Электрокардиография

Электрокардиография как наука. Физические явления в сердце. Электрические явления в изолированной клетке миокарда и сердечной мышце. Тело как объемный проводник электрических явлений. Электрокардиограмма как часть современного медицинского обследования.

Рубрика Медицина
Вид реферат
Язык русский
Дата добавления 20.05.2012
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Электрокардиография как наука

Сердце является самым необычным органом в организме человека. Контроль деятельности сердца осуществляется нервной системой (сосудодвигательный центр, симпатические и блуждающие нервы), а также посредством влияния различных веществ (гормонов, ионов). Но в этом отношении сердце мало отличается от остальных органов.

Самое удивительное то, что сердце имеет собственную автономную «нервную систему». Еще в XIX веке ученые отметили тот факт, что изолированное (без воздействия извне) сердце способно некоторое время исправно функционировать. Это возможно из-за существования зоны активации в сино-атриальном узле (ее называют «водитель ритма») и особых нервных путей (проводящие пути). Импульс, рождаемый в «водителе ритма», за считанные доли секунды проводится до мышечных клеток сердца по проводящим путям. Как результат, возникает сокращение мышечных стенок, кровь из-за повышения давления в камерах направляется в артерии. Но что представляет собой этот импульс? Это электрический ток, который можно уловить в любой точке организма, так как организм легко проводит электричество.

Электрокардиография представляет собой метод графической регистрации электрических процессов, возникающих при деятельности сердца. Кривая, которая при этом регистрируется, называется электрокардиограммой. Электрокардиография - целая наука, изучающая электрокардиограммы. Слово «электрокардиограмма» с латинского языка переводится дословно следующим образом: «электро» - электрические потенциалы; «кардио» - сердце; «грамма» - запись.

Электрический ток появляется между двумя точками, соединенными проводником, только тогда, когда между ними имеется разность электрических зарядов. С увеличением или уменьшением этой разности соответственно изменяется величина электрического тока в цепи. Величину разности зарядов принято называть разностью потенциалов. Разность потенциалов электрической активности сердца очень мала. Она выражается в милливольтах (мВ). Эта величина векторная, т. е. она имеет численное значение и определенное направление в пространстве.

Уоллер в 1887 г. впервые зарегистрировал электродвижущую силу сердца у человека. Современная ЭКГ была получена с помощью чувствительного струнного гальванометра в 1903 г. Эйнтховеном. Дальнейшее развитие электрокардиографии связано с физиологическими работами А.Ф. Самойлова, клинико-физиологическими работами В.Ф. Зеленина и работами других авторов.

2. Физические и медицинские основы электрокардиограммы

2.1 Физические явления, лежащие в основах метода электрокардиографии

электрокардиография миокард сердечный мышца

Электрическое поле - это особый вид материи, посредством которой осуществляется взаимодействие электрических зарядов.

Электрический ток - упорядоченное движение заряженных частиц под действием электрического поля. Для существования электрического тока необходимы свободно заряженные частицы (электроны, ионы).

Потенциал - физическая величина, определяемая работой по перемещению единичного положительного заряда при удалении его из данной точки поля на бесконечность. Эта работа численно равна работе, совершаемой внешними силами по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Разность потенциалов.

К этому понятию мы приходим, рассматривая работу сил электрического поля.

Предположим, что электрический заряд перемещается в каком-нибудь электрическом поле из некоторой точки 1 в другую точку 2. Так как на заряд в электрическом поле действует сила, то при таком перемещении будет произведена определенная работа, которую мы обозначим А12. Ясно, что если тот же заряд переместиться по прежнему пути в обратном направлении, то работу будет той же, но изменится ее знак, т.е. А12 = А21.

Рассмотрим теперь электрическое поле, созданное неподвижными зарядами (электростатическое поле). В нем работа при перемещении заряда не зависит от формы пути, по которому движется заряд, и определяется только положением точек 1 и 2 - начала и конца пути заряда.

Предположим теперь, что в электростатическом поле из точки 1 в точку 2 перемещается положительный заряд +q. Так как заряд выбран определенным, то работа, совершаемая силами поля при перемещении этого заряда, зависит только от существующего электрического поля и поэтому может служить его характеристикой. Она называется разностью потенциалов точек 1 и 2 в данном электрическом поле или электрическим напряжением между точками 1 и 2. Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля при перемещениизаряда +q из точки 1 в точку 2.

При перемещении заряда произвольной величины q в каждой точке сила, действующая на заряд, увеличивается в q раз. Поэтому работа А12, совершаемая силами поля при перемещении заряда q из точки 1 в точку 2, равна

А12 = qU12

Из этого соотношения следует физический смысл разности потенциалов электростатического поля:

ц1- ц2

Физический смысл имеет только разность потенциалов между двумя точками поля, так работа определена только тогда, когда заданы две точки - начало и конец пути.

Единица разности потенциалов в системе СИ есть вольт (В). Вольтом называется потенциал в такой точке, для перемещения в которую из бесконечности заряда, равного 1 Кл, надо совершить работу 1 Дж.

Электродвижущая сила.

Электродвижущая сила (далее - ЭДС) - физическая величина, характеризующая действие сторонних (непотенциальных) сил в источниках постоянного или переменного тока; в замкнутом проводящем контуре равна работе этих сил по перемещению единичного положительного заряда вдоль всего контура.

Происхождение сторонних сил может быть различным: в генераторах - это силы со стороны вихревого электрического поля, возникающего при изменении магнитного поля со временем, или сила Лоренца, действующая со стороны магнитного поля на электроны в движущемся проводнике; в гальванических элементах и аккумуляторах - это химические силы и т.д. ЭДС источника равна электрическому напряжению на его зажимах при разомкнутой цепи. ЭДС определяет силу тока в цепи при заданном её сопротивлении. Измеряется, как и электрическое напряжение, в вольтах.

ЭДС является интегральной характеристикой замкнутого контура, и в общем случае нельзя строго указать место её "приложения". Однако довольно часто ЭДС можно считать приближённо локализованной в определённых устройствах или элементах цепи. В таких случаях её принято считать характеристикой устройства (гальванической батареи, аккумулятора, динамо-машины и т.п.) и определять через разность потенциалов между его разомкнутыми полюсами. По типу преобразований энергии в этих устройствах различают следующие виды ЭДС: химическая ЭДС в гальванических батареях, ваннах, аккумуляторах, при коррозионных процессах (гальваноэффекты), фотоэлектрическая ЭДС (фотоэдс) при внешнем и внутреннем фотоэффекте (фотоэлементы, фотодиоды); электромагнитная ЭДС - ЭДС электромагнитной индукции (динамо-машины, трансформаторы, дроссели, электромоторы и т.п.); электростатическая ЭДС, возникающая, например, при механическом трении (электрофорные машины, электризация грозовых облаков и т.п.); пьезоэлектрическая ЭДС - при сдавливании или растяжении пьезоэлектриков (пьезодатчики, гидрофоны, стабилизаторы частоты и т.п.); термоионная ЭДС, связанная с термоэмиссией заряженных частиц с поверхности разогретых электродов; термоэлектрическая ЭДС (термоэдс) - на контактах разнородных проводников, либо на участках цепи с неоднородным распределением температуры. Термоэдс используют в термопарах, пирометрах, холодильных машинах.

Электрический диполь.

Простейшей системой точечных зарядов является электрический диполь. Так называется совокупность равных по величине, но противоположных по знаку двух точечных зарядов -qи +q, сдвинутых друг относительно друга на некоторое расстояние.

Основной характеристикой диполя являет дипольный момент, который представляет собой вектор, направленный от отрицательного заряда к положительному. Единицей электрического момента диполя является кулон-метр (Кл*м).

2.2 Физические явления в сердце

2.2.1 Электрические явления в изолированной клетке миокарда

Электрическая активность сердца является результатом циклического передвижения ионов в клетках и межклеточной жидкости миокарда. Ионы, несущие положительный заряд, называются катионами. К ним относятся катионы калия (К+), натрия (Na+), кальция (Ca2+) и др. Отрицательно заряженные ионы называются анионами. К ним относятся анионы хлора (Cl-) угольной кислоты (HCO3-) и др.

Каждая клетка миокарда представляет собой сложный комплекс органических и неорганических веществ, заключенных в полупроницаемую мембрану. Мембрана обладает способностью пропускать внутрь клетки и в противоположном направлении ионы, что создает условия для поддержания постоянства ионного состава. Этот процесс регулируется специальным внутри- и внеклеточным механизмом. Так, внутри клетки концентрация катионов калия в 30 - 35 раз выше, чем в межклеточной жидкости, и, наоборот, концентрация катионов натрия в межклеточной жидкости в 10 - 20 раз больше, чем в клетке.

В связи с такой разницей концентраций ионы К+ стремятся выйти из клетки, а ионы Na+войти в нее.

В состоянии покоя клеточная мембрана остается проницаемой только для ионов К+. В определенных количествах он выходит из клетки, что создает условия для образованияна наружной поверхности клетки положительного электрического заряда. Этот заряд препятствует дальнейшему выходу ионов К+ из клетки (так как одноименные заряды отталкиваются). В связи с выходом наружу ионов К+ в клетке наступает относительное увеличение анионов (Cl-, HCO3- и др.), и внутренняя сторона мембраны приобретает отрицательный заряд. Клетка становится поляризованной.

Равновесие противоположных зарядов внешней и внутренней сторон мембраны клетки называется статической поляризацией. Если подвести к противоположным сторонам мембраны электроды, то в замкнутой цепи появляется электрический ток. Разность потенциалов составляет 90 мВ. Этот потенциал поляризованной клетки называют потенциалом покоя.

Во время возбуждения клетки записывается потенциал действия. Он имеет форму быстро нарастающей и постепенно снижающейся монофазной кривой. В ней принято различать отдельные фазы: фазе деполяризации соответствует круто нарастающий участок кривой, в фазе реполяризации 3 периода - ранней быстрой реполяризации, длительной медленной реполяризации, конечной быстрой реполяризации. Клетка в период деполяризации и большей части реполяризации находится в состоянии рефрактерности и не отвечает на раздражения.

При возбуждении клетки проницаемость ее мембраны для разных ионов увеличивается. Прежде всего происходит быстрое и значительное нарастание проницаемости для ионов натрия; положительно заряженные ионы натрия в силу градиента концентрации проникают внутрь клетки через «быстрые» каналы клеточной мембраны и вызывают изменение полярности зарядов на внутренней и наружной ее поверхностях - деполяризация. При этом положительный полюс регистрирующей системы получает положительный (больший) заряд, тогда как на отрицательный полюс подается отрицательный (меньший) заряд наружной поверхности мембраны. Такое быстрое перераспределение зарядов вызывает крутое отклонение записи вверх, превышающее нулевую линию.

Вслед за короткой фазой деполяризации начинается длительный период реполяризации - постепенного уменьшения величины отрицательного заряда на поверхности клеточной мембраны, а затем восстановлением на ней положительного потенциала покоя. Процесс реполяризации протекает с различной скоростью и разделяется на несколько фаз. I фаза потенциала действия - быстрая начальная реполяризация, обусловленная проникновением в клетку отрицательно заряженных ионов хлора, которые уменьшают положительный потенциал внутренней поверхности клеточной мембраны.

II фаза потенциала действия значительно более продолжительная, характеризующаяся очень небольшими изменениями зарядов клеточной мембраны (продолжающееся поступление в клетку через «медленные» каналы мембраны положительных ионов натрия и кальция почти уравновешивается выходом из клетки положительных ионов калия). Поэтому II фаза потенциала действия (фаза медленной реполяризации) регистрируется в виде медленно снижающегося «плато». III фаза потенциала действия (конечная реполяризация) отражает происходящую инактивацию потоков входивших в клетку положительных ионов натрия и кальция при одновременном усилении потока выходящих из клетки положительных ионов калия, что вызывает нарастание отрицательного заряда внутренней поверхности клеточной мембраны и увеличение положительного заряда наружной поверхности клеточной мембраны. Во время III фазы регистрируется сравнительно быстрое снижение кривой записи к исходному уровню потенциала покоя (восстанавливается статическая поляризация клетки в состоянии ее покоя). После окончания процессов реполяризации следует IV фаза, во время которой специальные ферментативные системы обеспечивают обратное перемещение ионов, которые происходят против концентрационных градиентов электролитов: избыток ионов натрия и кальция выводится из клетки, в то время как ионы калия возвращаются в клетку. Это создает готовность клетки к следующему возбуждению.

Моделью электрической активности отдельной клетки миокарда может быть представлен диполь - система, состоящая из двух равных по величине, но противоположных по знаку зарядов. Вокруг такой системы, помещенной в среду, обладающую электропроводностью, возникает электрическое поле, каждая точка в котором имеет потенциал определенной величины и полярности. Между отрицательным и положительным зарядом диполя проходит нулевая изопотенциальная линия, на которой влияние положительного и отрицательного зарядов уравновешено и величина потенциала равна нулю. Эта линия разделяет электрическое поле на две половины - положительную (все точки которой имеют положительные потенциалы) и отрицательную (все точки которой имеют отрицательные потенциалы).

Электрический диполь характеризуется разностью потенциалов, т.е. он создает электродвижущую силу, которая может выражаться векторной величиной. Вектор диполя изображается в виде отрезка прямой линии со стрелкой. Длина вектора отражает величину разности потенциалов диполя, а стрелка указывает направление электродвижущей силы: начало вектора соответствует отрицательному заряду, а конец со стрелкой направлению в сторону положительного заряда.

При одновременном существовании нескольких диполей их электродвижущие силы взаимодействуют по закону сложения векторов, параллельные векторы суммируются как алгебраические величины. Направленные под углом друг к другу векторы складываются путем совмещения их начала в одну точку и построения параллелограмма; диагональ такого параллелограмма является результирующим вектором, который называется «электрической осью сердца».

2.2.2 Электрические явления в сердечной мышце

На поверхности мышечного волокна, находящегося в состоянии покоя, разности потенциалов нет (ток покоя можно зарегистрировать только с помощью внутриклеточного электрода). При подключении к противоположным концам клетки гальванометра стрелка его отклоняться не будет, запишется прямая линия - изоэлектрическая линия. При возбуждении, деполяризации, возбужденные участки становятся электроотрицательными, а невозбужденные - сохраняют положительный заряд. Если дифферентный электрод обращен к положительному заряду диполя, то регистрируется отклонение кривой вверх от изолинии. Если дифферентный электрод обращен к отрицательному заряду - отклонение вниз. Амплитуда зубца увеличивается по мере распространения возбуждения в клетке. Когда вся клетка возбудилась, вся ее наружная поверхность приобрела отрицательный заряд, разность потенциалов исчезла, вновь начинает записываться изоэлектрическая линия. При выходе из возбуждения, реполяризации, вновь возникает разность потенциалов между уже вышедшими и заряженными положительно участками и еще возбужденными, отрицательно заряженными участками. Это сопровождается появлением следующего зубца. Направление записи этого зубца зависит от того, какие участки прилежат к электроду: еще возбужденные - отрицательный зубец, уже вышедшие из возбуждения - положительный. Полный выход из состояния возбуждения приводит к поляризации клетки, вся наружная поверхность ее мембраны заряжена положительно, разности потенциалов нет, и вновь записывается изоэлектрическая линия.

Итак, в период распространения возбуждения клетка миокарда имеет два противоположно заряженных полюса и является как бы маленьким генератором электрического тока.

Поверхность желудочков сердца можно рассматривать как обширную поляризованную мембрану, охватывающую единую огромную клетку. Закономерно меняющиеся во время возбуждения сердца величина и направление электрических потенциалов сердца сопровождаются изменением потенциалов и на поверхности тела человека. Ориентация электрических зарядов в тканях тела подчиняется общим законам соответственно сердечного суммарному диполю.

В основном процессе возбуждения электрическая ось сердца направлена влево вниз - от отрицательного полюса к положительному. Поэтому с поверхности тела всегда можно зарегистрировать разность потенциалов от различных пунктов электрического поля сердца.

2.2.3 Формирование элементов ЭКГ

На ЭКГ записывается суммарная разность потенциалов от всех клеток миокарда, или, как ее называют, электродвижущая сила сердца (ЭДС сердца). Электрокардиограф регистрирует напряжение (разность электрических потенциалов) между 2 точками, то есть в каком-то отведении. Другими словами, ЭКГ-аппарат фиксирует на бумаге (экране) величину проекции ЭДС сердца на какое-либо отведение.

Стандартная ЭКГ записывается в 12 отведениях:

3 стандартных (I, II, III);

3 усиленных от конечностей (aVR, aVL, aVF);

6 грудных (V1, V2, V3, V4, V5, V6).

1) Стандартные отведения (предложил Эйнтховен в 1913 году). I - между левой рукой и правой рукой, II - между левой ногой и правой рукой, III - между левой ногой и левой рукой.

2) Усиленные отведения от конечностей (предложены Гольдбергером в 1942 году).

Используются те же самые электроды, что и для записи стандартных отведений, но каждый из электродов по очереди соединяет сразу 2 конечности, и получается объединенный электрод Гольдбергера. На практике запись этих отведений производится простым переключением рукоятки на одноканальном кардиографе (т.е. электроды переставлять не нужно).

aVR - усиленное отведение от правой руки (сокращение от augmented voltage right - усиленный потенциал справа). aVL - усиленное отведение от левой руки (left - левый) aVF - усиленное отведение от левой ноги (foot - нога)

3) Грудные отведения (предложены Вильсоном в 1934 году) записываются между грудным электродом и объединенным электродом от всех 3 конечностей.Точки расположения грудного электрода находятся последовательно по передне-боковой поверхности грудной клетки от средней линии тела к левой руке.

V1 - в IV межреберье по правому краю грудины. V2 V3 V4 - на уровне верхушки сердца. V5 V6 - по левой среднеподмышечной линии на уровне верхушки сердца.

Рис. 1 - Расположение 6 грудных электродов при записи ЭКГ

12 указанных отведений являются стандартными. При необходимости могут регистрироваться и дополнительные отведения.Неслучайно такое большое количество отведений. ЭДС сердца - это вектор ЭДС сердца в трехмерном мире (длина, ширина, высота) с учетом времени. На плоской ЭКГ-пленке мы можем видеть только 2-мерные величины, поэтому кардиограф записывает проекцию ЭДС сердца на одну из плоскостей во времени.

Рис. 2 - Плоскости тела, используемые в анатомии

В каждом отведении записывается своя проекция ЭДС сердца. Первые 6 отведений (3 стандартных и 3 усиленных от конечностей) отражают ЭДС сердца в так называемой фронтальной плоскости (см. рис.) и позволяют вычислять электрическую ось сердца с точностью до 30° (180° / 6 отведений = 30°). Недостающие 6 отведений для формирования круга (360°) получают, продолжая имеющиеся оси отведений через центр на вторую половину круга.

6 грудных отведений отражают ЭДС сердца в горизонтальной (поперечной) плоскости. Это позволяет уточнить локализацию патологического очага (например, инфаркта миокарда): межжелудочковая перегородка, верхушка сердца, боковые отделы левого желудочка и т.д.

При разборе ЭКГ используют проекции вектора ЭДС сердца, поэтому такой анализ ЭКГ называется векторным.

 В процессе электрической активности сердца возникают и в определенном порядке взаимодействуют многочисленные и разнонаправленные силы, отражающие множество появляющихся диполей. Если регистрировать этот процесс при условии непосредственного приближения электродов к поверхности сердца, то формирование ЭКГ будет зависеть от того, как ориентирован результирующий вектор всех одномоментных сил по отношению к дифферентному электроду. Представим, что дифферентный электрод располагается слева внизу от массы возбуждающегося миокарда, а индефферентный - справа наверху (такой принцип размещения электродов является самым обычным в электрокардиографии).

Наиболее высоким автоматизмом обладает синусовый узел, поэтому в норме именно он является водителем ритма сердца. Однако, из-за слишком малой величины возникающей разности потенциалов, электрическая активность синусового узла на ЭКГ не регистрируется. Возбуждение миокарда предсердий начинается в области синусового узла и распространяется по поверхности миокарда во все стороны. Разнонаправленные векторы деполяризации, взаимодействуя друг с другом, частично нейтрализуются. Так как синусовый узел находится в верхней части правого предсердия, то большинство векторов ориентированы вниз и влево. Результирующий вектор возбуждения предсердий направлен, благодаря этому, вниз и влево. Такому направлению волны деполяризации способствует и ускоренное проведение импульса вниз и влево по межузловым и межпредсердным специализированным трактам. Находящийся внизу слева дифферентный электрод обращен к положительному заряду диполя во время деполяризации предсердий, поэтому регистрируется положительное отклонение - зубец Р, продолжительность которого в норме достигает 0,1 с. В течение первых 0,02 - 0,03 с своего формирования зубец Р отражает возбуждение только правого предсердия, после этого - суммарную активность обоих предсердий, а последние 0,02 - 0,03 с зубца Р связаны с деполяризацией только левого предсердия, т.к. правое предсердие к этому времени уже полностью возбуждено.

После окончания деполяризации предсердий начинается ихреполяризация, которая происходит в той же последовательности, как происходило возбуждение. Ранее всего положительный потенциал покоя восстанавливается в области синусового узла, поэтому результирующий вектор реполяризации предсердий направлен вверх вправо, от дифферентного электрода. То обусловливает формирование отрицательного зубца Та, отражающего конечную фазу реполяризации предсердий. Он очень мал по амплитуде, а по времени совпадает с желудочковым комплексом ЭКГ, поэтому в обычных условиях не может быть выделен и подвергнут анализу.

Рис. 3 - Зубцы, сегменты и интервалы на ЭКГ

Через 0,02 - 0,04 с от начала деполяризации предсердий волна возбуждения уже достигает области атриовентрикулярного узла. Здесь скорость распространения возбуждения резко снижается, после чего импульс быстро распространяется по пучку Гиса и внутрижелудочковым проводящим путям, достигая миокарда желудочков. На ЭКГ выделяется сегмент Р - Q(R) - отрезок линии записи от конца зубца Р до начала желудочкого комплекса QRS. Интервал P - Q(R) отражает время предсердно-желудочкого проведения импульса и составляет в норме 0,12 - 0,19 с. Нормальные колебания продолжительности P - Q(R) зависят от изменений продолжительности атриовентрикулярной задержки.

Рис. 4 - Проводящая система сердца

Возбуждение желудочков, в отличие от возбуждения предсердий, распространяется не из одного центра, а из множества очагов, расположенных преимущественно в субэндокардиальных слоях миокарда. Источниками деполяризации являются волокна Пуркинье - конечный разветвления внутрижелудочковых проводящих путей. распространение возбуждения стенки желудочков направлено от множественных очагов в субэндокардиальных отделах к субэпикардиальным отделам, т.е. перпендикулярно к наружной поверхности сердца. Для детального разбора электрических сил, отражающих деполяризацию желудочков, удобно разделить этот непрерывный процесс на три этапа.

Первый - начальный - связан с появлением очагов деполяризации в левой части межжелудочковой перегородки, куда раньше всего приходит волна возбуждения по разветвлениям левой ножки пучка Гиса. Вектор деполяризации направлен от левой к правой поверхности межжелудочковой перегородки. При расположении активного электрода слева начальный этап деполяризации желудочков отражается небольшим отрицательным отклонением (зубцом Q), продолжительность которого составляет 0,02 с. Вслед за деполяризацией левой поверхности межжелудочковой перегородки начинается деполяризация ее правых отделов, куда возбуждение приходит по правой ножке пучка Гиса. Направление вектора этой деполяризации справа налево нейтрализует первоначально возникшее электрическое поле, и поэтому начальный этап возбуждения желудочков отражается небольшим и непродолжительным зубцом.

Следующий - главный - этап отражает распространение возбуждение через миокард свободных стенок желудочка. Суммарный вектор деполяризации левого желудочка ориентирован влево. Равнонаправленность этих векторов приводит к частичной нейтрализации электрических сил. Большая мышечная масса левого желудочка обусловливает его электрического поля над электрическим полем правого желудочка, поэтому результирующий вектор деполяризации желудочков ориентирован влево. При расположении активного электрода слева, этот главный этап деполяризации желудочков, соответствующий 0,03 - 0,05 с, регистрируется в виде положительного отклонения (зубец R).

Заключительный этап деполяризации желудочков отражает возбуждение заднебазальных межжелудочковой перегородки и желудочков. Вектор деполяризации ориентирован вверх и чаще вправо; направление терминальной деполяризации значительно варьирует. При расположении дифферентного электрода слева от сердца терминальных этап деполяризации чаще отражен небольшим отрицательным зубцом (S).

Таким образом, последовательные изменения величины и направления результирующего вектора электрического поля во время возбуждения желудочков приводят к тому, что этот единый процесс отражается комплексом QRS, состоящим их зубцов разной величины и разной полярности. В зависимости от положения электродов зубцы, отражающие начальный, главный и терминальный этапы деполяризации, могут иметь различные направления (и, вследствие этого, различные буквенные обозначения). Зубцом Q обозначают первое отклонение желудочкового комплекса, если оно направлено вниз от изолинии. Отклонение записи вверх от изолинии, независимо от того, когда оно регистрируется (т.е. является ли первым или последующим) называется зубцом R. Отрицательное отклонение, следующее за положительным, обозначают как зубец S. Таким образом, зубец Q может быть лишь один в желудочковом комплексе, а в тех случаях, когда комплекс начинается положительным отклонением, зубец Q отсутствует. Если положительных зубцов несколько, то они именуются зубцами R, но каждый последующий обозначается как R?,R? ?и т.д. Зубцов S тоже может быть несколько, и тогда они обозначаются как S?, S? ?и т.д. общая продолжительность комплекса QRS, отражающая время внутрижелудочковой проводимости составляет 0,06 - 0,10 с.

В отличие от предсердий, миокард желудочков различных слоев и отделов обладает различной продолжительностью электрических процессов. Потенциал действия субэпикардиальных слоев имеет меньшую продолжительность, чем потенциал действия субэндокардиальных слоев; потенциал действия миокардиальных волокон в области верхушки сердца короче, чем в области основания сердца. Это приводит к тому, что в стенке желудочка процессы реполяризации раньше начинаются в субэпикардиальных слоях и в области верхушки, тогда как субэндокардиальные слои и основание желудочков дольше сохраняют отрицательные заряды. Во время реполяризации результирующий вектор направлен поэтому влево, т. е. в ту же сторону, что и главный вектор деполяризации. Наибольшая электродвижущая сила возникает в фазе конечной реполяризации, этот процесс отображается появлением зубца Т. при расположении дифферентного электрода слева, вектор реполяризации желудочков направлен к этому электроду и зубец Т регистрируется положительным. Между концом комплекса QRS и началом зубца Трасполагается сегмент S-T: он соответствует второй фазе реполяризации миокарда желудочков, во время которой потенциал почти не изменяет своей величины. Разность потенциалов почти отсутствует, поэтому сегмент S - Tрасполагается на изолинии. Различная продолжительность потенциала действия в разных отделах миокарда желудочков приводит к небольшому асинхронизму фаз реполяризации и появлению небольшой разности потенциалов, что и сообщает сегменту S-T некоторую кривизну с плавным переходом его в зубец Т. интервал времени от начала комплекса QRS до начала зубца Т отражает весь период электрической активности желудочков (электрическая систола). В норме Q - T составляет 0,36 - 0,44 с и зависит от пола, возраста и частоты ритма. Вслед за зубцом Т обычно регистрируется еще одно положительное отклонение небольшой амплитуды - зубец U. Механизмы его появления точно не установлены и, по-видимому, не всегда однозначны.

Рис. 5 - Схема измерения отрезков и интервалов электрокардиограммы

В процессе исследования всех зубцов, сегментов и интервалов, регистрируемых электрокардиограммой, выводится электрокардиографическое заключение, которое должно включать в себя:

1. Источник ритма (синусовый или нет).

2. Регулярность ритма (правильный или нет). Обычно синусовый ритм является правильным, хотя возможна дыхательная аритмия.

3. ЧСС.

4. Положение электрической оси сердца.

5. Наличие 4 синдромов:

нарушение ритма

нарушение проводимости

гипертрофия и/или перегрузка желудочков и предсердий

повреждение миокарда (ишемия, дистрофия, некрозы, рубцы)

2.2.4 Тело как объемный проводник электрических явлений

Ткани и органы, окружающие сердце, играют роль проводников, передающих электрические заряды на поверхность тела.Величина потенциалов по мере удаления от сердца уменьшается. В однородной проводящей среде величина потенциала любой точки обратно пропорциональна величине расстояния от нее до источника разности потенциала. Ткани тела обладают различной электропроводностью, что вносит значительные искажения в распределение и величину потенциалов на поверхности тела. ЭКГ может изменяться под влиянием таких состояний как ожирение, кахексия, отеки тела, скопление жидкости в плевре и перикарде, эмфизема и уплотнение легких и т.п.

3. Электрокардиограмма как неотъемлемая часть современного медицинского обследования

Ежегодно в стране регистрируется от 15 до 17 млн. больных сердечно-сосудистыми заболеваниями. На долю болезней системы кровообращения приходится более половины всех случаев смертности, 43,3% - случаев инвалидности, 9,0% - временной нетрудоспособности. Это обуславливает важность ранней диагностики, рациональной терапии, профилактики грозных осложнений, реабилитации больных с заболеваниями сердечно-сосудистой системы. В данных условиях востребованы технически простые методы, не требующие больших экономических и временных затрат. С появлением ЭКГ врачи получили значительные возможности в прижизненной диагностике заболеваний сердца. Метод исключительно простой (регистрацию ЭКГ может проводить любой медицинский работник), универсальный (врач из любой страны может интерпретировать результаты ЭКГ), неинвазивный (не нарушает целостность организма, практически безвреден), недорогой.Метод электрокардиографического обследования целиком отвечает современным потребностям.

Список литературы и использованных источников

1. Журавлева Н.Б. Основы клинической электрокардиографии. Л.: Экслибрис, 1990.

2. Минкин Р.Б., Павлов Ю.Д. Электрокардиография и фонокардиография. Л.: Медицина, 1988. - 256 с.

3. Бармасов А.В., Холмогоров В.Е. Курс общей физики для природопользователей. Электричество. / под ред. А.П. Бобровского. СПб.: БХВ-Петербург, 2010. 448 с.

4. Ремизов А.Н., Потапенко А.Я. Курс физики. Учебник для студентов вузов, обучающихся по естественнонаучным направлениям. М.: Дрофа, 2006. 720 с.

5. Калашников С.Г. Электричество: Учебное пособие для студентов физических специальностей вузов. М.: ФИЗМАТЛИТ, 2004. 624 с.

6. Физический энциклопедический словарь. - М.: Советская энциклопедия. 

7. Главный редактор А.М. Прохоров. 1983.

8. http://adoc.ru/ac/detail.php?ID=9054

9. http://www.happydoctor.ru/info/461

Размещено на Allbest.ru


Подобные документы

  • Разновидности инфаркта миокарда - ограниченного некроза сердечной мышцы. Электрокардиография при развитии инфаркта, его основные локализации. Различные варианты подъема сегмента ST. Разграничение инфарктов миокарда на трансмуральные и субэндокардиальные.

    реферат [222,6 K], добавлен 01.10.2015

  • Электрокардиография при патологии: электролитные нарушения. Описание проявлений гиперкалиемии. Изменение содержания электролитов в клетках миокарда. Электрокардиографические признаки, связанные с изменением внутриклеточной концентрации калия и кальция.

    презентация [630,3 K], добавлен 11.10.2015

  • Элементы электрокардиографии (ЭКГ). Происхождение зубцов и интервалов ЭКГ, их связь с возникновением и распространением возбуждения в сердце. Теория сердечного диполя. Процесс деполяризации, реполяризации мышцы сердца. Продуцирование электродвижущей силы.

    презентация [1,4 M], добавлен 21.04.2014

  • Электрокардиография как метод электрофизиологического исследования деятельности сердца. Зубцы, сегменты, интервалы. Проверка правильности регистрации электрокардиографии. Анализ сердечного ритма и проводимости. Понятие о синусовом и предсердном ритме.

    презентация [2,9 M], добавлен 07.12.2016

  • Графическая регистрация электрических процессов, возникающих при деятельности сердца, с применением электрокардиографии. Подготовка к съемке электрокардиограммы. Определение частоты сердечного ритма и проводимости, регулярности сердечных сокращений.

    презентация [16,9 M], добавлен 12.10.2013

  • Электрокардиография как метод исследования сердца. Сущность синдрома "синдром наджелудочкового гребешка". Возрастная динамика взаимоотношения амплитуд зубцов R и S. Основные особенности ЭКГ здоровых детей. Техника регистрации электрокардиограммы.

    презентация [1011,0 K], добавлен 29.09.2014

  • Изучение связей между электрофизиологическими и клинико-анатомическими процессами живого организма. Электрокардиография как диагностический метод оценки состояния сердечной мышцы. Регистрация и анализ электрическй активности центральной нервной системы.

    презентация [225,3 K], добавлен 08.05.2014

  • Ишемическая болезнь сердца, перенесенный острый инфаркт миокарда. Семейный анамнез и наследственность. План обследования и лечения. Данные физических и инструментальных методов исследования. Электрокардиограмма, коронарография и заключения к ним.

    история болезни [46,1 K], добавлен 09.12.2010

  • Симптомы ишемической болезни сердца (ИБС). Традиционные инструментальные методы диагностики ИБС. Электрокардиография (ЭКГ) в покое, суточное мониторирование ЭКГ по Холтеру. Диагностические возможности эхокардиографии. Нагрузочные тесты, коронарография.

    курсовая работа [157,1 K], добавлен 22.02.2013

  • Исследование морфологических и функциональных изменений сердца и его клапанного аппарата. Эхокардиография и баллистокардиография. Косвенный метод баллистокардиографии. Униполярные и грудные отведения. Изменение положения сердца в грудной клетке.

    презентация [1,7 M], добавлен 18.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.