Полімери медичного призначення
Здатність окремих органів тіла відновлюватися при різних травмах, пораненнях. Полімери медичного призначення. Класифікація і вимоги до медичних полімерів та сфери їх використання. Механізми використання медичних матеріалів в біологічних системах.
Рубрика | Медицина |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 24.06.2008 |
Размер файла | 79,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Класичними полімерами, що знайшли широке застосування в медицині як основний компонент перев'язочних засобів, є целюлоза й інші похідні полісахаридів. Сучасні покриття з полісахаридним абсорбентом, по суті, являють собою вдосконалені ватно-марлеві пов'язки, що мають поглинальну здатність до 3400 % води. Їхня низька вартість, гарна повітропроникність, простота стерилізації й інші переваги обумовлюють широке поширення таких перев'язочних матеріалів. Серйозним недоліком такого роду покриттів є те, що вони прилипають до рани і їхнє видалення ускладнюється настільки, що часто вимагає хірургічного втручання. У результаті процедура зміни пов'язки стає болючою та складною процедурою, а головне, при цьому відбувається травмування прилягаючих тканин. Зараз створені полімерні покриття, що не прилипають, принцип конструювання яких полягає в тім, що поверхня целюлозного або синтетичного абсорбенту, звернена до рани, покрита тонкою плівкою гідрофобного полімеру. Для того щоб пов'язка не втратила сорбуючу здатність, плівку звичайно перфорують або замість плівки застосовують сітку. Але й такі матеріали не позбавлені від недоліків. Маючи знижену швидкість всмоктування через гідрофобну поверхню й не прилягаючи щільно до рани, вони тим самим не перешкоджають скупченню під пов'язкою виділень, що викликають розвиток інфекції. У зв'язку із цим заслуговують на увагу покриття на основі природних або синтетичних полімерів, які або не мають потреби у видаленні й залишаються на рані до повного розсмоктування полімеру, або можуть бути безболісно вилучені, наприклад розчиненням у воді. Такі властивості мають полісахариди (натрієва сіль карбоксиметилцелюлози, амілоза, декстран), колаген. Загальною властивістю перерахованих матеріалів є висока гідрофільність (вони здатні поглинати до 5000% води), гарна адгезія до рани, відсутність токсичності, а також гемостатичні властивості, що дозволяють застосовувати подібні матеріали для швидкої зупинки кровотечі.
Для виготовлення штучної шкіри використовують спеціальну поліуретанову плівку, на поверхню якої нанесений шар клеючої речовини. Вона застосовується для заліковування пролежнів, закриття хірургічних розрізів і ран при пересадках шкіри (як на опіках, так і на донорських ділянках). Плівка газопроникна й лише незначно обмежує рухливість хворого, тому що може розтягуватися приблизно в 5 разів. Крім того, вона прозора, що дозволяє перевіряти стан рани, не знімаючи пов'язки. Покриття рани такою плівкою скорочує час загоєння майже на 40 %, роблячи операцію безболісною, оскільки збереження в рані рідини сприяє підтримці в ній постійної концентрації іонів натрію й калію, підвищення якої є причиною запалення нервових закінчень.
Спеціально для лікування опіків призначений багатошаровий матеріал, що представляє собою полідиметилсилоксанову мембрану у яку включена тонка поліамідна сітка, а нижня поверхня мембрани покрита високочистим колагеном. Застосування таких покриттів дозволяє рятувати людей, у яких обпалено до 85 % загальної поверхні тіла. Ще зовсім недавно опік 65 % поверхні тіла вважався смертельним.
Крім полімерних матеріалів для створення штучних органів використовують також і вирощені у спеціальних умовах живі клітини, які згодом трансплантують у організм хворого. Створення штучних органів і тканин оформилося в самостійну галузь науки біля десяти років тому. Перші досягнення цього напрямку - створення штучної шкіри й хрящової тканини, зразки яких уже проходять перші клінічні випробування в центрах трансплантації. Одне з останніх досягнень полягає в конструюванні хрящової тканини, здатної до активної регенерації. Це дійсно величезний успіх, оскільки ушкоджена суглобна тканина не регенерує в організмі. У клініках США щорічно оперують більше 500 тис. хворих з ушкодженнями суглобного хряща, але подібне хірургічне втручання лише на короткий час полегшує біль і поліпшує рух в суглобі. Учені з Ґетеборзького університету у Швеції екстрагували хондроцити (клітки хряща) із суглобів 23 пацієнтів, виростили культуру кліток, що утворила хрящову тканину, а потім імплантували її в ушкоджений колінний суглоб. Результат виявився чудовим: в 14 з 16 пацієнтів було відзначено практично повне заміщення ушкодженого хряща новою тканиною в місці її імплантації. Вирощування хрящової тканини займає, на жаль, багато часу - кілька тижнів, тому вчені намагаються розробити методики більше швидкого одержання штучних тканин. Наприклад, група експериментаторів з біотехнологічної компанії “Organogenesis” провела вирощування плівки штучної шкіри на матриці із природного колагену, що дозволяє практично відразу використати цю нову тканину в клініці. При клінічному випробуванні нового шкірного трансплантата було показано, що він поліпшує (не менш чим на 60% у порівнянні зі звичайними матеріалами) загоєння венозних ран і шкірних ушкоджень. Однак шкіра й хрящ - тканини, що складаються з одного або двох типів клітин, і вимоги до структури основи, призначеної для їхнього вирощування в штучних умовах, відносно невисокі.
З багатьма ж іншими органами справа набагато складніша. У цей час проводяться спроби вирощування в лабораторних умовах печінки. Але печінка - складно влаштований орган, що складається з різних типів клітин, що забезпечують очищення крові від токсинів, перетворення поживних речовин, що надійшли, у засвоювану організмом форму й виконує цілий ряд інших функцій. Тому створення штучної печінки вимагає набагато більш складної технології: всі ці різноманітні типи клітин повинні бути розміщені строго певним чином, тобто основа, на якій вони базуються, повинна мати високу вибірковість.
Із цією метою на таку синтетичну основу наносяться молекули, що володіють властивостями клітинної. Історія створення такої підкладки для кліток печінки може служити ілюстрацією переваг комбінованої технології. Наприклад, дослідникам з Массачусетского технологічного інституту вдалося створити підкладку, на якій закріплюються тільки клетки-гепатоцити. Добре відомо, що клітки цього типу виконують в організмі більше метаболічних функцій, чим будь-які інші. Однієї з таких функцій є видалення із кровотоку ушкоджених білків. Дослідники синтезували молекули з такою послідовністю ланок й “прикріпили” їх до штучного полиакриламидному полімеру. Згодом виявилося, що поліакриламід не може служити матеріалом для штучної печінки, оскільки викликає сильну імунну реакцію з боку організму. Необхідно було шукати якийсь інший полімер, який би не відторгався організмом, але при цьому й не адсорбував різні білки. Зрештою старання вчених увінчалися певним успіхом. Їм удалося синтезувати сітчасту підкладку з поліетиленоксиду, яка не має імунної реакції й не адсорбує білки. Таким чином, ученим пощастило вирішити одну із самих більших проблем у створенні штучних органів: сконструювати високоспецифічний клітинний акцептор. Наступним етапом стало формування тривимірної структури сітчастої підкладки. Здорова печінка складається з маси кліток, пронизаних складною мережею кровоносних судин. Для нормальної роботи печінки різні типи кліток повинні бути розташовані по відношенню друг до друга в певному порядку. Так поступово, крок за кроком, учені сподіваються створити повноцінну штучну печінку. Гібридні основи-підкладки добре зарекомендували себе й в експериментах по “вирощуванню” нервових волокон. У цьому випадку як підкладка виявився особливо ефективний тефлон - матеріал, зовсім нешкідливий для організму. З'єднання тефлонової сітки з молекулами ламініну за допомогою модифікованих іонізованим газом атомів нікелю являє собою, на думку дослідників, досить перспективну основу, на якій може відбуватися ріст відростків нервових кліток. Ламінін у цьому випадку виконує функцію регуляції й завдання напрямку росту нервів. Наступним кроком, що наближає клінічне застосування індукованого росту призначених для трансплантації нервів, повинне стати виготовлення спеціальних напрямних трубочок, які можна було б розміщати в організмі уздовж ушкоджених нервових волокон. Тефлон також давно використають у штучних кровоносних судинах. Однак дотепер з нього роблять тільки широкі (більше 6 мм у діаметрі) судини, тому що судини меншого діаметра через 1-2 роки після імплантації закупорюються тромбоцитами й клітинами гладких м'язів. Цього не відбувалося б, якби структура стінок імплантованої судини була схожа на епітелій, що вистилає, вени й артерії. Проблему можна вирішити шляхом нанесення на полімер природних епітеліальних клітин, що утворять гладку поверхню внутрішніх стінок судин, до якої не прилипають тромбоцити. Створення такого штучного епітелію і є основною проблемою конструювання кровоносних судин. До речі кажучи, аналогічне налипання кліток, і як наслідок, закупорювання судин, відбувається й у самому організмі через атеросклеротичну зміну епітелію. При вирішенні цього завдання, як і при спробах викликати спрямований ріст нервових волокон, учені користуються “послугами” білків міжклітинної адгезії: фібронектину й ламініну. Серед органів і тканин, які в цей час інтенсивно досліджуються з метою їх біотехнологічного відтворення, можна відзначити також кісткову тканину, сухожилля, кишечник, серцеві клапани, кістковий мозок і трахею. Крім робіт зі створення штучних органів і тканин людського організму вчені продовжують розробляти й методи вживляння в організм хворих діабетом людей кліток, які продукують інсулін, а людям, що страждають хворобою Паркінсона, - нервових кліток, що синтезують нейромедіатор дофамін, що дозволить позбавити пацієнтів від щоденних стомлюючих ін'єкцій.
Висновок.
Незважаючи на молодість науки про медико-біологічні полімери, з її допомогою вдалося домогтися рішення ряду принципово важливих завдань охорони здоров'я. У деяких областях медицини застосування полімерних матеріалів і виробів стало настільки звичайним, що вже важко уявити собі, як у недалекому минулому обходилися без них. І можна не сумніватися, що застосування синтетичних матеріалів у медицині буде безупинно розширюватися й будуть знайдені нові й, можливо, досить радикальні прийоми лікування з їхньою допомогою. Не слід думати, що всі наукові завдання уже вирішені. Кожна область медицини висуває свої, часто досить незвичайні вимоги до полімерів, необхідність задоволення яких, у свою чергу, стає потужним стимулом подальшого розвитку науки про полімери. Тому вчені та медики мають працювати разом над вирішенням питань покращення якості полімерних матеріалів, їх зносостійкості. Стійкості до дії агресивних речовин. Саме у такій співпраці будуть досягнуті нові результати, які покращать лікування людей.
Список використаної літератури.
1. Губський Б. І. Біологічна хімія. - К.: Вища школа, 2004. - 448 с.
2. Дорогин Ю. А. Использование полимерных материалов. - М.: Просвещение, 1991. - 212 с.
3. Платэ Н. А. Полимеры в медицинской практике. - М.: Знание, 1985. - 69 с.
4. Платэ Н. А. Полимеры в контакте с живым организмом. - М.: Знание, 1987. - 47 с.
5. П. Ф. Хвещук, А. В. Рудакова. Основы доказательной фармакотерапии. - СПб., 2000. - 235с
6. Чубарев В. Н. Фармацевтическая информация. Под ред. акад. РАМН А. П. Арзамасцева. М., 2000.
7. Химическая энциклопедия в 5 т. / под ред. И. Л. Кнунянца. - М.: Советская энциклопедия, 1990.
Подобные документы
Інструменти визначення стратегічних цілей в сфері медичного бізнесу. Принципи і критерії сегментації ринку медичних товарів, послуг. Структурування споживчих переваг. Особливості і динаміка функціонування психічних процесів у лікарів різних спеціалізацій.
контрольная работа [26,1 K], добавлен 28.10.2014Дослідження проблеми емпатії як професійно значущої якості лікаря. Розгляд місця емпатії в структурі професійної компетентності медичних працівників і її ролі у взаємодії лікаря з пацієнтом. Визначення рівня емпатії лікарів залежно від стажу роботи.
статья [23,4 K], добавлен 05.10.2017Причини, ознаки та класифікація черепно-мозкових травм. Розробка комплексів методик для подолання наслідків травм голови. Вестибулярна гімнастика та вправи на медичних реабілітаційних тренажерах у відновлювальному періоді. Соціальна адаптації хворого.
презентация [454,6 K], добавлен 10.09.2017Біофізичні основи зору, механізми уловлювання та аналізу об’єкта. Послідовність подій при сприйнятті звуку, призначення кожного елементу вуха в даному процесі. Поріг чутності чистого тону. Локалізація джерел звуку, її механізми та інструментарій.
реферат [338,1 K], добавлен 05.02.2011Розвиток сучасного мобільного зв’язку. Смартфон як сучасний високотехнологічний засіб комунікації, отримання і обробки різноманітної інформації, наділений значною кількістю функцій, які могли б бути використані при проведенні судово-медичних експертиз.
автореферат [46,3 K], добавлен 07.03.2009Будова рентгенівської трубки. Біофізичні основи дії іонізуючого випромінювання на організм. Мікропроцесорний пристрій для реєстрації активності іонізуючого випромінювання. Крнструкція лічильника Гейгера. Використання радіонуклідів і нейтронів в медицині.
дипломная работа [4,7 M], добавлен 08.06.2015Мета проведення медичних оглядів дітей віком до 3 років. Оцінка стану здоров’я дитини, її фізичного та психомоторного розвитку. Виявлення захворювань та патологічних станів, проведення вакцинації. Облаштування кабінету, де проводиться огляд дітей.
презентация [19,8 K], добавлен 08.02.2011Розгляд міжнародного досвіду в питаннях регулювання легального обігу наркотиків. Основні законодавчі та нормативні документи, що регулюють обіг наркотичних речовин і прекурсорів в Україні. Сучасні проблеми медичного використання психотропних речовин.
курсовая работа [46,7 K], добавлен 28.03.2016Терморегуляція як сукупність фізіологічних процесів, що підтримують температуру тіла організму відмінною від температури навколишнього середовища. Поняття та призначення термометрії, використовувані для неї інструменти та прилади. Стадії гарячки.
контрольная работа [20,4 K], добавлен 28.12.2010Використання місцевих анестетиків, їх класифікація та типи, функціональні особливості. Характеристика і класифікація розчинів. Розчин ропівакаїну, його хімічна структура, елементи, фармакологічні властивості. Опис сировини, матеріалів і напівпродуктів.
дипломная работа [656,9 K], добавлен 11.10.2014