положительно коррелирует с выраженностью ряда симптомов тревожной, астенической и гипотимической групп, а также вегетативных расстройств, присущих этому заболеванию.
4. В плазме крови больных ГТР достоверно снижено как ?1/2, так и максимальная скорость реакции гидролиза лей-энкефалина по сравнению со здоровыми донорами и больными агорафобией и паническим расстройством, что свидетельствует о недостатке эндогенных ингибиторов ЭДФ у больных ГТР.
5. Селанк и его пептидные фрагменты, тафтсин и Pro-Arg-Pro-Gly-Pro, ингибируют активность ЭДФ плазмы крови человека и мембранной фракции мозга крысы in vitro. Наиболее выражено ингибирующее действие селанка на дикарбоксипептидазы, которые, в частности, ангиотензинпревращающий фермент, непосредственно участвуют в его гидролизе.
6. Один из механизмов поведенческих эффектов селанка связан с действием на опиоидную систему: анксиолитическое действие селанка на мышей Balb/с, регистрируемое в тесте ПКЛ, блокируется антагонистом ОР налоксоном. Анксиолитический эффект препарата на мышей Balb/с, с фенотипом повышенной тревожности в тесте «открытое поле» сопровождается снижением скорости распада энкефалинов в их крови. Ведение селанка резистентным к анксиолитическому действию этого препарата мышам C57Black/6 не влияет на активность ЭДФ в их крови.
7. Выраженный клинический эффект селанка наблюдается при ГТР, характеризующемся недостатком эндогенных ингибиторов ЭДФ. В результате терапии селанком, но не медазепамом происходит повышение среднего значения ? 1/2 лей-энкефалина в сыворотке крови больных ГТР.
8. Анксиолитическое действие селанка и даларгина на животных сопровождается коррекцией стресс-индуцированных соматических нарушений на уровне сердечно-сосудистой и иммунной систем. Селанк снижает тахикардию, индуцированную процедурным стрессом у мышей Balb/c. На фоне стресса, вызванного обучением в «челночной камере», курсовое введение даларгина оказывает нормализующий эффект на Т-клеточное звено иммунитета крыс.
9. Стимуляция опиоидной системы агонистами ОР дельта-типа и ингибиторами ЭДФ вызывает анксиолитический эффект на фоне генетически обусловленной или определяемой внешней средой недостаточности функциональной активности эндогенной опиоидной системы. Использование подобных препаратов патогенетически обосновано при терапии и профилактике тревожных расстройств и стресс-индуцированных нарушений сердечно-сосудистой и иммунной систем.
Список основных публикаций по теме диссертации
1. Зозуля А.А., Пацакова Э., Кост Н.В. Изучение взаимодействия эндогенных опиатов с лимфоцитами периферической крови человека. Журн. невропат. и псих., 1982, Т. 82, №5, с. 60-63.
2. Kost N.V., Pacakova E., Zozulya A.A. A comparative study of the morphine effect on the level of cyclic AMP in lymphocytes of smokers and nonsmokers. Biol. Psychiatry, 1983, V. 18, №7, р. 763-769.
3. Pacakova E., Kost N.V., Zozulya A.A. Interakcia opiatov s lymfocytmi cloveka. Ceskoslovenska psychiatrie. 1985, V. 81, N.1, p. 45-47.
4. Зозуля А.А., Пацакова Э., Кост Н.В., Иванушкин А.М., Воронкова Т.Л. Исследование влияния ?-эндорфина и миелопептидов на уровень цАМФ и пролиферацию лимфоцитов in vitro. Бюлл. Эксп. Биол. Мед., 1986, Т.102, №12, С. 731-733.
5. Zozulya A.A., Kost N.V., Pshenichkin S. Ph., Shurin M.R., Toropov A.V., Meshavkin V.K., Smolkin Yu.S. Opioid system in neuroimmunomodulation: methods and mechanisms of immunocorrection Abs. of 1 Baltic See Conference of Psychosomatics and Psychotherapy. - Kiel (Germany), 1992. - P.34.
6. Zozulya A.A., Kost N.V. Hierarchy of mechanisms determining the variability of opioids neuroimmunomodulation. Abs. 2nd In-ternational Congress ISNIM, Paestum (Saleno), Italy, 1993, P.135.
7. Kost N., Toropov A., Meshavkin V., Lukacher N., Butenko O., Barsegyan G., Zozulya A. The synthetic opioid and stimulation of endogenous opioid system in stress-protection: multifactor study of immunomodulative effects variability Abs. 2nd International Congress ISNIM, Paestum (Saleno), Italy, 1993, P.155.
8. Кост Н.В., Мешавкин В.К., Щурин М.Р., Торопов А.В., Зозуля А.А. Стресс-лимитирующее иммуномодулирующее действие транскраниальной электростимуляции опиоидергических структур головного мозга. Бюлл. СО РАМН, 1994, №4, С. 71-74.
9. Kost N., Toropov A., Meshavkin V., Butenko O., Barsegyan G., Zozulya A. Reactivity of nervous and immune system of rats with different locomotor activity: the significance of endogenous and synthetic opioids Abs. of The Congress «Immuno Neuroendocrine Interactions in Autoimmune and Infectious Diseases», Rio De Janeiro, 1994.
10. Kost N., Toropov A., Meshavkin V., Butenko O., Barsegyan G., Zozulya A. The influence of dalargin on stress-induced alteration of immunity in rats with different locomotor activity Abs. of the First World Congress on Stress, Bethesda, USA, 1994.
11. Kost N.V., Zozulya A.A. Immunomodulative effects of opioids: mechanisms of variability Abs. Second Baltic Sea Conference on Psychosomatic Medicine, Goteborg, Sweden, 1995.
12. Zozulya A., Kost N., Toropov A., Sokolov O., Meshavkin V., Shurin M., Gurevich K., Surkina I. Possible role of opioids in relationship between reactivities of nervous and immune systems Abstr. Third Annual Symposium on AIDS, Drugs of Abuse and Neuroimmune Axis, San Diego, USA, 1995, P.38.
13. Kost N., Zozulya A. Opioids in immunocorrection: sources of variability Abstr. of Symposium on AIDS, Drugs of Abuse and Neuroimmune Axis, San Juan, USA, 1995, P.21.
14. Зозуля А.А., Кост Н.В., Торопов А.В., Мешавкин В.К., Бутенко О.Б., Барсегян Г.Г. Зависимость иммуномодулирующих и поведенческих эффектов опиоидного пептида даларгина от характеристик высшей нервной деятельности крыс Иммунология, 1996, №5, С. 25-29.
15. Мешавкин В.К., Торопов А.В., Кост Н.В., Ильинский О.Б., Суркина И.Д., Зозуля А.А. Повышение физической работоспособности под влиянием транскраниальной электростимуляции Бюлл. Эксп. Биол. Мед., 1996, Т.122, №8, С. 128-130.
16. Sokolov O., Kost N., Koptelov O., Surkina I., Toropov A., Mouhin A., Gurevich K., Zozulya A. Stress-related mental disorders: anxiety and possible role of opioids Abstr. of Symposium on AIDS, Drugs of Abuse and Neuroimmune Axis, San Juan, USA, 1996, P.42.
17. Суркина И.Д., Кост Н.В., Торопов А.В., Масликов А.Т., Мешавкин В.К., Гуревич К.Г. Активность опиоидной системы в условиях острого психоэмоционального стресса и возможность ее коррекции. Вестн. спорт. мед., 1997, 2 (15), с. 36.
18. Зозуля А.А., Кост Н.В., Суркина И.Д., Мешавкин В.К., Гуревич К.Г., Торопов А.В., Зорин В.Ю., Соколов О.Ю., Мухин А.А. Возможная роль опиоидной системы в развитии тревожных расстройств В кн. «Тревога и обсессии» (ред. А.Б. Смулевич) Москва, 1998, С. 332-333.
19. Гуревич К.Г., Торопов А.В., Кост Н.В. Поэтапный статистический анализ свободного поведения животных Журнал ВНД, 1998, т. 48, Вып.6, С. 1123-1128.
20. Зозуля А.А., Мешавкин В.К., Торопов А.В., Гуревич К.Г., Кост Н.В. Анксиолитическое действие даларгина на поведение крыс в конфликтном тесте Вогеля и «Приподнятом крестообразном лабиринте». Бюлл. Эксп. Биол. Мед., 1999, Т.127, N2, С. 211-214.
21. Зозуля А.А., Степура О.Б., Кост Н.В., Акатова Е.В., Пак Л.С., Мартынов А.И. Эндогенные опиоиды при заболеваниях сердечно-сосудистой системы Кардиология 1999, Т. 7, С. 40-48.
Подобные документы
Механизмы воздействия психотравмирующих факторов (стрессов, конфликтов, кризисных состояний) на психику. Распространенность психосоматических расстройств, классификация психосоматических заболеваний. Общие признаки психосоматических расстройств.
презентация [4,6 M], добавлен 25.09.2017Теломера, строение и ее функция. Концевая недорепликация ДНК. Гипотеза А.М Оловникова. Теломеразная активность соматических и раковых клеток. Врожденный дискератоз, апластическая анемия, синдром Баретта. Механизмы ограничения пролиферативного потенциала.
презентация [3,7 M], добавлен 10.05.2015Локализация эмоциональных нарушений, их терапия и коррекция. Нарушения эмоций при локальных поражениях, деменции, тревожных или стрессовых расстройствах, психосоматических болезнях. Симптомы нервного истощения. Патология аффективных расстройств.
реферат [75,8 K], добавлен 08.03.2012Определение и симптомы тревожного расстройства. Их классификация и характеристика, предрасполагающие факторы и причины возникновения. Этапы диагностики ТР. Отличия когнитивного подхода к проблемам клиентов. Модели эмоциональных и личностных расстройств.
контрольная работа [32,4 K], добавлен 08.01.2014Вегетативные компоненты высших психических функций человека (восприятие, внимание, мышление и память). Стресс и его виды. Физиологические механизмы изменения систем организма. Поведенческий акт по П.К. Анохоину. Формирование афферентного синтеза.
презентация [1,7 M], добавлен 26.11.2014Основные понятия и концепции стресса. Опасность такого состояния. Понятия стресс-реакции, стресс-системы, стресс-лимитирующих систем. Трансформация стресс-реакции из звена гомеостаза в звено патогенеза болезней. Основные методы борьбы со стрессом.
презентация [237,7 K], добавлен 10.02.2012Ишемическая болезнь сердца как одна из наиболее часто встречающихся форм патологии сердечнососудистой системы. Анализ неврологических нарушений при изменениях сердечного ритма. Причины возникновения инсульта. Сущность кардиоцеребрального синдрома.
презентация [194,4 K], добавлен 10.12.2013Изучение расстройств функций вегетативной нервной системы, поражения периферических вегетативных нервов иганглионарного аппарата. Симптомы общих невровегетативных расстройств. Вегетативные яды и рефлексы, их признаки и отличия от соматических рефлексов.
реферат [20,9 K], добавлен 16.06.2010Аутоаллергия: понятие и механизмы развития. Первичные и вторичные иммунодефициты. ВИЧ-инфекция: сущность, этиология, патогенез, механизм проявлений. Патогенетические принципы коррекции нарушений жизнедеятельности человеческого организма при СПИДЕ.
презентация [4,0 M], добавлен 11.11.2014Биология старения как одна из центральных проблем современного естествознания. Современные подходы геронтологии. Теломеры, теломеразная активность соматических клеток. Понятие везикулярного транспорта. Молекулярно-генетические механизмы старения.
презентация [629,2 K], добавлен 22.05.2014