Экспериментальное изучение нейрофизиологических механизмов процессов компенсации в случае острого повреждения стволовых структур головного мозга

Особенности участия составляющих лимбической системы - гиппокампа и орбитофронтальной коры в приспособительных реакциях центральной нервной системы при остром стволовом повреждении мозга крыс. Анализ эмоциональных реакций прооперированных животных.

Рубрика Медицина
Вид диссертация
Язык русский
Дата добавления 22.01.2015
Размер файла 8,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Это было особенно отчетливо выражено на внутри- и межполушарных гиппокампальных связях. В некоторых случаях сочетанность симметричных гиппокампальных зон была больше лобных, тогда как на десинхронной части записи - наоборот. У некоторых животных зональные соотношения когерентности изменялись за счет усиления стволово-полушарного взаимодействия.

Рисунок спектров когерентности симметричных отделов ОФК, а также ствола с другими образованиями имел по большей части "шумовой" характер. В ряде случаев отмечалось наличие нескольких пиков: на частотах 6, 7, реже -8 Гц (рис.4.2, 4.3, 4.5 I). У трех животных было выявлено повышение когерентных связей на частотах бета-диапазона (около 12 или 14-18 Гц).

При попытке исследования зависимости особенностей ЭА крыс от моторной доминантности полушарий (Е.И.Микляева, 1989) была отмечена тенденция к существованию связи между "рукостью" животного и мощностью биопотенциалов (р = 0.08; коэффициент сопряженности 0.40 по точному критерию Фишера): мощность ЭА в корковых (прежде всего сенсомоторной) областях, как правило, превалировала в "доминантном" (контралатеральном предпочитаемой передней лапе) полушарии. Значения же внутриполушарных когерентностей (особенно между орбитофронтальной и сенсомоторной корой) достоверно преобладали в "субдоминантном" полушарии - более отчетливо на десинхронных участках записи ( р = 0.035; коэффициент сопряженности 0,38 по точному критерию Фишера). Это обстоятельство было довольно неожиданным, учитывая данные литературы о больших значениях этого показателя в доминантном полушарии у человека (Болдырева, 1978; Жаворонкова, 1990).

Фазовые спектры ЭА на десинхронных участках записи имели шумовой характер с попеременной сменой опережающей области - в зависимости от частотного диапазона. При этом в парах со стволом "лидирующей" (особенно на частотах ниже 20 Гц) чаще оказывалась именно эта структура (рис. 4.2Г); в парах симметричных отведений "опережало" по большей части правое полушарие, а во внутриполушарных связях - менее глубинная зона или область, лежащая фронтальнее. Специфичным же для синхронизированных участков ЭА является тот факт, что на внутриполушарных фазовых спектрах чаще " лидировали" более глубинно расположенные области.

После стволовой электролитической коагуляции животные разделились по трем вариантам послеоперационнй динамики состояния, описанным нами ранее (глава 3). У двух особей с легким, быстро (до трех суток) регрессировавшим наклоном головы, послеоперационное течение было расценено как неосложненное. По данным морфоконтроля (через 20 и 35 дней после коагуляции) у этих крыс имело место частичное разрушение в кохлеарном или ретикулярном ядрах ствола. В послеоперационной динамике ЭА у этих особей были выявлены следующие особенности по сравнению с фоном.

1. Изменились соотношения длительностей десинхронной составляющей к синхронной: уменьшилась доля десинхронной части записи - либо сразу после операции (1-е сутки) (рис. 4.1 Б), либо к 7-м суткам, после резкого первоначального ее увеличения. Приближение этого показателя к фоновому уровню было отмечено на 19-е и 30-е сутки после стволового повреждения (рис. 4.1 В).

2. В динамике ЭА и ее спектров мощности выявлено нерезкое уменьшение общей мощности сигнала и выраженности составляющих дельта-диапазона при относительном усилении тета-активности в диапазоне 6-7 Гц в 1-2 сутки после повреждения (в обоих случаях, как на синхронной, так и десинхронной частях записи) (рис. 4.1 Б с последующей нормализацией спектральных характеристик ЭА (рис. 4.1В Наиболее отчетливо изменялась активность гиппокампа, особенно на синхронном участке записи: наблюдалась экзальтация колебаний и появление эпилептиформных черт, сохраняющихся в процессе всего наблюдения (рис.4.1Б В

3. Наиболее выраженными и динамичными были изменения пространственного взаимодействия биопотенциалов. На десинхронной составляющей ЭА (рис. 4.2 II) в 1-2-е сутки после разрушения ствола наблюдалось снижение большинства когерентностей ЭА относительно фонового уровня в широком частотном диапазоне - за исключением гиппокампальных связей. Наряду с этим отмечено избирательное повышение некоторых из них. Прежде всего, это относится к уровню когерентности на частоте около 6 Гц между стволом и гиппокампом (с фазовым опережением ствола), между симметричными гиппокампальными областями и, в меньшей степени, между гиппокампом и корковыми зонами (орбитофронтальная и сенсомоторная кора) в пределах полушарий - без четкой латерализации. Причем, пики повышенной сочетанности на спектрах этих когерентностей имели более очерченный по сравнению с фоном характер. К 7-м суткам после стволовой деструкции связь на частотах 6-7 Гц приобретала более генерализованный характер (рис. 4.2 III). Она усиливалась между интактным стволом и гиппокампом, стволом и корковыми зонами; охватывала также большинство исследуемых корковых областей - как между симметричными, так и унилатеральными орбитофронтальными и сенсомоторными зонами. Взаимодействие же между симметричными областями гиппокампа несколько ослабевало. В дальнейшем отмечалась тенденция к "нормализации" показателей когерентности ЭА (19-е сутки) (рис. 4.2 IY), либо снижению их по сравнению с фоновым уровнем (30-е сутки). Значимость выявленных изменений когерентности была подтверждена с помощью статистической обработки по программе В.Г.Воронова (2000).

На синхронных участках ЭА в 1-2-е сутки после стволовой коагуляции стволово-гиппокампальное взаимодействие также несколько усиливалось, но в области более медленных (около 2 Гц) или высоких (8, 17 Гц) ритмов (рис. 4.3 II). При этом избирательное повышение межгиппокампальной (в обоих случаях), корково-гиппокампальной, а также внутриполушарной лобно-сенсомоторной синхронизации выявлялось на частоте 4-5 Гц. На этом фоне происходило увеличение сочетанности биопотенциалов между симметричными орбитофронтальными областями: в широком частотном диапазоне в одном случае (рис. 4.3 III), на частотах 10-12 Гц - в другом. К 7- 19 суткам после деструкции структура всех рассматриваемых когерентных отношений практически нормализовалась (рис. 4.3 IY)

Таким образом, у животных с неосложненным послеоперационным течением разрушения на уровне ствола в условиях морфологической сохранности ВЯД вызывает, тем не менее, снижение его тонизирующих влияний на корковые отделы. При этом в более коротких (по сравнению с фоном) эпизодах бодрствования модифицируется функциональная связь ствола с гиппокампом, что приводит к генерализованному усилению межгиппокампальной, корково-гиппокампальной и корково-корковой моночастотной (6-7 Гц) синхронизации. Это указывает на формирование единой системы повышенной функциональной активности при ведущей роли ствола. Во время удлинившихся эпизодов засыпания (синхронные участки ЭА) стволово-гиппокампальное взаимодействие также усиливается, но по патологически низким либо, напротив, высоким ритмам. Может наблюдаться, в частности, кратковременное (1-3 сутки после операции) нарастание синхронизации на частоте 4-5 Гц между симметричными областями гиппокампа, гиппокампом и другими исследуемыми структурами мозга, соответствующее эпизодам угнетения стволовой активности и имеющее в данной группе животных обратимый характер.

В трех наблюдениях послеоперационное течение животных расценивалось как осложненное. Длительное время (до 10 суток) сохранялся наклон головы в оперированную сторону. В ранние сроки после стволового повреждения все крысы не могли удерживаться на гладкой поверхности и заваливались на бок.

В одном наблюдении имело место появление винтообразных движений. Морфоконтроль выявил во всех случаях попадание коагулирующего электрода в левое ВЯД.

Для динамики их ЭА было характерно следующее:

1. Как и в случаях с неосложненным послеоперационным течением, изменялись временные соотношения десинхронной и синхронной составляющей. В двух случаях, где до стволовой коагуляции десинхронная часть значительно (более чем в три раза) преобладала над синхронной, отмечено явное увеличение длительности последней (вплоть до инверсии этих соотношений), сохранявшееся на протяжении трехнедельного исследования. У крысы с исходно превалирующей по времени синхронной ЭА произошло, напротив, относительное увеличение длительности десинхронной составляющей.

2. Динамика рисунка ЭА и спектров мощности в общих чертах повторяла послеоперационные изменения, имеющие место при неосложненном течении. Имела место экзальтация и даже эпилептизация гиппокампальной активности (особенно на десинхронных участках записи); большая пароксизмальность синхронных фрагментов; динамичность спектрального состава (период относительного нарастания мощности медленных волн сменялся большей очерченностью и величиной тета-пика - с последующей тенденцией к нормализации спектрограммы). Однако если при самом легком из осложненных послеоперационных вариантов весь этот цикл изменений заканчивался к 16-м суткам, то в двух других, более тяжелых случаях нейродинамические этапы были сдвинуты и затянуты по времени (по сравнению с неосложненным течением), достигая своего максимума к 9-10 суткам.

3. Динамика межцентральных отношений (рис.4.4) десинхронной составляющей ЭА также была сходна с изменениями при неосложненном послеоперационном течении: тенденция к усилению гиппокампальных связей на частоте 6-7 Гц с постепенной генерализацией этих влияний на другие зоны мозга, максимально выраженной на 4-7-е сутки после операции. Причем, чем тяжелее состояние животного, тем длительнее была выражена такая генерализация. Характерным для данной группы крыс было то, что повышение когерентности на частоте 6-7-Гц имело место и на синхронном участке ЭА.

Рис.4.4 Динамика спектров когерентности десинхронной (А) и синхронной (Б) составляющих ЭА у крысы с повреждением ствола при осложненном послеоперационном течении. Обозначения областей регистрации как на рис 4.1

При этом "лидерство" ствола в запуске описываемой реакции у крыс этой группы выражено менее отчетливо по сравнению с "неосложненной" группой. Так, у одного животного начальным (1-е сутки после операции) было повышение межполушарной орбитофронтальной когерентности десинхронной составляющей ЭА на частоте 6,5 Гц. У другого в 1-е сутки после стволовой коагуляции имело место усиление межполушарной орбитофронтальной связи (с нерезким пиком 7 Гц) - наряду с повышением стволово-полушарной когерентности в тета-диапазоне (при фазовом опережении ствола) на синхронных фрагментах ЭА. Стволово-полушарное взаимодействие десинхронной составляющей в тета-диапазоне было при этом ослаблено. У третьей крысы формировались как бы два встречных, "запускающих" синхронизацию по близким частотам, потока: полушарно-гиппокампальный (на частоте 7 Гц), с одной стороны, и стволово-гиппокампальный (на частоте 6 Гц) - с другой.

Таким образом, в случаях осложненного течения, при существенном начальном ослаблении активирующих стволовых влияний, длительному усилению внутри- и межгиппокампальной синхронизации биопотенциалов на частоте 6-7 Гц с последующей генерализацией этого феномена может предшествовать повышение не только стволово-гиппокампальных связей, но и когерентности между симметричными орбитофронтальными либо полушарно-гиппокампальными областями в широком или избирательном (6-7 Гц) частотном диапазоне.

Следует отметить, что основные черты послеоперационной нейродинамики были присущи и крысе Wistar, отнесенной к группе с осложненным течением послеоперационного периода.

У двух животных разрушение ВЯД привело к летальному исходу, наступившему в одном случае на пятые, в другом - на 17-е сутки после стволовой коагуляции. Наиболее демонстративной была динамика состояния особи с быстрым летальным исходом. Сразу после операции выявились грубые стволовые неврологические симптомы: нарушение движений, заваливание на левый бок, вытягивание конечностей. К пятым суткам проявилась цианотичность конечностей на фоне резкого снижения веса и появилось нарушение дыхания.

Послеоперационная динамика биоэлектрической активности этой крысы характеризовалась следующими особенностями (рис.4.5):

1. К третьим суткам резко (примерно в три раза) увеличилась относительная длительность десинхронной составляющей ЭА по сравнению с фоном, сохраняющаяся (хоть и в меньшей степени) вплоть до летального исхода.

2. Изменения рисунка ЭА на третьи сутки после разрушения ствола существенно не отличались от таковых у выживших животных. Они заключались в появлении эпилептиформных черт в активности, главным образом, гиппокампа и сенсомоторной коры. Кроме того, имела место слабая очерченность синхронизированных участков ЭА и их локализованность: вместо генерализованных вспышек - фрагменты ритмической активности в сенсомоторной коре и гиппокампе. Лишь на пятые сутки выявились отчетливые, специфические сдвиги ЭА: резкое снижение уровня биопотенциалов и уплощение рисунка на десинхронной составляющей записи, чередующееся с высокоамплитудными пароксизмами эпилептиформной активности (комплексы "острая-медленная волна", веретена частых колебаний).

Рис.4.5. Динамика спектров когерентности десинхронной (А) и синхронной (Б) составляющей ЭКоГ животного с летальным исходом после стволовой коагуляции. Обозначения областей регистрации как на рис 4.1

Накануне летального исхода нарастает межгиппокампальная и полушарно-гиппокампальная когерентность ЭКоГ с максимумом на частоте 4¬5 Гц (указано стрелкой)

3. В структуре межцентральных отношений десинхронной составляющей на третьи сутки после деструкции ВЯД (рис. 4.4 НА) отмечено резкое ослабление когерентных связей ствола с другими зонами мозга. Тем не менее, на спектрах когерентности выделялся пик на частоте 6-8 Гц между гиппокампом и корой -с неявным опережением по фазе ОФК, а также тенденция к повышению внутриполушарного (лобно-сенсомоторного) взаимодействия в широком частотном диапазоне - преимущественно справа. К пятым суткам, на фоне снижения мощности высокочастотных составляющих ЭА, при сохранении на спектрограммах пика лишь в дельта-диапазоне, наблюдалось дальнейшее падение связей как ствола с другими образованиями, так и областей внутри полушарий (рис. 4.4 III A).

На спектрах когерентности синхронизированной составляющей ЭА (рис. 4.4 II Б) на третьи сутки после операции связь между стволом и другими зонами мозга сохранялась - однако, с формированием пиков на других частотах: 4-5 Гц, 14 Гц и 22 Гц. Мало изменялись по сравнению с фоном гиппокампально-корковые и корково-корковые связи, что указывало на их определенную "прочность". Причем, структура этих связей не была похожа на структуру стволовых и межполушарных когерентностей, что позволяет думать об "автономном" характере внутриполушарной синхронизации. Однако, к пятым суткам, т. е. накануне летального исхода (рис. 4.4 III Б) резко снизилась когерентность между стволом и другими зонами мозга (по всем ритмам), симметричными лобными, а также лобной и сенсомоторной областями (особенно в диапазоне от 0,5 до 12 Гц). При этом относительно усиливалась межгиппокампальная (на частоте 4 Гц) и гиппокампально-корковая (на частотах около 5 и 22 Гц) синхронизация. Таким образом, в условиях отчетливого стволового угнетения и резкого снижения тонуса коры выявляются электрографические признаки активации гиппокампальной синхронизирующей системы, обеспечивающей, возможно, кратковременную стабилизацию гомеостаза.

Представленные результаты анализа ЭА у животных с локальным стволовым повреждением демонстрируют значительное сходство динамики ЭА крыс с изменениями ЭЭГ у больных с опухолевым стволовым повреждении в раннем послеоперационном периоде. Сравнимы фазное течение с последовательным повышением сочетанности определенных зон мозга (коры); различная частота доминирующей синхронизации биопотенциалов тета-диапазона (6-7 или 4-5 Гц) при разном характере послеоперационного течения (Гриндель с соавт., 1983; Шарова с соавт., 1991, 1993). Это обусловливает важность представленных результатов экспериментального исследования полушарно-гиппокампальных и стволово-гиппокампальных отношений у животных, проведение которого затруднено у человека.

Полученные данные позволяют ответить на ряд вопросов, возникающих при трактовке послеоперационных ЭЭГ-изменений у человека.

Тождество поведения тета-составляющих ЭА мозга крыс и ЭЭГ человека при остром стволовом повреждении служит объективным доказательством единства этого вида активности и подтверждает важную роль гиппокампа в его происхождении (Arnolds et al. 1979; Bland, 1986; Haas, 1987).

При отсутствии единого представления о механизмах генерации тета-ритма возможны следующие предположения о нейрофизиологических механизмах формирования разночастотной тета-активности, прогностически значимой для острых патологических состояний человека: его частота может отражать как разное функциональное состояние одной и той же функциональной системы, так и разную организацию этой системы при разных типах стволового патологического очага (стойкого или углубляющегося).

Эксперименты показали, что частотные параметры синхронизации тета-активности (4-5 или 6-7 Гц) определяются, прежде всего, состоянием стволово-гиппокампального входа, снижаясь по мере угнетения функциональной активности ствола (Бражник, Виноградова, 1983) или перераспределением ее в пределах стволовой медиаторной системы (Меликов 1987, Vertes et al., 1993). Полученные нами данные скорее подтверждают предположение о разном состоянии одной и той же функциональной системы. Когерентный анализ ЭА позволил как бы "визуализировать" особенности динамики стволово-гиппокампального и гиппокампально-кортикального взаимодействия при различных состояниях ретикуло-септального входа. Показано, например, что в условиях относительной морфологической сохранности ствола именно этот вход является "запускающим звеном" синхронизации на 6-7 герцах. Если же состояние активирующей стволовой системы резко изменено (угнетено) вследствие значительного объема стволового повреждения на уровне ВЯД (осложненное течение), лидирующую роль в запуске этой реакции могут на некоторое время брать корковые отделы мозга и гиппокамп. В наблюдениях с летальным исходом показана возможность формирования автономной синхронизированной гиппокампально- кортикальной системы на частоте 4-5 Гц, сопряженной с относительной стабилизацией состояния низкоуровневого висцерального обеспечения.

3. У крыс подтверждено также участие ОФК в формировании системной приспособительной реакции при остром стволовом повреждении. Ранняя послеоперационная стволово-гиппокампальная синхронизация биопотенциалов на частоте 6-7 Гц с последующим, а иногда и опережающим, участием в этой реакции передних отделов коры характерны для выживших крыс. У погибшего животного падение межполушарных связей ОФК предшествовало летальному исходу. Следует отметить, однако, что у человека роль передних отделов полушарий в послеоперационных адаптивных перестройках более существенна (Шарова с соавт., 1993), что связано, по-видимому, с прогрессивным морфо-функциональным развитием лобных отделов мозга в филогенезе.

Результаты экспериментальных исследований свидетельствуют о том, что именно десинхронная составляющая ЭА мозга крыс является "носителем" индивидуальных структурных реакций в процессе послеоперационных системных перестроек ЦНС, а ритм 6-7 Гц - показателем адаптивной стволово-гиппокампальной ирритации. Изменения же синхронизированной составляющей ЭА, более выраженные при осложненном и летальном исходах, в большей степени отражают, вероятно, состояние гомеостатического (висцерального) управления. В этой связи обращает на себя внимание тот факт, что у одного из погибших животных лишь накануне летального исхода отмечено снижение, помимо стволовых, и межполушарных связей ОФК на синхронизированной составляющей ЭА, что свидетельствует о причастности этих отделов мозга к процессам висцеральной регуляции.

4.1 Исследование роли гиппокампа в адаптивных реакциях цнс при остром стволовом повреждении мозга крыс

Предыдущий раздел был посвящен разработке модели локальной стволовой патологии, а также исследованию послеоперационных реакций, развивающихся у животных при остром стволовом повреждении.

Установлено, что разные варианты послеоперационной динамики состояния крыс сопровождаются характерными эмоциональными проявлениями. Кроме того, была выявлена корреляция между уровнем эмоциональности животных до операции, уровнем суммарной двигательной активности (отражающих, по данным литературы, степень стрессоустойчивости крыс) и исходом локального стволового повреждения (глава 3). Эти данные, наряду с результатами наших электрофизиологических исследований (глава 4), подтверждают положения об участии лимбической системы в формировании приспособительных реакций организма на изменение внутренней и внешней среды. По данным литературы, это справедливо и в отношении церебральных адаптивно-компенсаторных послеоперационных реакций при остром повреждении ствола - как у человека (Шарова с соавт., 1991, 1992), так и у животных (Gliddon et al., 2003).

Однако, специфическая роль отдельных образований лимбической системы, в частности, гиппокампа и орбитофронтальной коры, в приспособительных реакциях при экстремальных для организма ситуациях исследована недостаточно. Для решения подобного рода проблем в физиологии широко используются как электрофизиологические методы, так и методы разрушения (или временного выключения) исследуемых структур. В нашей работе использованы оба экспериментальных подхода: регистрация биоэлектрической активности (глава 4), а также повреждение методом электрической коагуляции определенных лимбических образований. В рамках основной проблематики работы особый интерес для нас представлял также анализ эмоциональных реакций оперированных животных. Это обусловлено тем, что, по мнению ряда авторов, лимбическая система является и главным регулятором мотивационно-эмоционального поведения млекопитающих (Ведяев, 1974; Зилов, 1977; Ониани, 1980; Коваль с соавт.,1986; Шульговский, 1997; Судаков, 1998; Симонов, 2001).

Задачей настоящего раздела было проследить (по широкому спектру поведенческих и клинико-неврологических показателей) динамику функционального состояния и исходы после локального стволового повреждения мозга крыс в сочетании с параллельным, двусторонним или односторонним (справа или слева), нарушением целостности гиппокампа.

Известно, что гиппокамп имеет большое количество афферентных входов, позволяющих получать обширную сенсорную информацию, а также информацию от корковых и подкорковых структур (Гамбарян, Коваль, 1973; Отмахов, 1993). Важной афферентной системой гиппокампа является свод, куда поступает основная масса сигналов, в том числе от гипоталамуса и ретикулярной формации ствола мозга. Роль реле для этих восходящих путей выполняет перегородка. Если сама перегородка играет ключевую роль в генерации тета-ритма гиппокампа (Гусельников, 1976; Адрианов, 1999; Кичигина, Кудина, 2001), то его частота и выраженность регулируется структурами ствола мозга через медиальный септум. (Гасанов, Меликов, 1986; Heynen, Bilkey, 1991; Виноградова с соавт., 1995; Кичигина, Кудина, 2001).

Так как повреждение ствола мозга приводит к нарушению механизмов саморегуляции и адаптационно-трофических влияний регулирующих систем, таких как ретикулярная формация и лимбическая система (Зимкина, 1958; Gliddon et al., 2003), очень важно тщательно исследовать участие гиппокампа, тесно связанного с этими структурами, в приспособительных реакциях ЦНС при остром стволовом повреждении. Нет полной ясности и в причастности гиппокампа к формированию тех или иных эмоциональных реакций. С одной стороны, считается, что гиппокамп, относясь к «информационным» структурам, принимает участие в формировании эмоциональных реакций (Симонов,2001), что подтверждается и данными клиники (Брагина, 1974; Мадорский, 1985). Подтверждением этой точки зрения являются данные, описывающие агрессивные реакции, сопровождающие повреждение гиппокампа - подобные проявлениям стимуляции септума (Коваль с соавт., 1986), что, по мнению авторов, может быть обусловлено тесным гиппокампально-септальным взаимодействием. С другой стороны, ряд авторов утверждает, что у разных видов животных повреждение гиппокампа зачастую не приводит к появлению отчетливых изменений в мотивационно-эмоциональном поведении (Виноградова, 1975), что, как считает Ониани (1980), может объясняться неполным (частичным) разрушением этой структуры.

Всего было прооперировано 54 крысы. Но так как 8 крыс погибли в результате общего сепсиса, а две - после гиппокампального этапа операции, то основу настоящего раздела нашей работы составили данные динамического наблюдений 44 крыс с сочетанным стволово-гиппокампальным повреждением головного мозга. Анализ данных до- и послеоперационного исследования животных, с использованием статистических методов, позволил выявить новые факты, способствующие более полному пониманию роли гиппокампа в адаптивных реакциях при остром стволовом повреждении.

лимбический мозг гиппокамп эмоциональный

Глава 5. Эффекты сочетанного стволового и билатерального гиппокампального повреждения

Результаты, рассматриваемые в данной главе, получены на 25 крысах, у которых электролитическая коагуляция ствола на уровне латерального ВЯД сочеталось с аналогичным билатеральным повреждением СА1 гиппокампа (глава 2). При этом у 15 крыс сначала повреждали ствол мозга, через 1-1,5 суток проводили билатеральную электролитическую коагуляцию СА1 гиппокампа, а 10 крыс ствол мозга повреждался через 7 дней после билатерального повреждения поля СА1. Из 25 прооперированных крыс 8 погибли в связи с наличием общего сепсиса, связанного, вероятно, с общим снижением иммунитета. К этому вопросу мы вернемся ниже. Две крысы погибли во время второй операции, связанной с повреждением гиппокампа. В результате, группу с предшествующим стволовым повреждением составили 9 животных. У 6 крыс вначале был поврежден гиппокамп. Все выжившие прооперированные животные были забиты в период от 14 до 78 суток после первого этапа операции (табл.5.1)

Каждую крысу до операции взвешивали, оценивали эмоциональный фон, направление движения в открытом поле и характер моторной межполушарной асимметрии. После операции ежедневно наблюдали за общим состоянием оперированных крыс, определяя изменения в весе, характере двигательной активности и эмоциональной сфере, состоянии кожного покрова и шерсти, отмечая особенности развившихся неврологических нарушений (см. глава 2).

Послеоперационная динамика состояния

Как и при изолированном стволовом повреждении (глава 3), все оперированные животные по характеру послеоперационного течения и исходам были разделены на три группы: I- с неосложненным, II- с осложненным послеоперационным течением и III - крысы с летальным исходом (табл.5.1).

Все крысы, у которых вначале повреждали ствол, выжили. У двух особей в ходе послеоперационного наблюдения каких-либо неврологических отклонений или существенных изменений в поведении не выявлено. По данным гистологического исследования в одном из этих случаев имело место частичное электролитическое повреждении стволовых ядер РФ в сочетании с односторонним разрушением поля СА1 гиппокампа слева и очагом деструкции в корковой области справа. В другом были слабо повреждены дорсальная часть кохлеарного ядра, а также поля СА1 гиппокампа с двух сторон.

Таблица 5.1. Распределение по исходам животных со стволово-гиппокампальным и изолированным повреждением ствола мозга.

Повреждение Исход

Ствол + гиппокамп

Ствол + гиппокамп

Гиппокамп + ствол

Всего

Ствол

Неосложненный

2

1

2(20%)

12(43%)

Осложненный

7

3

10(67%)

9(32%)

Летальный

0

2

2(13%)

7(25%)

Всего

9

6

15(100%)

28(100%)

Остальные семь животных после первого этапа операции демонстрировали неврологическую симптоматику разной степени тяжести: от наклона головы в оперированную сторону, не превышающего 30 градусов, до грубых нарушений в виде винтообразных движений. Последующее повреждения гиппокампа усугубляли эти нарушения. В двух случаях винтообразные движения появились лишь после гиппокампального повреждения, имевшее место. Длительность сроков уменьшения неврологического дефекта у этих 7 крыс колебалась от 11 до 78 суток. Эти дефекты не регрессировали полностью у четырех особей до момента усыпления. Средние сроки редукции винтообразных движений при этом превосходят, хотя и недостоверно, аналогичный показатель в группе с изолированной коагуляцией ствола (см.табл.5.2 ).

К выявленным особенностям сочетанного стволово-гиппокампального разрушения следует отнести также кратковременную (до 4 суток) потерю веса у части животных на 10-40 граммов с восстановлением его до исходного уровня в сроки от четырех до тринадцати суток.

Таблица 5.2. Временные показатели состояния животных при сочетанном стволово-гиппокампальном и изолированном стволовом повреждении

Характеристики

Сроки редукции после стволового этапа операции

Группы

Суммарная стволовая симптоматика в случае неосложненного течения

Винтообразные движения при осложненном течении

Кол-во животных

Сроки в сутках

Кол-во животных

Сроки в сутках

Ствол+гиппокамп

3

Симптомов не было

6

1с. 7с. 7с** 9с. 30с. 36с

Ствол

4

2с. 2с. * 2с. 3.

5

3с. 3с.5с** 7с. 8с

Рис.5.1 Сопоставление сроков редукции неврологических нарушений (А) и динамики эмоционального возбуждения (Б) у крыс с сочетанным стволово-гиппокампальным повреждением со средним дооперационным уровнем эмоциональности (группа с предшествующим стволовым этапом операции). На рис.А - по оси абсцисс - сутки после стволового этапа операции; по оси ординат-неврологические нарушения в баллах. 10 -винтообразные движения; ноль соответствует норме; на рис.Б по оси ординат- формализованные показатели эмоциональных реакций: 3 - агрессивно оборонительные; 2 -интенсивные пассивно оборонительные; 1 - слабые пассивно оборонительные; 0 - отсутствие эмоциональных реакций.

В данной группе оперированных крыс после второго этапа операции (двустороннее повреждение гиппокампа) наблюдалось проявления оборонительных эмоциональных (в том числе и агрессивно-оборонительных) реакций с последующей их редукцией. Эти реакции сопровождали наиболее тяжелые послеоперационные состояния.

Согласно данным гистологического исследования, у 5 животных из 7 разрушение разной глубины и объема на уровне ствола было приурочено к структурам ВЯД, и у 2 - к области кохлеарного ядра. Что касается области СА1 гиппокампа, то в 5 наблюдениях она была повреждена с двух сторон наряду с коагуляцией вышележащих корковых областей; (см. рис.5.2); в двух остальных случаях (№89, №90) имело место лишь изолированное корковое повреждение.

Рис. 5.2. Пример сочетанного стволово-гиппокампального повреждения. Фронтальные срезы мозга крысы на уровне поля СА1 гиппокампа (А) и ствола мозга (Б).

Окраска по методу Ниссля.

У 6 животных парное повреждение гиппокампа на 7 дней опережало стволовую коагуляцию. Две крысы из этой группы после второго этапа операции погибли, остальные выжили.

Результатом первого - «гиппокампального» - этапа операции было появление оборонительных реакций разной интенсивности, которые исчезали к четвертым суткам. В этой группе животных следует отметить отсутствие агрессивных оборонительных реакций, которые наблюдались у животных с предшествующим повреждением ствола (см.рис 5.1) После второго этапа операции у 5 из 6 крыс, на фоне редукции эмоциональных реакций, выявились стволовые неврологические нарушения (винтообразные движения, наклон головы под углом к туловищу). Эти симптомы несколько регрессировали к 512 суткам, но сохранялись до гибели (крысы №76, №77), либо усыпления (крысы №74, №78, №83) животных. По данным гистологического исследования, попадание в ВЯД у 5 животных в двух случаях сочеталось с двусторонним негрубым повреждением гиппокампа, а еще в трех - с повреждением субикулюма.

Согласно данным патоморфологического исследования погибших животных, у крысы №77, умершей на 18 сутки после разрушения на уровне ствола и 25 сутки после повреждения гиппокампа было выявлено выраженное полнокровие сосудов мягкой мозговой оболочки с немногочисленными диапедезными кровоизлияниями (рис.5.3), что отражает генерализованную неспецифическую реакцию сосудов на повреждение мозга. По данным патоморфологических исследований, смерть наступила предположительно вследствие начавшегося сепсиса.

У крысы №76, погибшей на 4-е сутки после стволового этапа операции, обнаружен крупный абсцесс стволово-мозжечковой локализации на фоне диффузного полнокровия сосудов. Однако, ни в том, ни в другом случае в группе со стволово-гиппокампальной коагуляцией не отмечено такой степени выраженности расстройств кровообращения, которая могла бы явиться непосредственной причиной смерти животных. Наблюдаемые сосудистые реакции развивались вторично по отношению к другим процессам, например, абсцессу (при более ранних сроках смерти), или общих соматических расстройств (в более поздние сроки). Здесь же уместно отметить, что у крыс №74 и №83 с осложненным течением незадолго до усыпления мы наблюдали начальные проявления сепсиса (начальная стадия фурункулеза). В трех случаях (крысы №77, №78, №83) были обнаружены внутримозговые абсцессы в стволе или области корково-гиппокампального разрушения на разных стадиях их формирования.

Рис.5.3 Гистологической препарат фронтального среза больших полушарий мозга крысы №77 при стволово-гиппокампальном повреждении с летальным исходом.

Увеличение х 100, окраска гематоксилином и эозином.

Срез через орбитальную кору: полнокровие сосудов мягкой мозговой оболочки (обозначено стрелкой). Массивные кровоизлияния отсутствуют.

Суммируя экспериментальные данные, полученные в группе животных с двусторонним повреждения гиппокампа можно заключить, что стволово-гиппокампальная коагуляция, не увеличивая летальность по сравнению с контрольной группой (с изолированным стволовым повреждением), приводит, главным образом, к усилению выраженности у животных стволовой неврологической симптоматики, а также к удлинению сроков компенсации нарушенных функций (табл.5.2) Причем, когда коагуляция ствола опережала билатеральное повреждение гиппокампа, стволовые симптомы могли появляться не сразу, а лишь после гиппокампального этапа операции.

В целом, для всех случаев сочетанного стволово-гиппокампального повреждения с выраженными стволовыми нарушениями, по данным гистологического исследования, у животных имели место разрушения разного объема на уровне ствола, приуроченные к структурам ВЯД (10 животных) и значительно реже (2 наблюдения) - кохлеарного ядра. Оно сочеталось с двусторонней коагуляцией поля СА1 гиппокампа, зачастую вместе с вышележащими корковыми областями (8 наблюдений). Из 15 животных у трех не наблюдалось стволовой симптоматики. У этих животных, по данным морфологического контроля, имело место либо негрубое повреждение ядер стволовой ретикулярной формации, либо были незначительно задеты кохлеарные ядра. Эти повреждения сочетались с двусторонней субикулярно-гиппокампальной (СА1) деструкцией.

Вследствие сочетанного стволово-гиппокампального повреждения погибли две крысы из 15, что составило 13% от общего числа оперированных крыс. (Рис. 5.4). В то же время летальность животных в группе с изолированной стволовой деструкцией составила 25% (глава 3). Следует отметить, что при сочетанном повреждении ствола и гиппокампа летальный исход был обусловлен преимущественно воспалительными процессами - как внутримозговыми (абсцесс), так и системными (сепсис), в развитии которых определенную роль могло сыграть (с учетом данных по этой группе в целом) резкое снижение общего иммунитета, развившееся после нарушения целостности мозга.

Рис.5.4. Диаграмма распределения животных с изолированным (А) и сочетанным (Б) стволово-гиппокампальным повреждением мозга по исходам. 1 - осложненное течение; 2- летальный исход; 3 - неосложненное течение;

Таким образом, особенность проявления послеоперационных адаптивных реакций у животных со стоволо-гиппокампальным повреждением состоит в нарастании стволовой симптоматики - особенно после разрушения в гиппокампе. Она может быть объяснена данными литературы. Так, Русинова (1996) показала, что электрическое раздражение гиппокампа вызывает усиление и пролонгирование существования доминантных очагов (т.е. подкрепление), сформированных в других отделах ЦНС - в частности, в стволе мозга. Косвенно это подтверждается данными наших электрофизиологических исследований (глава 4) о наличии в гиппокампе "резонансоподобных" электрографических реакций с генерализацией на другие отделы мозга (у животных с неосложненным и осложненным послеоперационным течением).

Обращает на себя внимание также высокий процент животных со скрытыми или явными, локальными или диффузными воспалительными процессами, что может быть связано с ослаблением иммунитета как следствия сочетанного стволово-гиппокампального повреждения. Это утверждение согласуется с данными, полученными другими авторами (Д.Ф. Плицитый, С.В. Магаева, 1970; Devi et al.,1991,1993; Pan et al., 1993; Wetaiore et al.,1994; Магаева, Морозов, 2005). Так, в ряде работ 1990- 1993 годов Devi et al. указывают, что электролитическое повреждение или стимуляция гиппокампа (вентрального) сказывается на состоянии иммунной системы. Разные области гиппокампа могут либо стимулировать, либо подавлять гуморальную иммунную систему (Pan et al., 1993). Считается (Wetmore et al., 1994; Магаева, Морозов, 2005), что гиппокамп, наряду с септумом и гипоталамусом, включен в сложную и разнообразную регуляцию иммунной системы: эти структуры могут избирательно участвовать в регуляции нейроиммунных ответов и оказывать облегчающий эффект на иммунный ответ у самок крыс. Плицитый и Магаева (1970) утверждают, что гиппокамп оказывает регулирующее влияние на иммуногенез.

Предполагаемое нами наличие сдвигов в иммунной системе крыс с сочетанным стволово-гиппокампальным повреждением (не характерное для локального стволового патологического очага) не противоречит данным морфологии. Известно (Ониани,1980), что волокна повреждаемой нами области гиппокампа входят в систему дорсального форникса, которая, как отмечено в главе 2, обеспечивает связи гиппокампа с мезодиэнцефальными структурами. Эти взаимодействия обусловливает роль гиппокампа в качестве модулятора эмоциональных, биоэлектрических, вегетативных реакций (Болдырева с соавт., 1972; Брагина, 1974; Хамильтон, 1984; Симонов, 1993) и участие в регуляции работы иммунной системы.

Изменения в эмоциональной сфере

Наряду с основной исследуемой проблематикой мы рассматривали также вопрос о том, влияет ли (и каким образом) сочетанное повреждение ствола и билатерального гиппокампа на эмоциональную сферу животных. Для этого с помощью теста Кинга, проведенного до операции, оценивали такие показатели как: реакция на касание к спине и к носу, мышечный тонус при взятии на руки, наличие уринаций и дефекаций, а также вокализации (см. главу 2). По совокупности признаков все животные делились на спокойных и эмоциональных.

Рис.5.5 - внутренний круг - соотношение спокойных и эмоциональных крыс до операции, наружный круг - после операции). 1 - спокойные животные; 2 - эмоциональные животные; А - сочетанное стволово-гиппокампальное повреждение; Б - изолированное стволовое повреждение.

Сопоставлялась доля выраженности тех и других (в %) до и после операции - с оценкой значимости различия в этих соотношениях по критерию хи-квадрат. Для наглядности эти данные представлены в виде круговой диаграммы на рис.5.5 А.

После билатерального повреждении гиппокампа в сочетании со стволовым у некоторых животных наблюдались бурные эмоциональные реакции - вплоть до агрессивно-оборонительных. В целом по группе увеличивалась доля эмоциональных крыс по сравнению с дооперационным уровнем на 14%: до операции было 43% спокойных и 57% эмоциональных; после операции 29% спокойных и 71% эмоциональных. Однако, по критерию хи-квадрат = 2.25 эти изменения соотношений недостоверны. Такой результат может быть обусловлен как недостаточным числом наблюдений, так и разным их количеством до и после операции. Объяснить появление эмоциональных реакций после повреждения поля СА1 гиппокампа можно если вспомнить, что после разрушения поля СА1 наиболее сильно страдают дифференцировочное и угасательное торможение (Валюх, 1981; Карамян, Соллертинская, 1982). Поэтому ряд авторов полагает, что гиппокамп принимает участие в регуляции тормозных процессов, обеспечивая отбор необходимой информации из хранилищ памяти. И его повреждение может приводить к появлению «биологически отрицательных реакций» (Урманчеева, 1970; Карамян, Соллертинская, 1976; Лагутина с соавт., 1976; Коваль, Саркисов, 1976; Адрианов, 1999). Правда, данные Левшиной с соавт. (1977), об изменении поведения крыс в сторону преобладания процессов торможения (уменьшение двигательной активности, агрессивности, выраженная сомноленция) после двустороннего повреждения гиппокампа, противоречит нашим данным. Возможно, объяснением этого противоречия является сочетание гиппокампального повреждения со стволовым в нашем случае, а «биологически отрицательные реакции» обусловлены позными нарушениями, что можно отнести к «трудному состоянию» (Коваль, Саркисов, 1976).

Для сравнения были проведены сопоставления по группе животных с изолированным стволовым поражением (рис. 5.5). Выявленные аналогичные изменения соотношений разно эмоциональных крыс, также статистически недостоверны: 62% спокойных и 38% эмоциональных до операции; 48% спокойных и 52% эмоциональных после операции (т.е. увеличение «эмоциональных» крыс в группе на 14% недостоверно).

Следует отметить, что при изолированном стволовом повреждении агрессивно-оборонительные реакции имели место только перед летальным исходом. В остальных случаях эмоциональные реакции носили пассивно-оборонительный характер. При сочетанном стволово-гиппокампальном повреждении, как уже отмечалось, в том случае, когда сначала повреждали ствол, у животных с осложненным характером течения послеоперационного периода наблюдались агрессивно-оборонительные реакции. По мере восстановления эмоциональные реакции исчезали. Если повреждение гиппокампа производилось сначала, то эмоциональные реакции также исчезали по мере восстановления позы и движения. Но в этом случае следует отметить отсутствие агрессивно-оборонительных реакций. Каких-либо качественных отличий в протекании эмоциональных реакций разного знака у животных с сочетанным стволово-гиппокампальным повреждением нами обнаружено не было.

Таким образом, сочетанное повреждение ствола и симметричных отделов гиппокампа приводит к увеличению в выборке доли эмоционально реактивных животных. В этом случае эмоциональные реакции более выражены, чем при изолированном повреждении ствола. Однако, эти изменения не являются статистически достоверными.

Глава 6. Особенности латерализованного повреждения гиппокампа на фоне острого стволового патологического очага

При изучении роли гиппокампа в адаптивно-компенсаторных процессах головного мозга нельзя не учитывать того обстоятельства, что данная структура является парной, билатерально симметричной, соединенной между собой комиссурами (Гамбарян, Коваль, 1973; Ониани, 1980; Хамильтон, 1984; Van Groen, Wyss, 1988; Отмахов, 1993).

Определенная независимость в деятельности обоих гиппокампов была обнаружена М. Брейже еще в 1967 г. К настоящему времени накоплены убедительные доказательства того, что гиппокампальные образования правого и левого полушарий могут действовать как две независимые субъединицы. Экспериментальные исследования И.П. Левшиной с соавт. (1977) свидетельствуют о неоднозначной роли правого и левого гиппокампа в процессах обучения, поддержания эмоционального напряжения и регуляции вегетативных функций. Авторы пришли к выводу о биохимической природе латерализации функций гиппокампа. Относительная функциональная независимость симметричных отделов гиппокампа была показана и в других работах (Chida, Toyosawa, 1991; Maguire et al., 1997, 2003; Beauregard et al., 1998; Молодцова, 1999; Артюхина, Саркисова, 2000; Kristofikova et al., 2004). Особенно следует подчеркнуть, что асимметрия гиппокампа была подтверждена электрофизиологическими исследованиями (Квирквелия, 1987; Chida, Toyosawa, 1991). Однако, как справедливо отмечает П.В. Симонов (1999), данные о функциональной асимметрии гиппокампа, в основном, получены на человеке, в условиях клиники (Брейже, 1967; Брагина, 1966, 1967; Gray, 1972; Мадорский, 1985; Beauregard, 1998; Болдырева, 2000а,б). Как считает Н.Н. Брагина на основании только клинических данных неправомочно говорить о функции собственно гиппокампа (Брагина, 1966, 1967). Поэтому особенно важно представляется уточнение роли симметричных областей гиппокампа в адаптивно-компенсаторных перестройках мозга в условиях эксперимента.

В настоящей работе, наряду с моделями сочетанного стволового и двустороннего повреждения гиппокампа, мы рассматривали ситуацию повреждения ствола в сочетании с односторонним повреждением гиппокампа. Экспериментальную группу составили 19 животных: 15 - самцов беспородных белых крыс, 4 - самца линии Wistar. Последние существенно отличались от основной группы по возрасту и использовались нами лишь как индивидуальные наблюдения, но были исключены из общего статистического анализа (Мельников с соавт., 2001). У всех животных (за исключением крысы № 45) за 7 дней до операции на стволе мозга производили одностороннее повреждение гиппокампа: у 8 из 15 беспородных крыс с левой стороны, у 7 - с правой.

Следует отметить, что в группе из 19 отсутствовали летальные послеоперационные исходы.

Эффекты сочетанного повреждения ствола и левого гиппокампа Послеоперационная динамика состояния

У двух крыс (№86, №101) с сочетанным повреждением ствола и левостороннего гиппокампа явных признаков патологии после операции выявлено не было. Они были отнесены к варианту легкого послеоперационного течения (глава 3). Морфологический контроль у этих животных выявил наличие умеренных повреждений поля СА1 гиппокампа слева в сочетании с зонами деструкции на уровне ствола. Последние располагались существенно латеральнее и выше ВЯД: в tuberculum acusticum, кохлеарных ядрах и у основания ножки мозжечка.

Большая часть животных этой группы (6 из 8, т.е. 75% наблюдений) по особенностям послеоперационной динамики было отнесено к осложненному варианту (глава 3). У четырех крыс имели место винтообразные движения, исчезающие на 5-9-е сутки после повреждения ствола мозга. Исключение составляла лишь крыса №93, у которой винтообразные движения исчезли только на 36-е сутки после стволового этапа операции. У этих животных имело место длительное сохранение менее грубых неврологических отклонений, таких как наклон головы в оперированную сторону. Еще у одной крыс (№102) наблюдался хотя и слабый, но длительно сохраняющийся (33 дня) наклон головы. Следует отметить, что у особей данной группы отмечено существенное падение веса в первую 1-1,5 недели после стволового этапа операции, зачастую большее, чем при двустороннем повреждении гиппокампа. Потери веса могли достигать 40-60 граммов и имели место у животных с наличием винтообразных движений (крысы №92, №93, №96, №98). Через 10-12 суток вес восстанавливался.

Морфологические исследования показали, что в большинстве случаев у крыс с осложненным течением послеоперационного периода имело место повреждение поля СА1 гиппокампа в сочетании с полным левосторонним разрушением ВЯД, за исключением двух животных. У крысы №98 латеральная часть ВЯД была лишь задета. В основном, разрушение было локализовано в латеральном кохлеарном ядре. В другом наблюдении (крыса №102) ядро Дейтерса практически не было задето, но основательно разрушена область fibrae vestibulocerebelares.

Представляет интерес течение послеоперационного периода у крысы №45. Исходно она относилась к группе с двухсторонним поражением гиппокампа, однако морфологический контроль выявил повреждение этой структуры только слева. Поэтому данное наблюдение расценивалось как пример сочетанного стволово-левогиппокампального повреждения, когда стволовый этап операции предшествовал гиппокампальному.

У этой крысы в первые сутки после коагуляции ствола мозга отмечались лишь слабые динамические нарушения позы: при движении на плоскости передняя часть туловища была повернута под углом к задней половине тела, хотя винтообразные движения отсутствовали. К 3-4 суткам после стволового и 2-3-м после гиппокампального этапа операции наблюдалось постепенное усугубление тяжести общего состояния животного. Это выражалось в ухудшении состояния шерсти и существенной потере веса (с 210 до 160 гр.). На 5 - 7 сутки у крысы выявлялись также винтообразные движения. После 10-х суток животное стало набирать вес и его состояние стало улучшаться. Поза восстановилась через месяц. Исходно спокойная, эта крыса на протяжении всего послеоперационного периода (вплоть до окончательного восстановления позы) отличалась повышенной эмоциональностью.

Рис. 6.1. Сравнение сроков редукции неврологических отклонений (А) и уменьшение уровня эмоционального возбуждения (Б) у крысы №45 с сочетанным стволово-левогиппокампальным повреждением. По оси абсцисс в обоих случаях - сутки после операции. По оси ординат: (А) - ранжированные показатели неврологических отклонений. Максимальные отклонения в виде винтообразных движений соответствуют 10 баллам. (Б) - формализованные показатели эмоциональных проявлений (1 - слабая оборонительная реакция; 2 - сильная оборонительная реакция; 3 - агрессивно-оборонительная реакция.

Следует отметить увеличение уровня эмоциональности при ухудшении общего состояния, а также усугубление позных нарушений после левостороннего повреждения гиппокампа. Появление винтообразных движений в данном случае может быть объяснено "наложением" эффектов повреждения ствола и одностороннего повреждения гиппокампа.

Сходные данные получены в работе Н.И. Артюхиной и К.Ю. Саркисовой (2000, 2004): двусторонняя окклюзия сонных артерий сопровождалось развитием у животных судорожных припадков (с последующим летальным исходом) и появлением у выживших животных вращательных движений.

Морфологический контроль выявил у этих животных очаги ишемического инсульта, локализовавшегося преимущественно в СА1 правого гиппокампа - с исчезновением в зоне инсульта нервных клеток и пролиферацией глии с образованием глиального рубца. Появление такого рубца и было, вероятно, причиной судорожных припадков. По данным клиники, окклюзия сонных артерий зачастую сопровождается отеком мозговой ткани с вторичной дисфункцией ствола (Саркисова, 2000). Вовлечение в патологический процесс стволовых образований (наряду с повреждением гиппокампа) и обусловливало, по-видимому, возникновение устойчивых нарушений в виде винтообразных движений.


Подобные документы

  • Изучение подкорковых структур лимбической системы. Понятие и значение лимбической системы в нервной регуляции. Характеристика механизма саморегуляции вегетативных функций. Роль лимбической системы в формировании мотиваций, эмоций, организации памяти.

    реферат [29,0 K], добавлен 19.08.2010

  • Изучение строения коры головного мозга - поверхностного слоя мозга, образованного вертикально ориентированными нервными клетками. Горизонтальная слоистость нейронов коры головного мозга. Пирамидальные клетки, сенсорные зоны и моторная область мозга.

    презентация [220,2 K], добавлен 25.02.2014

  • Особенности строения ствола головного мозга, физиологическая роль ретикулярной формации мозга. Функции мозжечка и его влияние на состояние рецепторного аппарата. Строение вегетативной нервной системы человека. Методы изучения коры головного мозга.

    реферат [1,7 M], добавлен 23.06.2010

  • Нервная система как совокупность анатомически и функционально связанных между собой нервных клеток с их отростками. Строение и функции центральной и периферической нервной системы. Понятие миелиновой оболочки, рефлекса, функций коры головного мозга.

    статья [350,8 K], добавлен 20.07.2009

  • Онтогенез нервной системы. Особенности головного и спинного мозга у новорожденного. Строение и функции продолговатого мозга. Ретикулярная формация. Строение и функции мозжечка, ножек мозга, четверохолмия. Функции больших полушарий головного мозга.

    шпаргалка [72,7 K], добавлен 16.03.2010

  • Стадии черепно-мозговой травмы. Изменения в ткани мозга. Микроскопические мелкоочаговые кровоизлияния при диффузном аксональном повреждении головного мозга. Формирование гематом, субдуральных гигром, отечность головного мозга, нарушение оттока ликвора.

    презентация [3,4 M], добавлен 09.11.2015

  • Основные отличия вегетативной от центральной нервной системы. Функционирование симпатической нервной системы. Функции ядер спинного мозга и ствола мозга, которые контролируются вегетативными центрами. Дуга вегетативного рефлекса, ее особенности.

    презентация [12,9 M], добавлен 15.02.2014

  • Понятие лимбической системы, ее участие в регуляции вегетативных функций. Методы изучения биоэлектрической активности головного мозга. Понятие о высшей нервной деятельности, инстинкты, условные и безусловные рефлексы. Рефлекторная теория И. П. Павлова.

    реферат [1,0 M], добавлен 23.06.2010

  • Гистологическая классификация опухолей и опухолевидных поражений центральной нервной системы. Особенности диагностики, анамнеза. Данные лабораторных и функциональных исследований. Основные методы лечения опухолей головного мозга. Суть лучевой терапии.

    реферат [17,8 K], добавлен 08.04.2012

  • Изучение анатомии спинного мозга как отдела центральной нервной системы. Описание системы кровоснабжения спинного мозга. Состав клинико-нозологических вариантов сирингомиелитического синдрома. Дифференциальная диагностика различных травм позвоночника.

    презентация [607,2 K], добавлен 20.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.