Экспериментальное изучение нейрофизиологических механизмов процессов компенсации в случае острого повреждения стволовых структур головного мозга
Особенности участия составляющих лимбической системы - гиппокампа и орбитофронтальной коры в приспособительных реакциях центральной нервной системы при остром стволовом повреждении мозга крыс. Анализ эмоциональных реакций прооперированных животных.
Рубрика | Медицина |
Вид | диссертация |
Язык | русский |
Дата добавления | 22.01.2015 |
Размер файла | 8,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Исследователи, работающие на крысах, считают, что к стволу мозга относится продолговатый мозг, задний мозг и средний мозг. Мозжечок и мост возникают в процессе дифференцирования заднего мозга (Ноздрачев, Поляков, 2001).
Клиницисты подразделяют ствол на оральную (средний мозг и верхние отделы варолиева моста) и каудальную (продолговатый мозг, нижние отделы варолиева моста) части (Раева с соавт., 1966; Вейн, Соловьева, 1973; Баркалая, 1991).
К стволу головного мозга относятся те структуры ЦНС, которые играют ключевую роль в поддержании гомеостаза, регулируя деятельность систем кровообращения, дыхания, пищеварения, выделения. "Бульбарные структуры мозгового ствола важны для осуществления рефлексов на интероцептивные сигналы от рецепторов дыхания и кровообращения и в сопряжении кровообращения и дыхания, в чем заключается важнейшая роль этих отделов мозга в регуляции вегетативных функций. Вегетативные сдвиги, развивающиеся при поражении ствола мозга, можно рассматривать как наиболее типичные и в то же время грозные осложнения, часто имеющие витальный характер" (Смирнова, 1986).
Элементы ствола мозга могут быть объединены в три функциональные системы: рефлекторную, интегративную и нейрорегуляторную (Лиманский, 1987).
На клиническом материале показано, что в ранний послеоперационный период при остром повреждении ствола в патологический процесс вовлекаются все три функциональные субсистемы и клинические нарушения носят комплексный характер (Смирнова, 1986; Баркалая, 1991; Брагина с соавт., 1997). Поэтому нам кажется целесообразным дать краткую общую морфофункциональную характеристику каждой из этих субсистем.
Рефлекторная система ствола мозга
В стволе заключены ядра 10 пар черепно-мозговых нервов (от III до Х11). I и II пара черепных нервов - обонятельный и зрительный, относятся к ложным черепным нервам - не имеют узлов и ядер и вообще не имеют отношения к собственно стволу мозга (Крылова, Искаренко, 1986). С помощью остальных пар нервов осуществляется афферентная и эфферентная иннервация внутренних органов и головы. Кроме того, все специальные органы чувств (зрительная, слуховая, вестибулярная, вкусовая, соматическая и висцеральная чувствительность), за исключением обоняния, через интернейронный аппарат замыкаются на ядрах мотонейронов черепных нервов, являющихся аналогом передних и задних рогов спинного мозга, полуколонны которых образованы сенсорными и моторными группами нейронов. Это так называемая специфическая часть мозгового ствола, через которую осуществляется сегментарная иннервация. Отметим особое положение VIII пары: одна из частей его ядер - вестибулярная - является частью сердцевины мозга (Вейн, Соловьева, 1973). В стволе находится ряд специализированных нейронных структур, т.н. "генераторов", способных обеспечивать существование и скоординированность простых стволовых рефлексов: жевание, глотание, дыхание, сердечные и барорефлексы. В этих рефлекторных актах участвуют как группа двигательных и чувствительных клеток, так и группы клеток -"генераторов", относящихся к висцеральной части ствола мозга (Крылова, Искренко, 1986). Большинство поведенческих актов обязательно развиваются с участием вегетативных рефлексов ствола мозга. При этом осуществляется постоянная регуляция и приспособление систем жизнеобеспечения к текущим условиям.
К специфической части относятся и проводящие пути ствола мозга. Можно сказать, что часть проводящих систем либо начинается, либо заканчивается в стволе. Нисходящие пути: кортикоспинальный или пирамидный тракт, кортикобульбарный тракт, экстрапирамидная (подкорковая) система. Коллатерали первых двух трактов, оканчиваясь в красном ядре, в ядрах ретикулярной формации, в вестибулярной части ядерного комплекса VIII нерва, в ядрах шва, голубого пятна, нижних и верхних буграх четверохолмия среднего мозга и т.д.
Экстрапирамидная система поддерживает тонус скелетной мускулатуры и автоматически (бессознательно) регулирует ее работу.
Моделирование последствий удаления невриномы VIII нерва заставляет нас обратить особое внимание на комплекс вестибулярных ядер, от которого начинается еще одна нисходящая система: вестибулоспинальный тракт. В этот комплекс входят следующие ядра: верхнее (Бехтерева), медиальное (Швальбе), нижнее (нисходящее), латеральное (Дейтерса) и группа x, y, z (Бродал с соавт., 1966). Нисходящий вестибулоспинальной тракт берет начало из латерального вестибулярного ядра (Дейтерса). Последнее имеет более тесные, чем другие вестибулярные ядра, связи со спинным мозгом. Окончания вестибулоспинальных нейронов обнаруживаются на интернейронах и мотонейронах VII-VIII пластин серого вещества спинного мозга. Следует отметить соматотопическую организацию вестибулоспинальной проекции. Повреждение ствола на уровне ядра Дейтерса с одной стороны приводит к нарушению позы животного. Это обусловлено нарушением взаимодействия мышц сгибателей и разгибателей, находящихся под контролем вестибулоспинального тракта (Бродал с соавт., 1966; Bacskai et al., 2002).
Кроме нисходящих проводящих путей через ствол мозга проходят и восходящие, которые делятся на экстероцептивные (латеральный спиноталамический тракт, передний спиноталамический тракт) проприоцептивные и интероцептивные. В задней части продолговатого мозга лежат нежное и клиновидное ядра, которые образованы пучками Голля и Бурдаха. Ядра дают начало лемнискоталамическому пути (медиальной петле). Через ствол мозга проходят спиномозжечковый и мозжечково-таламический тракты
Существует значительное число публикаций, посвященных описанию строения и принципов организации систем двигательного и позного контроля, а также различных сенсорных систем (зрительной, слуховой, вестибулярной), связанных со стволом головного мозга (Магнус, 1962; Бродал с соавт., 1966; Шмидт, Тевс, 1985; Лиманский, 1987; Иоффе, 1991; Шульговский, 1997; Шарова, 1999; Abatzides, Kitsios, 1999; Matsuyama, Drew, 2000; Sarkisian, 2000; Basso et al., 2002; Krutki et al., 2003).
Не для всех специфических стволовых систем выявлены прямые восходящие связи с корой. Так, вестибулярная система посылает свои аксоны в ретикулярную формацию (медиальную часть продолговатого мозга и моста), мозжечок, таламус и гипоталамус (Sarkisian, 2000; Bacskai et al., 2002). И уже из этих релейных станций афферентация поступает в соответствующие корковые зоны.
Отмечается, что специфические стволовые системы контролируются несколькими корковыми (и не только) областями. Так, например, было показано, что один и тот же мотонейрон глазных мышц является "общим конечным путем" для разных надъядерных влияний при разном типе движений глаз (Шахнович, 1974; Abatzides, Kitsios, 1999). То есть, зрительная система имеет центры, которые связывают ее с несколькими моторными системами.
Вестибулярная система (вестибулярный аппарат и связанные с ним центральные структуры) дает начало двум группам соматическим вестибулярным рефлексам. Первая группа вестибулоспинальных рефлексов (фазных и тонических) обеспечивает стабилизацию положения головы в пространстве. Вторая группа - вестибулоокуломоторных рефлексов -предназначена для стабилизации положения глаз в пространстве (Лиманский, 1987; Abatzides, Kitsios, 1999). Имеются сведения, что вестибулоокуломоторные реакции включают клетки ретикулярной формации (РФ) и коллатерали клеток вестибулярных ядер. Следует обратить особое внимание на связь вестибулярных ядер, в частности ядра Дейтерса с ретикулярной формацией ствола (Matsuyama & Drew, 2000). РФ подвергается влиянию как гомолатеральных, так и контралатеральных вестибулярных ядер и таким образом вестибулярные ядра играют роль в облегчающей деятельности РФ (Бродал с соавт., 1966).
Нейрорегуляторная система ствола мозга
Одной из важнейших функций нервной системы является ее регулирующая и интегрирующая роль. Для выполнения этих функций в телах нейронов, их аксонах и окончаниях содержатся две функциональные группы веществ: вещества-передатчики (нейротрансмиттеры) и нейрорегуляторы. Нейротрансмиттеры выделяются из терминалей в синаптическую щель, взаимодействуют со специфическими рецепторами на постсинаптической мембране и быстро и ограниченно изменяют ее проводимость, что приводит к гипер- или деполяризации. Это обеспечивает передачу сигнала через синапсы.
Нейрорегуляторами следует считать вещества, которые не действуют на постсинаптический передаточный механизм непосредственно, а изменяют его функциональное состояние, влияя на метаболическую активность нейрона. Действие нейрорегуляторов намного продолжительнее действия нейротрансмиттеров (Лиманский, 1987; Нейрохимия, 1979).
Сейчас известно несколько десятков соединений, относящихся к разным классам химических соединений и выполняющих как нейрорегуляторную функцию, так и функцию передачи информации (нейротрансмиттерную).
В настоящее время в стволе мозга удалось выявить несколько систем с идентифицированными нейрорегуляторами. Эти системы не являются гомогенными, а образованы популяциями нейронов, которые одновременно вырабатывают несколько химических соединений. Если раньше считалось, что синаптические окончания могут вырабатывать только один вид медиатора, то сейчас показано, что в одном синапсе могут сосуществовать несколько групп медиаторов (Шульговский, 1997).
Довольно подробно изучены пути распространения влияния биогенных аминов, связанных со стволом.
Так, норадренергическая система, локализована преимущественно в латеральной части продолговатого мозга (в вентролатеральном ядре ретикулярной формации) и латеральной части моста, которая в свою очередь делится на систему голубого пятна и латеральную тегментальную систему. Система голубого пятна локализуется в области перешейка между мостом и средним мозгом (Шульговский, 1997; Amaral & Sinnamov, 1977).
Голубое пятно содержит до 43% всех норадренергических нейронов ствола мозга. Норадренергические волокна иннервируют большую часть диэнцефалона и весь кортекс (Morrison & al., 1979), связывают НА-нейроны голубого пятна с покрышкой среднего мозга и далее с таламусом, достигают миндалины, передних таламических ядер, септума, свода, базальных областей переднего мозга, группе вестибулярных ядер, в частности, ядру Дейтерса и т.д. (Лиманский, 1987; Schuerger, Balaban, 1999).
Разрушение locus coeruleus ведет к драматическому уменьшению уровня НА и норадренергических метаболитов в неокортексе, т.к. норадренергическую иннервацию получают все области коры: фронтальная, теменная, височная и затылочная. Но самая большая часть волокон идет к частям лимбической системы. Проекции к лимбической системе включают цингулярную извилину, гиппокамп с зубчатой фасцией и периформную кору. Окончания терминалей волокон голубого пятна в неокортексе встречаются во всех корковых слоях (Amaral, Sinnamon, 1977; Morrison & al., 1979; Moor, Bloom, 1979).
РФ посылает восходящие и нисходящие волокна. Восходящие волокна оканчиваются в структурах гипоталамуса и лимбической системы. Имеются прямые доказательства наличия нейронов, отдающих моноаминосодержащие волокна в спинной мозг. Так, НА окончания определяются в области передних и боковых канатиков спинного мозга (Вальдман, Цирлин, 1981).
Функции норадренергической системы до сих пор не совсем ясны. Считается, что она участвует в формировании эмоциональных состояний отрицательного знака (тоски, страха). Не участвуя в формировании модально-специфической сенсорной информации, она вовлечена в регуляцию моторных и сенсорных функций, в деятельность висцеральных систем, а также таких общих функций как память, обучение, внимание, принимает участие в формировании стадий цикла борствования-сон (Лиманский, 1987; Schuerger, Balaban, 1999).
К катехоламинергической относится и дофаминергическая система, делящаяся на несколько частей, локализованных в ростральной части среднего (Schwarting, Huston, 1996a,b) и продолговатом мозге, а также в гипоталамусе. Но особенно крупное скопление дофаминсодержащих нейронов сосредоточено в черной субстанции. Дофаминергическая система, в отличие от норадренергической, имеет жесткую топографическую организацию. Имеются сведения о связи дофаминергической системы с фронтальными областями коры (поверхностных ее слоях), с глубокими слоями медиальной префронтальной коры, с поясной извилиной, с некоторыми ядрами таламуса, а также с РФ ствола и верхними бугорками четверохолмия. Полагают, что система участвует в развитии эмоциональных реакций, в организации стереотипного и сложного двигательного поведения, а также в регуляции нейроэндокринных и висцеральных функциях. (Шульговский, 1997; Шарова,1999).
Серотонин содержащие нейроны локализованы в наиболее медиально расположенных областях продолговатого мозга, моста и среднего мозга - в центральном сером веществе, ретикулярном магноцеллюлярном ядре и ядрах шва (дорсальном и медиальном). Нейроны, содержащие серотонин, посылают свои аксоны к РФ, к сенсорным и моторным ядрам черепных нервов, к ядрам и коре мозжечка, в спинной мозг, а также к структурам среднего, промежуточного и переднего мозга. Предполагают, что они участвуют в терморегуляции, сенсорном восприятии, защитных реакциях, регулируют кровообращение, дыхание, выделение гормонов гипофиза, потребление пищи и воды, а также включаются в регуляцию циклов сон-бодрствование (Amaral & Sinnamon, 1977; Morrison & al., 1979; Лиманский, 1987; Шарова, 1999).
С помощью гистохимических методов было выяснено, что в продолговатом мозге встречается небольшое количество холинэргических нейронов. В РФ 43% нейронов - холинэргические. Катехоламинергическая и ацетилхолинергическая системы ствола рассматриваются в совокупности как целостная антагонистическая система, ответственная за бодрствование и парадоксальный сон (Шульговский, 1997; Шарова,1999).
Интегративная система ствола мозга
Повреждение ствола головного мозга, играющего ключевую роль в поддержании гомеостаза, предъявляет серьезные требования к адаптационным системам организма.
Для обеспечения адекватного поведения организма в среде обитания необходимо нормальное функционирование мозга как единого целого. В этом случае имеет место тесная координация и взаимосвязь всех модальноспецифических систем и реакций организма (простых рефлексов и рефлекторных актов разной степени сложности). Нормальные адаптивные поведенческие реакции предполагают наличие оптимального тонуса коры и подкорковых образований (Данилова, Крылова, 2002; Лурия, 2002). Структуры, обеспечивающие генерализованную регуляцию уровня активности как мозга в целом, так и ряда его специализированных образований (модулирующие состояние всего нервного аппарата) образуют т.н. «неспецифическую (активирующую) систему». В состав этой системы входит ретикулярная формация (РФ) ствола мозга и ряд внестволовых структур -промежуточный мозг и кора, отдельные структуры лимбической системы и гипоталамус (Кратин, Сотниченко, 1987; Лиманский, 1987; Зенков, Ронкин, 1991; Шульговский, 1997; Шарова, 1999; Данилова, Крылова, 2002; Лурия, 2002).
1.4 Лимбико-ретикулярный комплекс - часть регуляторной системы мозга
Ретикулярная формация впервые была описана Рамон-и-Кахалем и независимо от него В.М.Бехтеревым в 1896 году.
Бурный интерес к активирующей системе начался приблизительно с 1949 года, когда Мэгун и Моруцци обнаружили, что стимуляция стволовой ретикулярной формации, вызывает поведенческое и электроэнцефалографическое пробуждение, т.н. arousal (Мэгун, 1961). Далее следовала череда исследований, посвященных изучению структуры и функции этой части ствола (Росси, Цанкетти, 1960; Зимкина, 1958; Наута, Кейперс, 1962; Ильюченок, 1965, 1971; Борисова, 1983 и др.). Дальнейшие исследования показали, что возбуждение активирующих систем приводит к десинхронизации ЭЭГ, выражающейся в появлении высокочастотной, низкоамплитудной, нерегулярной по частоте электрической активности (Зенков, Ронкин, 1991).
Ретикулярная формация ствола мозга состоит из нейронов различных типов и размеров, соединяющихся друг с другом короткими отростками, и многочисленных волокон, образующих нервную сеть. РФ принято делить на медиальную и латеральную части. При этом в медиальной части сосредоточены нейроны крупных размеров (крупные и гигантские нейроны), тогда как в латеральной встречаются более мелкие нейроны. Наиболее отчетливые различия между медиальными и латеральными частями обнаруживаются в продолговатом мозге и мосте и менее выражены в среднем мозге.
Благодаря тому, что короткоаксонные нейроны ретикулярной формации образуют полисинаптические цепи и многочисленные коллатерали, оканчивающиеся на других ретикулярных нейронах, под влиянием одной ретикулярной нервной клетки могут находиться до 30 тысяч других ретикулярных нейронов.
Ретикулярная формация лежит на пути всех входящих в головной мозг и исходящих из него каналов систем информации. Так, РФ ствола мозга получает афферентные сигналы от нейронов спинного мозга. Кроме того, нейроны РФ получает большое количество коллатералей от сенсорной части тройничного нерва (V), от сенсорных нейронов улиткового и вестибулярного подразделения вестибулярного (VIII) нерва, а так же от сенсорной части блуждающего (Х) и языкоглоточного (XI) нерва и от медиальных ядер мозжечка. Т.е. импульсы различных сенсорных модальностей конвергируют на многих ретикулярных нейронах. Считается, что комплекс вестибулярных ядер, обособившийся из нейронов, входящих в ее состав, находится в тесном взаимодействии с ретикулярной формацией ствола мозга (Matsuyama, Drew, 2000). Наиболее крупным ядром этого комплекса являются латеральное вестибулярное ядро Дейтерса. Эфферентные нисходящие пути от ядра Дейтерса направляются к спинному мозгу (Вейн, Соловьева, 1973; Лиманский, 1987). Восходящие пути отдают коллатерали на нейроны РФ и другие вестибулярные ядра (Бродал с соавт., 1966; Bacskai et al., 2002).
Нейроны рострально расположенных центров (кора больших полушарий, полосатое тело, промежуточный мозг, структуры лимбической системы) тоже посылают афферентные волокна к РФ. Основная масса волокон рострально расположенных нейронов оканчивается в РФ среднего мозга, а волокна, идущие от коры оканчиваются в ростральной части гигантоклеточного ретикулярного ядра продолговатого мозга и ретикулярных ядрах моста.
При этом имеет место частичное совпадение спино- и кортикоретикулярных проекций.
Ретикулярная формация имеет обширные эфферентные связи, которые могут быть разделены на три группы. Часть волокон проецируются на сенсорные и моторные ядра ствола и спинного мозга, другая группа имеет эфферентные связи с мозжечком. Третья восходит к верхним отделам центральной нервной системы: таламусу (медиальному, интраламинарному, дорсомедиальному, центральному латеральному и др.), гипоталамусу, преоптической и септальной области, базальным ганглиям. Эфферентные волокна стволовой ретикулярной формации обнаружены и во фронтальных отделах коры больших полушарий (Бродал, 1960; Лиманский, 1987; Шульговский, 1997; Шарова,1999).
Как уже было сказано выше, РФ является важной частью активирующей системы, относящейся "к первому функциональному блоку" (Лурия, 2002) - неспецифическому, который рассматривается как многоуровневая система, обеспечивающая регуляцию и формирование функциональных состояний ЦНС. Эта неспецифическая система, по образному выражению Э.Гольдберга, напоминает ствол дерева (Гольдберг, 2003). Нижний уровень - спинальная система ретикулярных нейронов. Выше располагается уровень продолговатого мозга - бульбарная ретикулярная формация. Более высокий уровень, куда входит мезэнцефалическая ретикулярная формация, охватывает неспецифическую систему моста и среднего мозга. На уровне зрительного бугра выделяется неспецифическая таламическая система, которая, активируясь ретикулярной формацией ствола мозга, обеспечивает регулирование общей возбудимости нервных центров на всех уровнях от спинного мозга до коры больших полушарий, а также обеспечивает пробуждение и поддержание бодрствования организма (Шульговский, 1997).
Нормальная деятельность нервной системы обеспечивается ее активным состоянием, которое поддерживается благодаря наличию двух основных источников в разных частях ретикулярной формации. Первыми источниками активации являются обменные процессы организма, лежащие в основе гомеостаза и инстинктивных процессов. Эта простая форма активации, которую А.Р.Лурия назвал "витальной", обеспечивается бульбарной и мезэнцефалической РФ. Последние, в свою очередь, тесно связаны с гипоталамусом, представляющим собой собрание различных ядер, каждое из которых соотносится с разным аспектом гомеостаза.
Второй источник активации связан с поступлением в организм раздражений из внешнего мира при помощи органов чувств. Примером может быть появление arousal reaction в ответ на стимуляцию лабиринтов у кошки (Кратин, Сотничеко, 1987). У человека сокращение сенсорного притока (сенсорная депривация) может вызвать тяжелые психические нарушения.
Этот вид активации проявляется в виде ориентировочного рефлекса. Реакция активации встречается в разных формах. Это тоническая (генерализованная) и фазическая (локальная) формы. При этом тоническая форма связана с нижними (понто-бульбарными) отделами ретикулярной формации, которые играют важную роль в обеспечении длительного тонического коркового возбуждения. Фазическая же форма связана с ростральными отделами ствола, а также с неспецифической таламической системой (Хомская, 1972; Лурия, 2002).
Таким образом, анатомическим субстратом модулирующего влияния РФ ствола являются ее обширные афферентные и эфферентные связи: оказывая активирующее и тормозное восходящее и нисходящее влияние, РФ ствола, в свою очередь, находится под влиянием других отделов мозга. Ее активность зависит от уровня сенсорной активности и ее деятельность осуществляется по принципу обратной связи, в том числе за счет наличия коллатералей.
Помимо регуляции функционального состояния ЦНС, РФ ствола тесно связана с управлением вегето-соматическими реакциями (дыхания, кровообращения) организма (Росси, Цанкетти, 1960). И, наконец, существуют данные о том, что мезэнцефалическая РФ, имеющая тесные морфологические связи с гипоталамо-гипофизарной системой, осуществляет нейроэндокринные функции (Вейн, Соловьева, 1973).
Ретикулярная формация представляет собой лишь часть глобальной интегративной системы, во взаимодействии с частями которой и осуществляется организация поведенческих реакций, направленных на приспособление к меняющимся условиям внешней и внутренней среды (Вейн, Соловьева, 1973).
Кроме ретикулярной формации ствола мозга к интегративной системе относятся лимбические образования головного мозга. Так, в поддержании бодрствования наряду с ретикулярной формацией ствола мозга принимают участие гиппокамп и другие отделы лимбического круга (лимбическая система пробуждения), а также ряд областей коры, расположенных на базальной и медиальной поверхности больших полушарий (Хомская, 1972; Шульговский, 1997; Шарова, 1999).
Имеются экспериментальные данные, показывающие, что эти две системы могут выступать как в роли синергистов, так и в роли антагонистов. Предполагается, что активное состояние лимбической системы может сопровождаться разными функциональными состояниями, в зависимости от ситуации.
Лимбическая система, наряду со стволом мозга, играет сложную и многообразную роль в обеспечении адаптивного поведения в целом. Так, она участвует в поддержании гомеостаза, регуляции цикла "бодрствование-сон", обучении и памяти, регуляции вегетативных, а также эндокринных функций (Вальдман, 1972б; Вейн, Соловьева, 1973; Ониани, 1980; Шульговский, 1997), что и обосновывает одно из ее названий - "висцеральный мозг".
К лимбической системе относят структуры головного мозга разного уровня, имеющие различное морфологическое строение, но объединенные общностью выполняемых функций (Хананашвили, 1972; Ониани, 1980). По мнению ряда авторов, необходимым критерием для отнесения структуры к «лимбике» является ее участие в организации мотивационно-эмоционального поведения и ее тесная связь с гипоталамусом. (Вальдман, 1972б; Вейн, Соловьева, 1973; Ониани, 1980; Шульговский, 1997). Эти структуры прилегают в виде каймы к стволу мозга и теснейшим образом связаны своими ростральными элементами с гипоталамусом (Ониани, 1980). Единое мнение относительно границ лимбической системы отсутствует (Макаров, 1977;
Ониани, 1980). Так, в последнее время в эту систему включают ряд образований переднего, промежуточного и среднего мозга.
Структуры, относящиеся к лимбической системе, классифицируют по разным принципам. Согласно анатомической классификации, область делится на две части - базальную и лимбическую, При анатомо-функциональном делении оро-медиобазальная область регулирует вегетативно-висцеральные функции, пищевое, половое поведение и эмоциональную сферу. Задняя же область, к которой относится задняя часть цингулярной борозды и гиппокампальная формация, принимает участие в более сложных поведенческих актах и мнестических процессах. Существует также классификация лимбической области, основанная на уровне филогенетического развития мозга (Вейн, Соловьева, 1973).
Сравнительно-эволюционный анализ показал, что у крыс, как и у других млекопитающих, кора, исходя из особенностей клеточного строения и онтогенетического развития, может быть разделена на изокортекс и аллокортекс. В эволюционном аспекте "изокортекс" является аналогом "неокортекса". К аллолокортексу относятся гетерогенные пластинчатые структуры, которые образуют палеокортекс (древняя кора) и архикортекс (старая кора). В функциональном отношении, к палеокортексу относится обонятельная кора, а лимбическая относится к архикортексу (Zilles, Wree, 1985).
Филогенетическая классификация «лимбики» проводилась Ноздрачевым и Поляковым (2001). В первую группу, к филогенетически древним структурам лимбической системы, по их мнению, относятся гиппокамп (аммонов рог и зубчатая фасция), грушевидная доля (препириформная кора, периамигдалярная кора, энторинальная область), а также обонятельные луковицы и обонятельный бугорок. Перечисленные структуры относятся к палеокортексу. Вторая группа - филогенетически более молодые области коры, относят к межуточной формации. Это парааллокортекс или перипалеокортекс по Замбржицкому (1972). Группа включает область коры на медиальной поверхности полушария или лимбическую кору, к которой относится поясная, субкаллозальная и парагиппокампальная извилина.
Исследование лимбической области у разных представителей млекопитающих показало, что во всех случаях поясная извилина обнаруживает структурные признаки "переходной коры" от аллокортекса к изокортексу. И этот переход реализуется у разных отрядов млекопитающих посредством одинаковых полей. Для нас важно разобраться в терминологических тонкостях относительно именно этой части лимбической системы. Так, Zillis & Wree (1985) у крыс (в отличие от высших приматов) рассматривают переднюю область поясной извилины как часть префронтальной коры - но без четвертого гранулярного слоя. Это цингулярная кора, которая соответствует полю 23 и 24 атласа Krieg (1946). В 1972 году Divac, используя метод ретроградной дегенерации, определил проекцию медиодорсального ядра таламуса как «орбитофронтальную кору» (Divac, 1972). Отмечено, что клеточные группы поля 24 имеют массивный висцеро-соматический афферентный вход, что свидетельствует об их ведущей роли в получении висцеро-соматической афферентации. В свою очередь, структуры продолговатого мозга имеют прямые проекции от нейронов передней области лимбической коры, чем и обусловлена важная роль этой области в регуляции висцеральных функций (Баклаваджян с соавт., 2000; Беллер, 1977).
В третью группу включены структуры конечного мозга (миндалина и перегородка), промежуточного (гипоталамус, передние ядра таламуса) и среднего (центральное серое вещество) мозга (Вейн, Соловьева, 1973; Замбржицкий, 1972; Ониани, 1980; Шульговский, 1997). С новой корой эта группа структур связана с лобной и височной долей. А лобные доли, как предполагается (Nauta, 1972), служат основным отделом, регулирующим деятельность всей новой коры. Кроме того, эти отделы, как и вся лимбическая система, непосредственно связаны с гипоталамусом.
Одной из основных частей лимбической системы является гиппокамп. Эта структура имеет четкое анатомическое строение и специфическую электрофизиологическую характеристику. Гиппокамп является интегратором сложных поведенческих актов, а также принимает участие в оценке вероятности наступления событий (Симонов, 1993). Это обусловлено обширными афферентными и эфферентными связями со многими структурами мозга. Так, главным источником корковых афферентов гиппокампа является поясная извилина (Баклаваджян и др., 2000). Влияние гиппокампа передается через септум в гипоталамус (мамиллярные тела) и таламус (передняя или лимбическая группа ядер) до цингулярной коры. Известно, что при стимуляции и выключении гиппокампа регистрируются вегетативные ответы в виде изменения дыхания, деятельности сердечно-сосудистой системы, желудочно-кишечного тракта (Брагина, 1974; Вейн, Соловьева, 1973). Выраженность вегетативных эффектов в значительной степени зависит от методики и зон стимуляции. (Вейн, Соловьева, 1973).
Обсуждался вопрос об участии гиппокампа в эмоциональных реакциях. Так О.С. Виноградова (1975) считает, что «круг Пейпеца» является кругом памяти, а не кругом эмоций и что гиппокамп не участвует в формировании эмоциональных ответов: «Нет такой реакции, которую при достаточной изобретательности экспериментатора нельзя было бы вызвать с гиппокампа и связанных с ним структур. И вместе с тем, нет таких реакций, которые можно было бы вызвать с него, ибо многие исследователи рассматривают его как «немую зону» (стр.82). Вероятно, характер влияния гиппокампа (тормозное или облегчающее) на соматовегетативные и эмоциональные реакции в значительной степени зависит от функционального состояния (Воронин, Соколов, 1962; Леонтович, 1968). Гиппокамп может играть роль общего модулятора проявлений эмоционально-мотивационных реакций посредством осуществления тормозного влияния на гипоталамус и ретикулярную формацию ствола, влияя на уровень активности мозга (Виноградова, 1975), которая, по нашему мнению, может определять характер течения компенсаторных процессов в случае стволового повреждения.
1.5 Последствия острого повреждения ствола мозга и механизмы его компенсации
Исходя из сведений об организации ствола мозга (Вейн, Соловьева, 1973; Смирнова, 1986; Лиманский, 1987; Баркалая, 1991; Брагина с соавт., 1997), можно предположить, что в случае его повреждения будут иметь место сочетанные дисфункции разных функциональных систем. Многочисленные наблюдения в клинике подтверждают этот тезис. Так, в условиях повреждения мозга человека опухолевого или травматического генеза регресс функций зависит от нескольких факторов: от локализации, объема и характера повреждения (Шарова, 1999). В клинике имеет место два типа воздействия. Первое это хроническое длительное патологическое воздействие, при котором чаще на первый план выступают неврологические нарушения специфических рефлекторных систем ствола (Сепп с соавт., 1950). Изменения интегративных стволовых функций в этом случае менее выражены. Усугубление нарушений именно со стороны этих систем является признаком прогностически неблагоприятным (Шарова, 1999).
Второй тип воздействия - острое стволовое повреждение: посттравматический, ранний послеоперационный период, нарушение кровообращения. В этом случае встречается широкий спектр целостных реакций мозга, включая специфический и неспецифический компоненты. Происходит вовлечение других образований мозга. Имеют место так называемые диэнцефально-подкорковые синдромы, которые нередко оказываются ведущими (Брагина с соавт., 1997) В клинических исследованиях описывают разные варианты течения послеоперационного периода, которые, во-первых, обусловлены разным уровнем стволового повреждения (оральный или каудальный). Так Брагина с соавторами (1997) отмечает, что для больных с осложненным течением послеоперационного периода при поражении преимущественно каудальных отделов ствола характерны снижение бодрствования, истощаемость. Наблюдались эпизоды неустойчивости показателей системной гемодинамики; возникала необходимость длительного использования искусственной вентиляции легких. Преимущественное поражение орального отдела ствола приводило к появлению целостных реакций гипердинамического типа. Во-вторых, характер течения послеоперационного периода обусловлен разной степенью вовлечения неспецифических систем мозга (Баркалая, 1991; Брагина с соавт., 1997; Шарова, 1999). При остром и хроническом повреждении мозга идет формирование патологической системы, возможность образования и развития которой обусловлено соотношением очаговых проявлений с целостной функцией мозга. Иными словами послеоперационный или посттравматический исход зависит от "активности" мозга (Брагина, Доброхотова, 1982).
Эта группа исследователей отмечает, что ранний послеоперационный период состоит из нескольких фаз: 1) стрессовой; 2) постстрессовой; 3) фазы стабилизации, во время которой в той или иной степени восстанавливаются функции целого мозга или формируется новый динамический стереотип (Брагина с соавт., 1988). При этом подчеркивается, что первая фаза -потребность в перестройке или адаптации - зависит от условий, в которых оказался организм.
Повреждение ствола мозга приводит, прежде всего, к нарушениям работы специфических систем головного мозга. Глубина нарушений функций в этом случае зависит от локализации травмы и/или степени разрушения ствола. Кроме того, степень нарушения стволовых функций обусловлена и сдвигами в системе кровообращения. В частности, очень высок риск появления сосудистой непроходимости и других нарушений церебральной гемодинамики в очень широких пределах: от ишемии до гиперемии (Фокин, 1985; Шарова, 1999). В результате повреждения ствола мозга происходит и нарушение функций стволовых регуляционных механизмов, в частности, ретикулярной формации ствола мозга, что приводит к снижению "активности" мозга (Брагина с соавт., 1988).
Экспериментальное исследование компенсаторных процессов после повреждения ствола мозга проводилось в лаборатории Э.А.Асратяна.
Так методом сечения боковой половины ствола мозга на уровне среднего и продолговатого мозга, а также используя локальное разрушение отдельных частей последнего (Незлина, 1957; Асратян, 1959), были выявлены общие закономерности восстановительных процессов в центральной нервной системе и определены их эволюционные особенности, что позволило Асратяну (1959) определить фазы развития компенсаторного процесса.
Первая фаза - травматического угнетения, возникающая в близлежащих или отдаленных по отношению к очагу повреждения структурах известная как центральный шок и выполняет, по мнению Э. А. Асратяна, охранительную и восстановительную роль, проявляя признаки запредельного торможения.
Вторая фаза (экзальтации) имеет для восстановительного процесса ключевое значение. При ней происходит усиление и генерализация специфической деятельности, а также активизация запасных центральных и проводящих нервных элементов, имеющих отношение к данной функции.
Кроме двух вышеперечисленных фаз выявлена и третья фаза: фаза умеренной возбудимости, связанная с отшлифовкой восстановленных и компенсированных функций. Е.В.Шарова (1999) считает, что "при наличии некоторых общих черт в фазах, выделяемых клиницистами и нейрофизиологами, полного тождества между ними нет, а механизмы формирования до конца не выяснены".
В работах школы Э.А. Асратяна в исследуемых восстановительных процессах ведущая роль отводилась коре. Но, сочетая удаление разных участков коры больших полушарий с повреждением ствола мозга, Э.А. Асратян отмечал решающую роль коры в восстановительных процессах при повреждении соматических функций и ее незначительную роль в процессах восстановления вегетативных функций, нарушенных в результате стволового повреждения (Асратян, 1959).
Положения Э.А. Асратяна (1959) о механизмах восстановления специфических рефлекторных стволовых нарушений уточнялись и развивались и в последующие годы (И.А.Вартанян, 1998).
По мнению Батуева (1984), от состояния неокортекса и его коррегирующих влияний во многом зависит повышение специфической и неспецифической сопротивляемости организма, выбор механизмов его активной адаптации к повреждающим факторам. Повышение устойчивости организма, как предполагается, реализуется с помощью нисходящих кортикофугальных влияний путем вовлечения в стресс-реакцию (первая фаза в посттравматический или послеоперационный период) гипоталамо-гипофизарной и гипоталамо-адреналовой системы (Макаренко, 1993). Установлена ведущая роли поля 24 передней области лимбической коры (то, что мы называем орбитофронтальной корой) в приеме и обработке висцеро-соматической афферентации, на основании существования прямых проекций нейронов лимбической коры в вегетативные структуры продолговатого мозга (Баклаваджян с соавт., 2000).
В свете вышеизложенного представляют интерес эксперименты, свидетельствующие, что активация нейронов фронтальной зоны неокортекса посредством анодной поляризации способствует повышению активности ретикулярной формации среднего мозга и других образований ЦНС, увеличивается продолжительность жизни животных в условиях передозировки различного вида наркоза (Макаренко, 1993).
Так как стволовые повреждения приводят к нарушению деятельности и активирующих систем мозга и висцеро-вегетативным сдвигам, то у больных наряду с вегетативными расстройствами могут наблюдаться психические нарушения, проявляющиеся, в частности, в повышенной эмоциональности или депрессивных состояниях (Вейн, Соловьева, 1973). Клиницисты отмечают проявление общей неспецифической реакции в раннем послеоперационном периоде. Эти реакции связаны с нарушением висцерально-вегетативных регуляций при поражении различных уровней мозга (Смирнова, 1986). При любой локализации патологического очага тяжесть клинической картины и исход заболевания зависят от вегетативных нарушений, отражающих уровень и степень вовлечения стволовых структур в патологический процесс (Полякова, 1999).
При повреждениях ствола мозга, приводящих к изменениям функционального состояния организма, для обеспечения определенных поведенческих актов в новых условиях (т.е. для протекания компенсаторных процессов) необходимо участие структур лимбической системы, которые имеют большое значение для поддержания внутренней среды организма на определенном уровне (Ониани, 1980). Следует отметить, что при многочисленности исследований роли неокортекса в компенсаторных процессах, участие структур лимбической системы в компенсации нарушенных функций, в частности, при повреждении ствола изучено недостаточно.
1.6 Значение структур лимбической системы в формировании поведения
Как уже было сказано выше, к стволу мозга относятся структуры ЦНС, играющие ключевую роль в поддержании гомеостаза. При поражении ствола в патологический процесс вовлекаются часть интегративной системы мозга ретикулярная формация, имеющая тесные морфологические связи с гипоталамо-гипофизарной системой. Осуществление организации поведенческих реакций, направленных на приспособление к меняющимся условиям внешней и внутренней среды, возможно благодаря взаимоотношению разных частей интегративной системы. Термином «поведение» обозначается такая форма жизнедеятельности человека и животных, которая направлена на удовлетворение имеющихся у организма потребностей (Симонов, 2001). При поражении стволовых структур имеет место комплексный характер клинических нарушений, в частности, у больных вегетативные расстройства сочетаются с психическими нарушениями. Это могут быть изменения в эмоциональной сфере в виде депрессивных расстройств, либо в виде повышенной эмоциональности (Вейн, Соловьева, 1973).
Эмоция - особая форма психического отражения, которая в форме непосредственного переживания отражает не объективные явления, а субъективное к ним отношение (Данилова, Крылова, 1997). Эмоция представляет собой общее интегральное состояние организма, сопряженное с гормональными сдвигами в организме; она выражается в двигательных и вегетативных реакциях и имеет субъективную окраску в виде переживания человека его отношения к окружающему миру (Нуцубидзе, 1969). В литературе описано три уровня функционирования эмоций: 1) на уровне социальной системы эмоции облегчают поведение между различными особями; 2) подкрепление поведения на уровне отдельного организма; 3) поддержка гомеостаза на физиологическом уровне (Scott, 1980).
В нормальных условиях эмоция прочно связана с восприятием и возникает по его поводу. Основным элементами эмоций у человека являются эмоциональное состояние, которое может сопровождаться эмоциональными реакциями и вегетативными сдвигами (Вальдман, 1972а).
Существование психического компонента (эмоционального состояния) у животных допускается только по аналогии с примитивными эмоциями человека. Примитивные эмоции связаны с потребностями человека и животных в пище, в защите от повреждающих организм факторов и в размножении. Нарушение динамического стереотипа является критичным звеном для вовлечения аппарата эмоций (Симонов, 1966; Вальдман, 1972а). Так как эмоции тесно связаны с потребностями и фактически осознание потребностей, как у человека, так и у животных происходит на основании субъективных эмоциональных ощущений, то можно сказать, что потребности - это фильтр, определяющий избирательное отношение к факторам окружающий среды (Пигарева, 1983).
Эмоции делятся на положительные и отрицательные. Положительные эмоции у людей и животных описываются в процессе полового, игрового и исследовательского поведения. Отрицательные эмоции имеют место на аверсивные стимулы, на новые стимулы и в ситуации прагматической неопределенности (Azrin et al., 1965; Cahoon, 1972; Karczmar et al., 1978). В этих случаях имеет место реакция страха. Страх мотивирует выработку реакции избегания, в чем заключается его адаптационное значение. Реакция страха может выражаться как в агрессии, так и в двигательном торможении. В литературе имеются данные, что агрессивные реакции стимулируются новизной стимула, которые как увеличивают агрессивность, так и направляют ее. Проявление агрессивного поведения увеличивает общую активность организма. По мнению Пигаревой (1983) - одна из функций эмоций -подкрепление поведения, являющегося адаптивным в данных условиях. Одно и то же физиологическое состояние может давать разные эмоциональные проявления в зависимости от окружающих условий и индивидуальных особенностей. Кроме того, поведенческое реагирование обусловлено еще и доминирующей мотивацией. Но кроме внутренних стимулов реализация поведения зависит от адекватных внешних условий (Пошивалов, 1986). Таким образом, в поведенческие акты животных входят эмоциональные реакции, которые определенным образом способствуют целесообразному приспособлению к условиям среды (Вальдман, 1972а).
Изучая отражательную функцию эмоций и придавая решающее значение оценке вероятности удовлетворения потребности в генезе эмоций, П.В. Симонов в 1964 году создал «потребностно - информационную теорию эмоций», согласно которой эмоции высших животных и человека определяются какой-либо актуальной потребностью и оценкой вероятности удовлетворения этой потребности (Симонов, 2001). Отрицательные эмоции, по П. В. Симонову, возникают, когда мотивированное поведение сталкивается с препятствием. Устранение препятствия или его преодоление сопровождается положительными эмоциями (Симонов, 1993).
Генерирование эмоций в ситуации прагматической неопределенности имеет адаптивное значение. При возникновении эмоционального напряжения развиваются вегетативные сдвиги, объем которых, как правило, превышает реальные потребности организма. Таким образом, биологическое значение эмоций заключается в подготовке организма для активности (избыточная мобилизация энергетических ресурсов) и в замещении недостатка информации. В этом и заключается компенсаторная функция эмоций (Нуцубидзе, 1969; Симонов, 2001).
Вопрос о «субстрате эмоций» определенно может быть решен только в отношении топографии интегративных центров (зон) эмоционально-выразительных проявлений (Вальдман, 1972).
Нейроанатомия эмоций.
Эмоция, - сложное образование, предполагающее интеграцию соматических, вегетативных и субъективных компонентов (Данилова, Крылова, 2000). Первая наиболее стройная концепция, связывающая эмоции с функциями определенных структур мозга (т.н. круг Пейпеца), была опубликована в 1937 г. Дж.Пейпецом. Изучая эмоциональные расстройства у больных с поражением гиппокампа и поясной извилины (Пейпец, 1962), автор выдвинул гипотезу о существовании единой системы, объединяющей ряд структур мозга и образующей мозговой субстрат для эмоций. В дальнейшем были описаны нарушения эмоциональных реакций у больных при повреждении медиальных отделов височной доли (Доброхотова, 1974; Мадорский, 1985)
Наиболее полная схема взаимодействия мозговых структур в процессе организации поведенческого акта разработана П.В.Симоновым (рис. 1.1).
Рис. 1.1 Схема взаимодействия мозговых структур в процессе организации поведенческого акта.
Условные обозначения: ФК - фронтальная кора; ГИП - гиппокамп; М -миндалина; ГТ - гипоталамус.
Сплошные линии - информационная афферентация; прерывистые -мотивационные влияния; двойные - эмоционально-окрашенная афферентация. (П.В. Симонов, 2001)
По мнению автора, все многообразие эмоциональных состояний реализуется конкретным набором структур мозга, отнесенным к «информационному» и «мотивационному» блокам (Симонов, 1993, 2001).
Из всех структур круга Пейпеца наиболее тесную связь с эмоциональным поведением обнаруживают гипоталамус (мотивационная структура по П.В. Симонову) и поясная извилина, относящаяся к информационному блоку. Кроме того, оказалось, что и другие структуры мозга, не входящие в состав круга Пейпеца, влияют на эмоциональное поведение. Среди них особая роль принадлежит миндалине (мотивационный блок), а также лобной и височной коре головного мозга.
В составе эмоции принято выделять собственно эмоциональное переживание и его соматическое и висцеральное выражение; возможность их появления независимо друг от друга свидетельствует об относительной самостоятельности их механизмов. Так, эмоциональное выражение весьма устойчиво к действию транквилизаторов, в отличие от эмоционального переживания (состояния), которое ими легко угнетается (Вальдман с соавт., 1976). Диссоциация эмоционального переживания и его выражения в двигательных и вегетативных реакциях обнаружена при некоторых поражениях ствола мозга. Она выражается в так называемых псевдоэффектах: в этом случае интенсивные мимические и вегетативные реакции, характерные для плача или смеха, могут протекать без соответствующих субъективных ощущений (Вальдман с соавт., 1976).
В регуляции эмоций особое значение имеют корковые структуры. Повреждение поясной извилины в эксперименте оказалось наиболее эффективным в отношении появления эмоциональных реакций. Так у животных с поврежденной передней частью поясной извилины имел место феномен «потери страха» (Glees et al., 1950); в случае болевого раздражения реакция страха заменялась реакцией гнева (Ониани, 1980). Наиболее яркие поведенческие реакции оборонительного типа наблюдались при повреждении передней части поясной извилины (Ониани, 1980; Cardinal et al., 2002). У человека поражение лобных долей приводит к глубоким нарушениям эмоциональной сферы (Gainotti, 1983; Jorge, Robinson, 2003; Jorge et al. 2004). Предполагается, что фронтальные отделы коры осуществляют свое модулирующее влияние на эмоциональные реакции благодаря связям с миндалевидным комплексом и гипоталамусом (Wolf, Sutin, 1966; Моторина, 1968; Nauta, 1972; Schoenbaum et al., 1999). Согласно современным данным, поясная извилина имеет двусторонние связи со многими подкорковыми структурами (перегородкой, верхними буграми четверохолмия, голубым пятном и др.), а также с различными областями коры в лобных, теменных и височных отделах (Ward, 1948; Замбржицкий, 1972; Nauta, 1972; Maurice et al., 1999). Некоторые авторы высказывают предположение о высшей координирующей функции поясной извилины в отношении эмоций (Ониани, 1980; Баклаваджян с соавт., 2000).
В настоящее время накоплено большое число экспериментальных и клинических данных о роли полушарий головного мозга в регуляции эмоций. Изучение функций левого и правого полушария выявило существование эмоциональной асимметрии мозга. Так, Брагина и Доброхотова (1981) установили, что больные с поражениями в левом полушарии тревожны, озабочены, тогда как правостороннее поражение сочетается с легкомыслием, беспечностью.
К информационному блоку относится также гиппокамп, в котором, по мнению П.В. Симонова (1993) происходит обработка внешних сигналов, требующих эмоционального реагирования, сопоставление их с опытом, хранящимся в памяти, и определение стратегии необходимых действий.
Однако данные по изучению влияния повреждения гиппокампа на мотивационно-эмоциональное поведение животных менее отчетливы, чем таковые при повреждении поясной извилины (Ониани, 1980).
Так, О. С. Виноградова (1975) возражает против участия гиппокампа в механизмах эмоциональных реакций, основываясь на противоречивости экспериментальных и клинических данных. Сложность трактовки результатов, полученных методом локального повреждения мозга, обусловлено неизбежным внедрением в систему анатомически и функционально связанных структур мозга (Пигарева, 1984; Abe, 2001). Следует отметить существование большого количества работ, свидетельствующих о тормозном влиянии гиппокампа на возбудимость различных структур мозга (Roberts et al., 1962; Зилов, Рогачева, 1975; Лагутина и др., 1976).
С другой стороны, существуют исследования, в которых демонстрировалось появление эмоциональных реакций после повреждения гиппокампа (Гамбарян, Коваль, 1973), корреляция гиппокампального тета-ритма с мотивационно-эмоциональными реакциями (Хананашвили, 1972). По данным Умрюхина (2002), гиппокамп принадлежит к числу надгипоталамических структур, регулирующих активность гипоталамо-гипофизарно-надпочечниковой системы, что заставляет еще и еще раз возвращаться к проблеме функций гиппокампа. Эффект воздействия на гиппокамп зависит как от функционального состояния организма, так и от условий внешней среды (Пигарева, 1978; 1984), поэтому важно разобраться в обилии противоречивых фактов при исследовании роли этой структуры в интегративной деятельности мозга при адаптивно-компенсаторных перестройках в случае локального стволового повреждения.
Подобные документы
Изучение подкорковых структур лимбической системы. Понятие и значение лимбической системы в нервной регуляции. Характеристика механизма саморегуляции вегетативных функций. Роль лимбической системы в формировании мотиваций, эмоций, организации памяти.
реферат [29,0 K], добавлен 19.08.2010Изучение строения коры головного мозга - поверхностного слоя мозга, образованного вертикально ориентированными нервными клетками. Горизонтальная слоистость нейронов коры головного мозга. Пирамидальные клетки, сенсорные зоны и моторная область мозга.
презентация [220,2 K], добавлен 25.02.2014Особенности строения ствола головного мозга, физиологическая роль ретикулярной формации мозга. Функции мозжечка и его влияние на состояние рецепторного аппарата. Строение вегетативной нервной системы человека. Методы изучения коры головного мозга.
реферат [1,7 M], добавлен 23.06.2010Нервная система как совокупность анатомически и функционально связанных между собой нервных клеток с их отростками. Строение и функции центральной и периферической нервной системы. Понятие миелиновой оболочки, рефлекса, функций коры головного мозга.
статья [350,8 K], добавлен 20.07.2009Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.
шпаргалка [72,7 K], добавлен 16.03.2010Стадии черепно-мозговой травмы. Изменения в ткани мозга. Микроскопические мелкоочаговые кровоизлияния при диффузном аксональном повреждении головного мозга. Формирование гематом, субдуральных гигром, отечность головного мозга, нарушение оттока ликвора.
презентация [3,4 M], добавлен 09.11.2015Основные отличия вегетативной от центральной нервной системы. Функционирование симпатической нервной системы. Функции ядер спинного мозга и ствола мозга, которые контролируются вегетативными центрами. Дуга вегетативного рефлекса, ее особенности.
презентация [12,9 M], добавлен 15.02.2014Понятие лимбической системы, ее участие в регуляции вегетативных функций. Методы изучения биоэлектрической активности головного мозга. Понятие о высшей нервной деятельности, инстинкты, условные и безусловные рефлексы. Рефлекторная теория И. П. Павлова.
реферат [1,0 M], добавлен 23.06.2010Гистологическая классификация опухолей и опухолевидных поражений центральной нервной системы. Особенности диагностики, анамнеза. Данные лабораторных и функциональных исследований. Основные методы лечения опухолей головного мозга. Суть лучевой терапии.
реферат [17,8 K], добавлен 08.04.2012Изучение анатомии спинного мозга как отдела центральной нервной системы. Описание системы кровоснабжения спинного мозга. Состав клинико-нозологических вариантов сирингомиелитического синдрома. Дифференциальная диагностика различных травм позвоночника.
презентация [607,2 K], добавлен 20.06.2013