Свойства и получение антибиотиков пенициллинового ряда

История открытия пенициллинов, их природные источники, биологическая роль, строение и свойства. Аппаратурно-технологическая схема получения пенициллина. Методы выделения антибиотиков, их достоинства и недостатки. Методы оценки антибиотической активности.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 09.04.2013
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ КУРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОГО АГЕНСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ

Биотехнологический факультет

Кафедра биологической и химической технологий

КУРСОВАЯ РАБОТА

Свойства и получение антибиотиков пенициллинового ряда

Выполнила студентка 3 курса 2 группы Е.В.Скорова

Руководитель канд.тех.наук, доцент Л.В.Атрепьева

Курск-2012 г.

Содержание

Введение

1. Общая характеристика пенициллинов

2. История открытия

3. Природные источники

4. Биохимическая роль

5. Строение и свойства

6. Механизм биологического действия

7. Методы получения

7.1 Аппаратурно-технологическая схема получения пенициллина. Ферментаторы

7.2 Природные

7.3 Полусинтетические

7.4 Методы выделения антибиотиков

7.5 Динамика получения

8. Достоинства и недостатки методов

9. Методы оценки антибиотической активности

10. Контроль качества

11. Перспектива развития

Заключение

Список используемых источников

Приложение

Введение

Антибактериальная терапия является важнейшим компонентом современной клинической медицины.

Сегодня среди возбудителей тяжёлых инфекций преобладают грамположительные микроорганизмы. В начале 80-х годов прошлого века в этиологии инфекций на их долю приходилось около 40% случаев заболеваний, спустя 10 лет - свыше 50% , в настоящее время - 55-60% .

Первые антибиотики, в частности пенициллины, были активны главным образом, в отношении грамположительных микроорганизмов - стафилококков и стрептококков. Эффективное лечение заболеваний вызванных грамположительными бактериями повлекло за собой изменение этиологической структуры ряда инфекций. В частности, стала возрастать роль микроорганизмов, обладающих природной устойчивостью или способных быстро формировать приобретённую резистентность к доступным антибиотикам. Как правило, это были грамотрицательные бактерии. Надо отметить интересную особенность: в отличие от стафилококков, патогенные стрептококки за 60 лет использования пенициллина так и не приобрели к нему устойчивости, они по сей день высокочувствительны к этому антибиотику.

Наиболее актуальными антибиотиками для лечения инфекций респираторного тракта являются препараты 3-х групп: аминопенициллины, цефалоспорины 2-го поколения и макролиды. Так как к ампициллину и амоксициллину у ряда микроорганизмов выработалась устойчивость, для лечения осложнений используют ингибитор защищённые аминопенициллины: клавуланаты (аугментин, амоксиклав).

1. Общая характеристика

Открытие английским микробиологом А.Флемингом пенициллина стало началом эры антибиотиков.

Классификация пенициллинов:

Пенициллины - группа антибиотиков, производные 6- аминопенициллановой кислоты.

Пенициллины первого поколения - это природные пенициллины. К ним относятся бензилпенициллин - натрий, бензилпенициллин - калий, бенизилпенициллин, феноксиметилпеницилин.

Пенициллины первого поколения теперь не вводят в медицинскую практику, так как они легко инактивируются пенициллиназой и малоактивны.

Значительным достижением современной химиотерапии является создание полусинтетических пенициллинов второго и третьего поколения - важных противомикробных средств.

Пенициллины второго поколения - это полусинтетические антибиотики, молекулы которых содержат аминопенициллятную кислоту, ацилированную синтетическими кислотами, которые не встречаются в природе. Полусинтетические пенициллины - это лекарственные средства с широким спектром антибактериального действия, однако некоторые и них разрушаются под действием пенициллиназы.

Создание пенициллинов третьего поколения является важным событием в медицине и фармации. Основной особенностью этих антибиотиков является взаимодействие с бактериальными в-лактамазами и блокирования их. Вследствие этого антимикробная активность намного увеличивается. Они состоят из двух веществ - полусинтетического антибиотика и ингибитора в-лактамаз.

Лекарственные средства природных и полусинтетических пенициллинов - это белые кристаллические вещества без запаха, горькие на вкус. Пенициллины - нестойкие вещества, они легко поддаются инактивации под действием воды. Натриевая и калиевая соль бензилпенициллина гигроскопичны и легко растворяются в воде. Новокаиновая соль бензилпенициллина, феноксиметилпенициллин и ампициллин малорастворимы в воде.

Несмотря на появление новых групп противомикробных средств, антибиотические препараты пенициллинового ряда продолжает занимать значительное место в терапии инфекционных заболеваний. В частности, среди отечественных препаратов пенициллинов большого распространения приобрели стойкие к гидролизу полусинтетические препараты «Ампициллин» и «Оксациллин». Так, ампициллин, благодаря дополнительной активности по отношению к грамотрицательной флоре, на которую не действует препарат природного происхождения «Бензилпенициллин», считается антибиотиком широкого спектра действия, пригодный для употреблении при заболеваниях, вызванных смешанной инфекцией. Стоит отметить, что среди парентеральных форм препаратов пенициллинового ряда бензилпенициллин и теперь часто применяется в медицинской практике. Что касается оксациллина, то по спектру противомикробной активности он в общем подобен бензилпенициллину, но превосходит его по гидролитической стойкости и поэтому, в отличии от последнего, как и ампициллин, пригоден к пероральному употреблению.

Специфичность биологической активности пенициллина прежде всего обусловлено наличием в его молекуле тиазолидинового и в-лактамного циклов.

Расщепление одного из них приводит к полной потери препаратом активности относительно бактерий, которые не являются продуцентами фермента в-лактамазы пенициллинов.

Четырёхчленный лактамный цикл характеризуется большой лабильностью к действию разных по характеру химических факторов. Гидролитическая стойкость пенициллинов главным образом зависит от нуклеофильности атома кислорода экзоциклической амидной структуры и существенно повышается при введении в молекулу электроакцепторных заместителей.

Введение в молекулу 6-АПК остатков аминофенилуксусной и кислоты позволило получить относительно стойкие к гидролитическому расщеплению препараты «Ампициллин» и «Оксациллин».

Их продуцируют в виде солей - натрия или калия (бензилпенициллин), новокаина или N, N-дибензилэтилендиаминовой соли (бензилпеницилин) - бициллина-1, кислоты или тригидрата (ампициллин) разного дозирования в виде быстрорастворимого стерильного порошка во флаконах или таблеток (ампициллин, оксациллин), гранул для изготовления суспензий (ампициллин) и др.

Особенно широкое применение находят комбинированные препараты, которые состоят из смеси натриевой соли ампициллина и оксациллина в соотношении 2 : 1 ( «Ампиокс-натрий », в Украине - «Ампициллин - оксациллин» ) и ампициллина тригидрата и оксациллина натриевой соли , взятых в соотношении 1 : 1 ( ампиокс ) , которые выпускаются во флаконах по 100 , 200 или 500 мг и капсулах по 0.25 мг препарата ( сумма ампициллина тригидрата и оксациллина натриевой соли ) соответственно.

Выпускной формой для антибиотиков пенициллинового ряда являются порошки для инъекций во флаконах различной вместимости, таблетки, гранулы для приготовления суспензий в упаковках, сироп, капли для приема внутрь и капсулы.

Для антибиотиков пенициллинового ряда существуют свои условия хранения, например, некоторые антибиотики хранят в защищенном от света месте, а большинство антибиотиков хранят в сухом, темном месте при температуре не ниже 25 С.

2. История открытия

Известный английский бактериолог Александр Флеминг опубликовал в 1929 г. сообщение о действии зеленой плесени на стафилококки. Флеминг выделил гриб, который оказался Penicillium notatum, и установил, что культуральная жидкость этой плесени способна оказывать антибактериальное действие по отношению к патогенным коккам.

Культуральная жидкость гриба, содержащая антибактериальное вещество, названа Флемингом пенициллином.

Попытки Флеминга выделить активное начало, образуемое Penicillium, не увенчались успехом. Несмотря на это, Флеминг указал на перспективы практического применения обнаруженного им фактора.

Спустя примерно десять лет после сообщения Флеминга пенициллин начал изучать Чейн. Он был убежден, что это вещество - фермент. В 1940 г. Флори и Чейн получили индивидуальное соединение пенициллина, который оказался не ферментом, а низкомолекулярным веществом.

О свойствах зеленой плесени было известно задолго до наблюдений Флеминга. Еще в глубокой древности индейцы из племени майа использовали ее, выращенную на зернах кукурузы, для лечения ран. Философ, врач и естествоиспытатель Абу-Али Ибн-Сина рекомендовал использовать плесень при гнойных заболеваниях.[3]

В русской народной медицине с давних времен применялись для лечения ран присыпки, состоящие из зеленой плесени. В работах русских ученых Манассеина и Полотебнова в 1871-1872 гг. указывалось отношение Penicillium glaucum к разным бактериям. Полотебнев впервые в научно-клинической обстановке изучил применение зеленой плесени, показав при этом практически ценные результаты. Манассеин установил, что молодая культура плесени подавляет рост некоторых бактерий. В 1877 г. русский врач Лебединский доложил о подавлении плесенью бактерий желудочно-кишечного тракта. Английский физик Тиндаль описал в 1876 г. способность Penicillium подавлять бактерии, находящиеся в жидкости, но объяснял он это явление чисто физическими причинами.

Таким образом, приведенные данные показывают, что человечество на разных уровнях своего развития знало о целебных свойствах зеленой плесени. Однако эти сведения носили разрозненный характер и касались лишь воздействия самого гриба на микроорганизмы. В то время не могло быть и речи о выделении и изучении активного начала, образуемого плесенью.

И только после 1940 г., когда Флори и Чейн получили препарат (пенициллин) в очищенном виде, появился широкий научный интерес к этому антибиотическому веществу.

Изучение пенициллина в Советском Союзе было начато З.В.Ермольевой. В 1942 г. под ее руководством в лаборатории биохимии микробов Всесоюзного института экспериментальной медицины в Москве был получен первый отечественный пенициллин - крустозин, сыгравший огромную роль в спасении жизней воинов Советской Армии в Великой Отечественной Войне.

В январе 1944 г. Москву посетила группа иностранных ученых, среди которых был профессор Флори, привезший с собой английский штамм продуцента пенициллина. Сравнение двух штаммов показало, что советский штамм образует 28,ед/мл, а английский - 20ед/мл.

После того как было установлено, что пенициллин обладает мощными лечебными свойствами, начались интенсивные поиски продуцентов этого антибиотика. В результате чего удалось установить, что пенициллин могут образовывать многие виды Penicillium (P. Chrysogenum, P. Nidricans, P. Turbatum, P. Corylophilum), а так же некоторые виды Aspergillus.

Первые выделенные из естественных субстратов штаммы Penicillium как наиболее активные продуценты пенициллина образовывали не более 20 единиц (12 мкг) антибиотика на 1 мл культуральной воды. Даже промышленное создание этого ценнейшего продукта было начато при активности культуральной жидкости не выше 30 мкг/мл или 50 ед/мл. Насколько низка эта активность, можно судить по тому факту, что в истинное время в промышленных условиях получают культуральные жидкости с содержанием пенициллина наиболее 15000 ед/мл, а отдельные штаммы способны синтезировать антибиотик в количестве до 25 тыс. ед/мл.

3. Природные источники получения

Пенициллин относится к группе в-лактамных антибиотиков.

В последние годы установлено, что антибиотики этой группы образуются не только плесневыми грибами, но и некоторыми видами актиномицетов и собственно бактерий.

Получение пенициллина -- замечательная веха в развитии микробиологии, химии и медицины. С производством этого антибиотика связано создание вначале довольно скромной, а затем весьма мощной антибиотической промышленности.

В течение ряда лет пенициллин получали путем выращивания гриба в стеклянных матрацах (бутыли для поверхностного выращивания гриба в любом месте) на жидкой питательной среде. Это создавало огромные трудности в поддержании стерильности при засевах каждого матраца и требовало большой затраты рабочей силы. Учитывая, что выход антибиотика составлял всего несколько десятков единиц на 1 мл среды, себестоимость пенициллина была чрезвычайно высокой. Так, например, стоимость 1 кг пенициллина в США, как отмечал в 1959 г. Гольдберг, составляла в 1943 г. 227 270 долларов, а в 1953 г. -- всего 169 долларов, т. е. за 10 лет стоимость 1 кг пенициллина снизилась более чем в 1340 раз.

Важным этапом в увеличении выхода пенициллина было изучение условий образования антибиотика.

Первая среда для глубинного образования пенициллина была разработана Мойером и Кохиллом в 1946 г., в ее состав входил кукурузный экстракт, лактоза, NaN03, глюкоза, однозамещенный фосфорнокислый калий и другие соли. Эта среда была основной, на ее базе были разработаны среды, используемые при промышленном производстве пенициллина.

Очень много труда было затрачено на выяснение того состава питательных сред, который обеспечивал бы наибольший выход пени-циллинов. Было подробно изучено значение различных источников углерода и азота, влияние микроэлементов и других факторов. Последний представляет собой побочный продукт производства крахмала из кукурузы. Его приготовляют экстракцией кукурузы теплой водой. Было найдено, что введение около 20 г крахмала на 1 л питательной среды резко ускоряет образование пенициллинов и увеличивает их выход. Правда, данных о широком применении последней пока не имеется.

Уже сравнительно давно было обнаружено, что введение в питательную среду небольших количеств фенилуксусной кислоты или ее амида приводит к значительному повышению выхода бензилпенициллина. Однако причины этого явления оставались неизвестными. Это утверждение было обосновано приводимыми ниже экспериментальными данными. Во-вторых, было выяснено, что введение в питательную среду различных соединений, содержащих замещенные фенильные остатки, ведет к образованию новых пенициллинов взлете, le1 При этом оказалось, что в ацильных радикалах последних всегда содержатся те фенильные остатки, которые имелись и в молекулах веществ, добавленных к питательной среде.

Натуральные (комплексные) среды, состоящие из природных соединений и имеющие неопределенный химический состав (части зеленых растений, животные ткани, солод, дрожжи, фрукты, овощи, навоз, почва и т. д.), содержат все компоненты, необходимые для роста и развития микроорганизмов большинства видов.[2] Используются следующие среды:

- мясопептонная среда, в состав которой одновременно с мясным экстрактом и пептоном входят хлорид натрия, фосфат калия, иногда глюкоза или сахароза; используется обычно в лабораторной практике.

- картофельные среды с глюкозой и пептоном, часто используемые в лаборатории для культивирования многих видов актиномицетов и бактерий;

- среды с кукурузным экстрактом, соевой мукой, бардой и другими веществами, в состав которых входят сульфат аммония, карбонат кальция, фосфаты, глюкоза, сахароза, лактоза или иные углеводы и ряд других соединений; среды успешно применяются в промышленности, т. к. являются дешевыми и обеспечивают хорошее развитие микроорганизмов с высоким выходом антибиотиков.

Продуцентами антибиотика пенициллина являются различные виды зеленой плесени (Penicillium). Продуценты пенициллина выделяют в питательную среду несколько близких по структуре антибиотиков (пенициллинов), отличающихся друг от друга по активности. Наибольшее практическое значение среди них имеет бензилпенициллин. В качестве лекарственных препаратов используются различные соли бензилпенициллина, которые обладают неодинаковой растворимостью в воде. Хорошо растворимые соли (натриевая и калиевая) являются препаратами короткого действия, а плохо растворимые (новокаиновая соль и бициллины) -- препаратами длительного, или пролонгированного, действия. В последние годы в практику внедрены препараты пенициллина, получаемые полусинтетическим путем, -- так называемые полусинтетические пенициллины (оксациллин, ампициллин и др.).[4]

4. Биохимическая роль

Пенициллины влияют на синтез клеточной стенки, а именно на синтез пептидогликана. Синтез пептидогликана (гликопептида) очень сложен, фактически он является одним из важнейших компонентов стенки - это арматура клеточной стенки. Подобное явление наблюдается при выращивании микроорганизмов в отсутствии незаменимых аминокислот, и прежде всего в отсутствии лизина или его предшественника - диаминопимелиновой кислоты. И, если в непрерывный синтез пептидогликана вмешивается в-лактамный антибиотик, то синтез пептидогликана нарушается.(рис А,Б)

Рисунки А,Б. -Г - N-ацетилглюкозамин; М- N-ацетилмурамовая кислота; ала - аланин; глу - глутаминовая кислота; лиз - лизин; ДАП - диаминопимелиновая кислота; глицирин. Стрелками обозначено место действия пенициллина.

Таким образом, основными компонентами клеточной стенки грамположительных эубактерий являются три типа макромолекул: пептидогликан, тейховые кислоты и полисахариды, которые с помощью ковалентных связей образуют сложную структуру с весьма упорядоченной пространственной организацией. В состав клеточной стенки эубактерий входят семь различных групп химических веществ, при этом пептидогликан присутствует только в клеточной стенке. Клеточная стенка цианобактерий, сходная с таковой грамотрицательных эубактерий, содержит от 20 до 50% этого гетерополимера.

Грамположительные бактерии отличаются от грамотрицательных большим (до 40 раз) содержанием муреина (пептидогликана) в клеточной стенке и отсутствием внешней мембраны. Клеточная стенка- это высокоорганизованная клеточная органелла является механически стабилизированной и противостоит высокому осмотическому давлению, которое составляет от 2 до 25 атм.

Следствием существенных различий структуры клеточной оболочки у грамположительных и грамотрицательных бактерий является получение разных образований под действием агентов, нарушающих синтез пептидогликана. Например, под действием пенициллина из грамположительных клеток образуется протопласт, не несущий оболочки, а из грамотрицательных - сферопласт, имеющий остатки оболочки на поверхности клетки. Клетки, утерявши клеточную стенку в результате мутации или разрушающего воздействия, называются также L-формами и могут существовать только в изотонических растворах.(рис.1)[21]

Рисунок 1. Действие пенициллина на клетки Staphylococcus aureus. А. Клетки до обработки пенициллином. Б. В результате воздействия пенициллина нарушается целостность клеточных, и они лопаются.

Вся эта скрепленная поперечными связями структура, окружающая клетку, называется муреином (от латинского слова murus - стенка) или пептидогликаном; второе название подчеркивает гибридную природу данной структуры, представляющей собой сочетание пептидных и полисахаридных элементов. Тянущийся непрерывно вдоль всей поверхности бактериальной клетки пептидогликан можно рассматривать как одну гигантскую мешковидную молекулу. У грамположительных бактерий (дающих окраску по Граму, т.е. при обработке красителем кристаллическим фиолетовым) пептидогликан образует вокруг клетки несколько концентрических слоев, пронизываемых другими макромолекулярными компонентами. Целостность клеточных стенок имеет жизненно важное значение для защиты, роста и деления бактерий.

5. Строение и свойства

Пенициллины представляют собой сложные соединения, содержащие в своих молекулах тиазолидиновое и в-лактамное кольцо. Их общая структура следущая(рис.2):

Рисунок 2

В представленной формуле радикал (R) может иметь различное строение. Поэтому известно большое число типов пенициллинов, отличающихся друг от друга лишь алкильными группами. Наиболее распространенными являются следующие типы пенициллинов, которые могут быть получены в процессе ферментации. В отсутствие эффективного предшественника тип образуемого пенициллина является функцией штамма гриба, и в этом случае, как правило, образуется смесь нескольких пенициллинов. Из природных пенициллинов наиболее изучен бензинпенициллин.

Антибиотик образует соли с различными катионами и другими веществами. Так, известны натриевая, калиевая, кальциевая, цинковая, новокаиновая, N,N'- дибензил-этилендиаминовая (бицилин-1) и другие соли бензилпенициллина. Неорганические соли хорошо растворимы в воде, метиловом и этиловом спиртах, но не растворимы в безводных ацетоне, эфире, хлороформе и различных сложных эфирах. Новокаиновая, N,N'- дибензил-этилендиаминовая соли плохо растворимы в воде, в связи с чем на практике их используют в виде суспензий. Чистые кристаллические соли пенициллинов достаточно устойчивы при хранении (не менее 3 лет при комнатной температуре). Натриевая соль, например, полностью разрушается лишь при нагревании в течении 30 мин при 200° С.[5]

Пенициллины в виде чистых кислот менее устойчивы, и только феноксиметилпенициллин отличается большой стабильностью из-за его низкой гигроскопичности (он сохраняется до 1 года при температуре ниже 37°). Его новокаиновая соль хорошо растворима в воде. Пенициллин неустойчив в присутствии ионов водорода и быстро изомеризуется в биологически неактивную пенилловую кислоту, имеющую следующее строение (рис.3):

Рисунок 3

Образование пенилловой кислоты при рН 2-3 завершается через 3-4 часа при комнатной температуре. Более устойчив в кислой среде феноксиметилпенициллин, который по этой причине применяется в виде свободной кислоты. Щелочная реакция среды тоже быстро инактивирует пенициллин. При комнатной температуре и рН 12,0 происходит разрыв в-лактамного кольца с образованием пенициллоиновой кислоты (рис.4):

Рисунок 4

Названный продукт щелочного гидролиза не обладает антимикробной активностью и не представляет интереса с практической точки зрения. Отсюда следует, что необходимо остерегаться хранить пенициллин при рН выше 8,0. В названной реакции отрицательную роль могут играть катионы цинка, меди и других металлов. [2]

Пенициллоиновая кислота также образуется при действии фермента пенициллиназы, продуцируемого различными грамположительными и грамотрицательными бактериями. Реакция ферментативного гидролиза протекает достаточно быстро при комнатной температуре и при нейтральной реакции среды. Пенициллин инактивируется и при взаимодействии с первичными и вторичными спиртами. Об этом следует помнить при использовании в виде растворителей метанола и этанола (рис.5):

Рисунок 5

В этих реакциях катионы тяжелых металлов также проявляют себя эффективными катализаторами. Появление все большего числа искусственно резистентных штаммов микроорганизмов к пенициллину стимулировало работы по созданию активных полусинтетических пенициллинов. В качестве продукта биосинтеза пенициллина в 1959 г. была выделена 6-аминопенициллановая кислота (6-АПК) (рис.6):

Рисунок 6

6. Механизм биологического действия

Антибиотики пенициллиновой группы являются специфическими ингибиторами биосинтеза клеточной стенки, а избирательность их действия на бактериальную клетку определяется некоторыми особенностями строения клеточной стенки бактерий по сравнению с животной. Оболочка бактериальной клетки характеризуется жесткой структурой, обеспечивающей постоянство ее формы и защищающей от неблагоприятных воздействий внешней среды.

Под влиянием бактериостатических концентраций антибиотика растущие клетки перестают делиться, резко изменяется их морфология. Микробы значительно увеличиваются, набухают или принимают удлиненную форму. Измененные клетки распадаются с образованием мелких частиц и погибают. Наблюдается изменение физических свойств бактериальных клеток: меняется заряд, электрофоретическая подвижность, окислительно-восстановительный потенциал и др. Ослабляется интенсивность окраски по Граму.

В основе антибактериального действия пенициллина лежит подавление синтеза муреина -- опорного полимера клеточной стенки. Клеточная стенка микробов синтезируется в три стадии, включающие: синтез предшественников клеточной оболочки -- уридиннуклеотидов, утилизацию их и других субстратов с введением в растущий муреин оболочки; образование поперечных связей между линейными цепями муреина, осуществляемое посредством реакции транспептидации, в результате чего две линейные цепи муреина связываются между собой при помощи межпептидного мостика с отщеплением D-аланина. Реакция транспептидации управляется специфическим энзимом -- транспептидазой, локализованной на наружной поверхности цитоплазматической мембраны. Пенициллин тормозит последнюю стадию синтеза клеточной стенки, предотвращая образование пептидных поперечных связей. Благодаря структурному сходству пенициллина с пептидным субстратом клеточной стенки антибиотик конкурирует с ним за активный центр транспептида- зы. Взаимодействие молекулы пенициллина с активным центром фермента сопровождается образованием ковалентной связи и пенициллоильного производного, реакция рассматривается как необратимая, а активный центр фермента прочно блокируется.[7]

Пенициллин проявляет антибактериальное действие в период активного роста бактерий. Наиболее сильно оно выражено в фазе логарифмического роста. Морфологическим выражением этого эффекта является прекращение деления клеток, их увеличение, возникновение гигантских форм, набухание или удлинение. Измененные клетки локализируются и погибают.

Пенициллин действует бактерицидно в среде, поддерживающей размножение микробов. Размножающиеся клетки гибнут под воздействием антибиотика из-за несбалансированного роста вследствие того, что для растущей цитоплазмы «не хватает» клеточной стенки, образование которой прекращено пенициллином. Одна цитоплазматическая мембрана не является надежной защитой против вне- и внутриклеточных различий осмотического давления и не в состоянии выполнить функции цитоплазматического барьера. Лизис клетки наступает тем быстрее, чем быстрее идет синтез цитоплазмы на фоне прекратившегося синтеза клеточной оболочки. Утверждение, что пенициллин не действует на метаболизм не размножающихся микробов, является не совсем точным. Наличие в среде источника энергии и набора аминокислот, входящих в состав муреина, обеспечивает синтез основной структуры клеточной стенки, но не белков цитоплазмы. Клетки не делятся, но чувствительный к пенициллину процесс в них идет, антибиотик лишь тормозит его, что, однако, не сопровождается гибелью клетки. Пенициллин резко нарушает обменные процессы в чувствительных к нему микроорганизмах. Установлено его тормозящее действие на обмен нуклеиновых кислот, окислительное дезаминирование аминокислот, обмен пептидов и др. Однако большинство этих нарушений связано с началом лизиса клетки и не является результатом первичного действия антибиотика на метаболизм микробов. Избирательность действия бензилпенициллина преимущественно на грамположительные микроорганизмы объясняется различиями, существующими в строении их клеточной стенки и стенки грамотрицательных бактерий. Несмотря на массивность клеточной стенки грамположительных микробов, она свободно проницаема для таких небольших молекул.

Фармакокинетика

Бензилпенициллин, карбоксипенициллины и уреидопенициллины в значительной степени разрушаются под влиянием соляной кислоты желудочного сока, поэтому применяются только парентерально. Феноксиметилпенициллин, оксациллин и аминопенициллины более кислотоустойчивы и могут назначаться внутрь. Наилучшим всасыванием в ЖКТ характеризуется амоксициллин (75% и более). Наиболее высокую степень всасывания (93%) имеют специальные растворимые таблетки (флемоксин солютаб). Биодоступность амоксициллина не зависит от приема пищи. Всасывание феноксиметилпенициллина составляет 40-60% (при приеме натощак концентрации в крови несколько выше). Хуже всасываются ампициллин (35-40%) и оксациллин (25-30%), причем пища значительно уменьшает их биодоступность. Всасывание ингибитора в-лактамаз клавуланата составляет 75% и под влиянием пищи может несколько увеличиваться.[9]

Бензилпенициллин прокаин и бензатин бензилпенициллин вводятся только в/м. Медленно всасываясь из места инъекции, создают более низкие, по сравнению с натриевой и калиевой солями бензилпенициллина, концентрации в сыворотке крови. Оказывают пролонгированное действие (объединяются под названием "депо-пенициллины"). Терапевтические уровни бензилпенициллин прокаина в крови сохраняются в течение 18-24 ч, а бензатин бензилпенициллина - до 2-4 недель.

Пенициллины распределяются во многих органах, тканях и биологических жидкостях. Создают высокие концентрации в легких, почках, слизистой оболочке кишечника, репродуктивных органах, костях, плевральной и перитонеальной жидкости. Наиболее высокие концентрации в желчи характерны для уреидопенициллинов. В небольших количествах проходят через плаценту и проникают в грудное молоко. Плохо проходят через ГЭБ и гематоофтальмический барьер, а также в предстательную железу. При воспалении оболочек мозга проницаемость через ГЭБ увеличивается. Распределение ингибиторов в-лактамаз существенно не отличается от такового для пенициллинов.

Клинически значимой биотрансформации в печени могут подвергаться оксациллин (до 45%) и уреидопенициллины (до 30%). Другие пенициллины практически не метаболизируются и выводятся из организма в неизмененном виде. Среди ингибиторов в-лактамаз наиболее интенсивно метаболизируется клавуланат (около 50%), в меньшей степени - сульбактам (около 25%), еще слабее - тазобактам.

Большинство пенициллинов экскретируется почками. Их период полувыведения составляет в среднем около 1 ч (кроме "депо-пенициллинов") и значительно возрастает при почечной недостаточности. Оксациллин и уреидопенициллины имеют двойной путь выведения - почками и через билиарную систему. Их период полувыведения в меньшей степени изменяется при нарушении функции почек.

Нежелательные реакции

Аллергические реакции: крапивница, сыпь, отек Квинке, лихорадка, эозинофилия, бронхоспазм, анафилактический шок (чаще при использовании бензилпенициллина). Меры помощи при развитии анафилактического шока: обеспечение проходимости дыхательных путей (при необходимости интубация), оксигенотерапия, адреналин, глюкокортикоиды.

ЦНС: головная боль, тремор, судороги (чаще у детей и у пациентов с почечной недостаточностью при применении карбенициллина или очень больших доз бензилпенициллина); психические расстройства (при введении больших доз бензилпенициллин прокаина).

ЖКТ: боль в животе, тошнота, рвота, диарея, псевдомембранозный колит (чаще при использовании ампициллина и ингибиторозащищенных пенициллинов). При подозрении на псевдомембранозный колит (появление жидкого стула с примесью крови) необходимо отменить препарат и провести ректороманоскопическое исследование. Меры помощи: восстановление водно-электролитного баланса, при необходимости внутрь применяют антибиотики, активные в отношении C. difficile (метронидазол или ванкомицин). Нельзя использовать лоперамид.

Нарушения электролитного баланса: гиперкалиемия (при использовании больших доз бензилпенициллина калиевой соли у больных с почечной недостаточностью, а также при сочетании ее с калийсберегающими диуретиками, препаратами калия или ингибиторами АПФ); гипернатриемия (чаще при применении карбенициллина, реже - уреидопенициллинов и больших доз бензилпенициллина натриевой соли), которая может сопровождаться появлением или усилением отеков (у пациентов с сердечной недостаточностью), повышением АД.

Местные реакции: болезненность и инфильтрат при в/м введении (особенно бензилпенициллина калиевой соли), флебит при в/в введении (чаще при использовании карбенициллина).

Печень: повышение активности трансаминаз, может сопровождаться лихорадкой, тошнотой, рвотой (чаще при использовании оксациллина в дозах более 6 г/сут или ингибиторозащищенных пенициллинов).

Гематологические реакции: понижение уровня гемоглобина, нейтропения (чаще при использовании оксациллина); нарушение агрегации тромбоцитов, иногда с тромбоцитопенией (при применении карбенициллина, реже - уреидопенициллинов).

Почки: транзиторная гематурия у детей (чаще при использовании оксациллина); интерстициальный нефрит (очень редко).

Сосудистые осложнения (вызываются бензилпенициллин прокаином и бензатин бензилпенициллином): синдром Онэ - ишемия и гангрена конечностей при введении в артерию; синдром Николау - эмболия сосудов легких и головного мозга при введении в вену. Меры профилактики: введение строго в/м в верхний наружный квадрант ягодицы, пациент во время инъекции должен находиться в горизонтальном

Другие: неаллергическая ("ампициллиновая") макулопапулезная сыпь, которая не сопровождается зудом и может исчезнуть без отмены препарата (при использовании аминопенициллинов).

Кандидоз полости рта и/или вагинальный кандидоз (при применении амино-, карбокси-, уреидо - и ингибиторозащищенных пенициллинов).

Лекарственные взаимодействия

Пенициллины нельзя смешивать в одном шприце или в одной инфузионной системе с аминогликозидами ввиду их физико-химической несовместимости.

При сочетании ампициллина с аллопуринолом возрастает риск "ампициллиновой" сыпи.

Применение высоких доз бензилпенициллина калиевой соли в сочетании с калийсберегающими диуретиками, препаратами калия или ингибиторами АПФ предопределяет повышенный риск гиперкалиемии.

Требуется соблюдать осторожность при сочетании пенициллинов, активных в отношении синегнойной палочки, с антикоагулянтами и антиагрегантами ввиду потенциального риска повышенной кровоточивости. Не рекомендуется сочетать с тромболитиками.

Следует избегать применения пенициллинов в сочетании с сульфаниламидами, так как при этом возможно ослабление их бактерицидного эффекта. Холестирамин связывает пенициллины в ЖКТ и уменьшает их биодоступность при приеме внутрь.

Пероральные пенициллины могут понижать эффективность пероральных контрацептивов за счет нарушения энтерогепатической циркуляции эстрогенов. Пенициллины способны замедлять выведение из организма метотрексата за счет ингибирования его канальцевой секреции.

7. Методы получения

7.1 Аппаратурно-технологическая схема получения пенициллина. Ферментаторы

а Подготовка инокулята

Подготовка посевного материала включает следующие стадии:

1) выращивание посевного мицелия 1-й генерации в аппаратах малой емкости (инокуляторах);

2) выращивание посевного мицелия 2-й генерации в аппаратах большой емкости.

Споровая культура, используемая для засева инокулятора, выращивается на пшене в стеклянных флаконах, высушивается и в таком виде хранится при комнатной температуре. Засев производят сухими спорами из 2-3 флаконов.

Основной задачей при культивировании продуцента пенициллина в посевных аппаратах на стадии подготовки инокулята является быстрое получение большой массы мицелия, способного обеспечить при пересеве в ферментер интенсивный рост и высокий выход антибиотика. Для осуществления этой задачи продуцент необходимо выращивать на средах, богатых легкоусвояемыми питательными веществами, в условиях хорошей аэрации, при оптимальной для роста микроорганизма температуре.

б Процесс ферментации

Ферментация является основной стадией в производстве пенициллина, на которой формируется целевой продукт. В промышленности применяется метод глубинной ферментации, при котором культура микроорганизма выращивается в питательной среде, заполняя весь ее объем. У различных штаммов потребность в источниках питания неодинакова. В связи с этим состав сред не является постоянным и универсальным для всех продуцентов, образующих пенициллин, и меняется с появлением новых штаммов.

Ферментационная среда должна быть составлена таким образом, чтобы развивающаяся культура, потребляя питательные вещества и выделяя продукты обмена, сама создавала необходимые условия и осуществляла переход от фазы роста мицелия к фазе пенициллин образования. Желательно, чтобы вторая фаза была более продолжительной и чтобы процесс ферментации прекращался до наступления автолиза.

Для этого, как и при выращивании посевного материала необходимо одновременное присутствие в среде как легко-, так и трудноусвояемого углевода. Легкоусвояемый углевод обеспечивает быстрый рост и образование обильной биомассы; трудноусвояемый углевод создает условия, благоприятные для биосинтеза антибиотика.

Исключительно важную роль в обмене веществ клетки играет фосфор, который необходим не только для нормального роста и развития гриба, но и для осуществления самого процесса биосинтеза пенициллина. Для образования пенициллина требуется значительно более высокая концентрация фосфора в среде, чем для роста гриба.

Обязательным компонентом ферментационной среды является сера, входящая в состав важнейших аминокислот и ферментов. Сера необходима еще и потому, что она входит в состав молекулы пенициллина. В питательные среды сера вносится в виде солей серной кислоты и гипосульфита.

Из других элементов, необходимых для нормальной жизнедеятельности гриба и образования антибиотика, следует отметить калий, магний, цинк, железо, марганец, медь.

Установкой для этапа ферментации является обычный ферментер. Он представляет собой закрытый цилиндрический резервуар, в котором механически перемешиваются среда и микроорганизмы. Через среду прокачивают воздух, иногда насыщенный кислородом. Температура регулируется с помощью воды или пара, пропускаемых по трубкам теплообменника. Такой ферментер с перемешиванием используется в тех случаях, когда ферментативный процесс требует много кислорода.(рис.7)

Рисунок 7. Ферментер

1 -- корпус; 2 -- паровая рубашка; 3 -- барботёр; 4 -- мешалка; 5 -- отбойник; 6 -- электропривод; 7 -- загрузочный люк

Уровень качества оборудования непосредственно влияет на эффективность его эксплуатации. Учитывая ключевое место ферментеров в технологической цепочке, их качество определяет эффективность всего производственного процесса. Если качество низкое, то резко возрастают простои оборудования в связи с ремонтом, последующей наладкой, ревалидацией, очисткой и стерилизацией. В сложных случаях, например, при выходе из строя важных узлов и деталей ферментера, которые требуется закупать у поставщика, их ожидание может затянуться на месяцы.

Соответствие требованиям GMP , как важного показателя качества, исключительно важно. Причем, оно должно быть не по отдельным элементам, а концептуальным. Это должно быть и соответствие требованиям GMP всех материалов, контактирующих с продуктом, и применение автоматической мойки и стерилизации на месте ( CIP / SIP ), и валидируемость ( IQ / OQ ), и документирование процесса ферментации, и многое другое.

в Фильтрация

Обычно для отделения мицелия от культуральной жидкости применяют вакуум-барабанные фильтры непрерывного действия. Фильтрацию начинают до начала автолиза мицелия, поскольку при фильтрации автолизированной культуры мицелий не образует плотной пленки на фильтрующей поверхности барабана, а налипает в виде отдельных тонких комков, которые сами не отходят в зоне «отдувки» фильтра, и их приходится удалять вручную. При этом продолжительность фильтрации увеличивается в 2 - 3 раза, выход фильтрата резко падает, а сам фильтрат получается очень мутным.

Необходимо тщательно соблюдать условия, препятствующие разрушению пенициллина во время фильтрации, - охлаждение нативного раствора до 4-6°С и систематическая (после каждой загрузки) обработка фильтра, коммуникаций и сборников антисептиками, например хлорамином. Фильтр также должен систематически стерилизоваться острым паром.

г Предварительная обработка нативного раствора

Нативный раствор (фильтрат культуральной жидкости) представляет собой более или менее мутную, окрашенную в желто-коричневый или зеленовато-коричневый цвет жидкость. Величина рН среды в зависимости от штамма продуцента, состава среды и продолжительности процесса ферментации обычно колеблется от 6,2 до 8,2.

Очень важной характеристикой нативного раствора является содержание в нем белковых веществ, определяемых осаждением трихлоруксусной кислотой или другим соответствующим методом.

Применяется несколько способов предварительной обработки нативного раствора с целью освобождения от белковых примесей: осаждение солями многовалентных металлов (например, А13+ Fе3+ или Zn2+), коагуляция танином, термическая коагуляция при температуре 60-75°С и рН 5,5 - 6,0, осаждение примесей катионными детергентами типа четвертичных аммониевых оснований (например, цетилпиридиний-бромидом или додецилтриметиламмонийхлоридом и т.п.). Применение этих методов приводит к потерям антибиотика. Обычно в результате коагуляции и последующей фильтрации или сепарирования теряется от 5 до 15%) пенициллина. При этом коагуляция солями металлов позволяет удалять не более 50% общего количества белковых веществ.

д Экстракция и очистка пенициллина

Нативный раствор содержит 3-6% сухих веществ. На минеральные вещества приходится 30-40% сухого остатка, от 15 до 30% приходится на пенициллин, а остальное представляет сложную смесь органических веществ, включая белки, полипептиды, низкомолекулярные азотистые соединения, углеводы, различные органические кислоты и, в зависимости от штамма продуцента, то или иное количество пигмента. Для выделения пенициллина из этой сложной смеси можно пользоваться методами, основанными на адсорбции, экстракции или осаждении.

В промышленности извлечение активного вещества из нативного раствора основано на экстракции не смешивающимся с водой растворителем при подавленной диссоциации карбоксильной группы пенициллина. В растворитель, кроме пенициллина, переходит большая часть органических кислот. Минеральные загрязнения, большая часть азотистых соединений и других органических веществ остаются в водной фазе, так что в результате экстракции чистота продукта увеличивается в 4-6 раз.

К растворителям, применяемым для экстракции пенициллина, предъявляются следующие основные требования:

1) малая растворимость в воде;

2) отсутствие взаимодействия с пенициллином;

3) низкая упругость пара при температуре 5--30°С;

4) возможность регенерации при температуре не выше 120 -- 140°;

5) низкая стоимость.

С учетом этих и ряда других показателей основными растворителями-экстрагентами были приняты бутилацетат и амилацетат.

При экстракции пенициллина из нативного раствора образуются весьма стойкие, трудноразделяемые эмульсин, что обусловлено наличием в нативном растворе поверхностно-активных веществ. Это требует применения специальных дезэмульгаторов. Обычно для этой цели применяют анионные детергенты, например сульфированные жирные или нафтеновые кислоты. Обычно выбор детергента определяется его доступностью и экономическими соображениями. Для разделения эмульсии в экстракторах-сепараторах, как правило, достаточно добавлять к нативному раствору 0,05--0,1% детергента.

На стадии экстракции пенициллина из нативного раствора используются либо многоступенчатые экстракторы-сепараторы типа «Лувеста» и «Россия», либо двухступенчатая схема экстрагирования (контактирование подкисленного нативного раствора с бутилацетатом в специальных смесителях и разделение эмульсии на центробежных сепараторах типа САЖ-3).

Для дальнейшей очистки пенициллин извлекают из буферного экстракта органическим растворителем (чаще всего бутилацетатом или хлороформом) при рН 2,0. Процесс ведется аналогично бутилацетатной экстракции из нативного раствора. Эта стадия технологически оформляется также с применением многоступенчатых экстракционных машин или осуществляется в виде двухступенчатой противоточной экстракции с разделением фаз на сепараторах. Выход составляет около 86% от количества пенициллина, содержащегося в нативном растворе.

Весь экстракционный процесс извлечения и химической очистки пенициллина проводится по непрерывной схеме.

е Выделение кристаллических солей пенициллина

Наиболее надежным методом, обеспечивающим получение кристаллического пенициллина хорошего качества, является выделение бензилпенициллина из бутилацетатного экстракта в виде концентрированного водного раствора калиевой соли с последующим упариванием воды с бутанолом под вакуумом, что приводит к кристаллизации калиевой соли из бутилового спирта.

Важнейшим требованием, предъявляемым к получаемому сухому порошку пенициллина, является его полная стерильность. Термическая обработка препарата недостаточна. Стерильность может быть обеспечена лишь при проведении заключительных стадий процесса в строго асептических условиях, исключающих возможность заражения продукта микроорганизмами и их спорами. Поэтому, начиная со стерилизующей фильтрации концентрата и бутанола, все операции проводятся в изолированных стерильных помещениях и в стерильной аппаратуре. Для обеспечения условий асептики осуществляется весь комплекс необходимых санитарных и технологических мероприятий.

Перед регенерацией бутилацетат и бутанол, применяемые в процессе выделения и химической очистке пенициллина, промывают раствором щелочей для удаления примесей кислот (продуктов инактивации пенициллина, фенилуксусной кислоты).

ж Экологические вопросы производства

Основные отходы, образующиеся в результате выделения и химической очистки антибиотиков, следующие: отработанные нативные растворы, водные маточные и промывные растворы, водные растворы кислот и щелочей после регенерации ионообменных смол, отработанный активированный уголь, кубовые остатки после регенерации растворителей. В этих отходах вредную долю составляют антибиотики и продукты их деструкции, а также органические растворители.

Принципиальные задачи совершенствования технологии получения антибиотиков из нативных растворов с точки зрения сокращения отходов производства заключаются в повышении выхода целевых продуктов и тем самым снижении потерь антибиотика, снижении расходов сырья на стадиях и повышении эффективности регенерации органических растворителей.

Существенное снижение потерь антибиотиков в процессе их выделения может быть достигнуто путем решения комплекса задач: усовершенствование процесса ферментации с целью повышения качества культуральных жидкостей; проведение эффективной очистки нативных растворов от примесей, затрудняющих процессы выделения антибиотиков; сокращение числа технологических стадий; уменьшение длительности процессов; использование эффективного высокопроизводительного оборудования.

Так, применение эффективной очистки и подготовки нативных растворов пенициллина позволяет повысить концентрацию перерабатываемых нативных растворов на 30-40% и открывает возможность применить сокращенную схему экстракционной очистки антибиотика, что снижает примерно вдвое расход бутилацетата при экстракции и активированного угля на очистку экстракта. При этом достигается уменьшение потерь антибиотика на 15-30%, что соответственно снижает количество поступающих в отходы антибиотика и продуктов деструкции.

Одной из важнейших проблем производства антибиотиков является утилизация и обезвреживание мицелиальных отходов. Мицелиальные отходы образуются в результате отделения жидкой фазы культуральной жидкости.

Часть образующихся мицелиальных отходов утилизируется в сельском хозяйстве. Это мицелиальные массы продуцентов пенициллина, тетрациклина и хлортетрациклина. Применение мицелиальных отходов для кормления крупного рогатого скота увеличивает среднесуточные привесы на 16-58%. Расход кормов при этом снижается на 10-30%.

Однако более двух третей образующегося мицелия утилизируется в отвалы, систему сточных вод или сжигается, что нельзя назвать приемлемым как с позиции загрязнения почв и загрузки очистных сооружений, так и с точки зрения нерационального к этому типу отходов, содержащих достаточное количество ценных веществ.

Основные газовые выбросы в атмосферу предприятий по производству антибиотиков, содержащие вредные вещества, включают, кроме воздушных выбросов общеобменной и местной вентиляции, технологические воздушные выбросы при биосинтезе антибиотиков, выбросы котельных и некоторых других вспомогательных производств. Различными способами очистки обеспечивается улавливание около 60% вредных веществ, отходящих от всех источников загрязнения.

Газообразные вредные вещества состоят в основном из окиси углерода (77,4%), сернистого газа (15,2%) и окислов азота (7,4%).

К специфическим для производства антибиотиков жидким и газообразным продуктам относятся пары органических растворителей, составляющие 24,3% от общей суммы выбрасываемых веществ.

Кроме того, в воздушных выбросах присутствует целый ряд примесей паров различных веществ, составляющих 0,4% от общей суммы выбрасываемых в атмосферу жидких и газообразных продуктов. Среди них преобладает хлористый водород, пары соляной кислоты, формальдегид и трикрезол.

Неспецифические для производства антибиотиков твердые вещества в выбросах улавливаются газопылеочистными установками на 90%, газообразные выбросы котельных рассеиваются с помощью высоких труб. Специфические для производства антибиотиков твердые веществ из воздушных выбросов на 92,5%, органические растворители - на 10%, обезвреживается 5,4% от объема воздушных выбросов при биосинтезе антибиотиков.[15]

7.2 природные пенициллины

Природные пенициллины образуются в процессе роста Penicillium определенных видов и некоторых других грибов. В культуральной жидкости продуцента обычно содержится несколько пенициллинов, обладающих сходным химическим строением и биологическими свойствами, отличающихся лишь радикалом (R) в боковой цепи. Среди природных пенициллинов наиболее изучены следующие: пенициллин G, пенициллин F, дигидропенициллнн F, пенициллин К, пенициллин X. Основой молекулы всех пенициллинов является сложное гетероциклическое соединение -- 6-аминопенициллановая кислота (6-АПК) (рис.8), состоящая из двух колец: тиазолидинового и в-лактамного

Рисунок 8

Несмотря на сходство физических, химических и биологических свойств, с практической точки зрения природные пенициллины неравноценны. Наибольшую ценность, среди них представляет бензилпенициллин (пенициллин G), наименьшую--п-гептилпенициллин (пенициллин К), инактивирующийся в организме значительно быстрее других пенициллинов.

Путем добавления в питательную среду веществ, используемых грибом для построения ацильных радикалов молекулы пенициллина удается изменить процесс биосинтеза, направив его в сторону образования практически наиболее ценного антибиотика. Выпускаемый в настоящее время промышленностью препарат содержит в основном бензилпенициллин.

Возможности направленного биосинтеза были использованы при получении биосинтетических пенициллинов, отличающихся от бензилпе- нициллина по некоторым биологическим свойствам. Среди многочисленных биосинтетических пенициллинов практическое значение имеет феноксиметилпенициллин (пенициллин V), который значительно более устойчив в кислой среде, чем остальные пенициллины.


Подобные документы

  • История открытия пенициллина. Классификация антибиотиков, их фармакологические, химиотерапевтические свойства. Технологический процесс получения антибиотиков. Устойчивость бактерий к антибиотикам. Механизм действия левомицетина, макролидов, тетрациклинов.

    реферат [54,1 K], добавлен 24.04.2013

  • Источники получения антибиотиков, их классификация по направленности и механизму фармакологического действия. Причины резистентности к антибиотикам, принципы рациональной антибиотикотерапии. Бактерицидные свойства пенициллина, его побочные эффекты.

    презентация [408,9 K], добавлен 16.11.2011

  • Разработка и производство антибиотиков, хронология изобретений. История открытия пенициллина и его целебного воздействия при различных инфекционных болезнях. Бактериостатические и бактерицидные антибиотики, их свойства и применение; побочные действия.

    презентация [354,6 K], добавлен 18.12.2016

  • Первооткрыватели антибиотиков. Распространение антибиотиков в природе. Роль антибиотиков в естественных микробиоценозах. Действие бактериостатических антибиотиков. Устойчивость бактерий к антибиотикам. Физические свойства антибиотиков, их классификация.

    презентация [3,0 M], добавлен 18.03.2012

  • Общая характеристика антибиотиков и особенности их получения. Схема производства пенициллина. Использование рДНК-биотехнологии. Применение антибиотиков в пищевой промышленности и сельском хозяйстве. Классификация антибиотиков по штаммам-продуцентам.

    презентация [488,1 K], добавлен 04.12.2015

  • Открытие одного из первых антибиотиков - пенициллина, спасшего не один десяток жизней. Оценка состояния медицины до пенициллина. Плесень как микроскопический грибок. Очистка и массовое производство пенициллина. Показания для применения пенициллина.

    презентация [438,5 K], добавлен 25.03.2015

  • Общая характеристика лекарственных препаратов пенициллинов. Роль пеницилллинов в современной клинической практике. Фармацевтический анализ препаратов пенициллинов. Идентификация препаратов пенициллинов. Методы количественного определения препаратов.

    курсовая работа [23,4 K], добавлен 14.12.2007

  • Общая характеристика антибиотиков - химиотерапевтических веществ, полученных из микроорганизмов или иных природных источников, обладающих способностью подавлять в организме больного возбудителей заболеваний. Технологическая схема производства пенициллина.

    курсовая работа [404,8 K], добавлен 19.12.2010

  • Микробиологическое исследование антибиотиков: пенициллина, стрептомицина, тетрациклина, левомицетина, эритромицина, неомицина и грамицидина. Химические и физико-химические методы определения антибиотиков: оптические, спектрофотометрия и полярография.

    курсовая работа [51,4 K], добавлен 09.03.2012

  • Биологическая активность антибиотиков, применяемых в современной химиотерапии. Классификация антибиотиков по спектру биологических действий. Отличительные свойства новых бетта-лактамных антибиотиков. Бактериальные осложнения при ВИЧ-инфекции, их лечение.

    реферат [22,5 K], добавлен 21.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.