Перспективи розвитку технології аерозольних лікарських форм
Аерозолі, їх характеристика та класифікація. Балони та клапанно-розпилювальні пристрої. Пропеленти, які використовуються при створенні лікарських форм в аерозольних умовах. Виготовлення аерозольних балонів. Модель легень для тестування лікарського засобу.
Рубрика | Медицина |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 14.02.2011 |
Размер файла | 765,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Лікарські препарати також є критичним чинником регулювання ефективності виходу аерозолю й аеродинамічних властивостей комплексу лікарського засобу-ліпосоми. Виявлено, що ефективність виходу комплексу лікарський засіб-ліпосоми може бути підвищена шляхом використання ліпосом, отриманих при низьких температурах фазового переходу (див. Waldrep et al., J. of Aerosol Med. 7:1994 (1994) і Waldrep et al., Int'l J. of Pharmaceutics 97: 205-12 (1993)). Додатковий спосіб підвищення виходу аерозольного комплексу лікарський засіб-ліпосоми складається в підвищенні концентрацій лікарського засобу й фосфоліпідів у резервуарі. Розпилення деяких готових препаративних форм із комплексом ліки-ліпосоми при більш ніж 50 мг/мол приводить до засмічення форсунки розпилювача, тоді як порожні готові препаративні форми успішно розпорошуються аж до 150 мг/мол (див. Thomas, et al. Chest, 99: 1268-70 (1991)). Крім того, на експлуатаційні якості аерозолю (вихід і розмір часток) впливають фізико-хімічні властивості, такі як в'язкість і поверхневий натяг. Ці змінні впливають на максимальні концентрації комплексу ліки-ліпосоми з доставкою аерозолю за допомогою струминного розпилювача.
Протизапальні глюкокортикоїди використовуються для лікування астми й інших важких запальних легеневих захворювань протягом уже більше сорока років. Недавно аерозольна глюкокортикоїдна терапія стала використовуватися як один зі шляхів введення. У цей час існує трохи різних, хоча структурно подібних, глюкокортикоїдів з місцевою активністю - наприклад, беклометазон, будезонід, флунізолід, триамцінолона ацетониду і дексаметазону - які підходять для застосування в розпилювачах з відміряною дозою й у розпилювачах для сухого порошку при аерозольному лікуванні астми й інших запальних захворювань легенів. У той час як системні ускладнення, такі як супресія гіпоталамо-гіпофізарної системи, утворення катаракти й інгібірування росту, не є частими ускладненнями при лікуванні астми за допомогою що розпорошуються глюкокортикоїдів, місцеві побічні ефекти у вигляді кандидоза й дисфонии мають місце, що робить необхідним використання додаткових пристосувань. У цей час у Сполучених Штатах не існує глюкокортикоїдних готових препаративних форм, затверджених для застосування розпиленням, хоча ультратонкі суспензії беклометазона й будезоніду застосовуються в Європі й у Канаді.
Справжній винахід ставиться до концентрованих аерозольних складів циклоспорин-A-ліпосоми й будезонід-ліпосоми з високими дозами, які забезпечують максимум продуктивності аерозолю з розміром часток з аеродинамічним діаметром у діапазоні 1-3 мкм по медіані маси (MMAD).
Метою справжнього винаходу є створення високодозованої фармацевтичної ліпосомної аерозольної композиції, що містить у контейнері біля 12-30 мг/мл фармацевтичного з'єднання й біля 130-375 мг фосфоліпіду/мл вихідної концентрації.
Одним з об'єктів винаходу є аерозольна фармацевтична композиція з'єднання-ліпосоми, що містить біля 12-30 мг/мл фармацевтичного з'єднання в до біля 130-375 мг фосфоліпідів/мг вихідної концентрації в резервуарі, де фармацевтичне з'єднання обране із групи протизапальних глюкокортикоїдів, іммуносупресорних з'єднань, противогрибкових з'єднань, антибіотиків, противірусних з'єднань і протиракових з'єднань.
Об'єктом винаходу є також вискодозована ліпосомна аерозольна композиція циклоспорина A (Cs), що містить до близько 30 мг/мл циклоспорину A у до близько 225 мг фосфоліпідів/мл вихідної концентрації в резервуарі.
Відповідно до винаходу пропонується високодозована аерозольна композиція будезонід-ліпосоми (Bud), що містить до близько 15 мг/мл будезоніду в до близько 225 мг фосфоліпідів/мл вихідної концентрації в резервуарі.
У кращому варіанті відповідно до винаходу пропонується високодозована ліпосомна аерозольна композиція циклоспорину A, що містить до близько 20 мг/мл циклоспорину A у до близько 150 мг ділауроілфосфатидилхоліну (DLPC)/мол вихідної концентрації в резервуарі.
У найбільш кращому варіанті відповідно до винаходу пропонується високодозована ліпосомна аерозольна композиція циклоспорину A, що містить до близько 21,3 мг/мл циклоспорину A у до близько 160 мг ділауроілфосфатидилхоліну (DLPC)/мол вихідної концентрації в резервуарі.
Відповідно до винаходу пропонується високодозована аерозольна композиція будезонід-ліпосоми, що містить до близько 15 мг/мл будезоніду в до близько 225 мг ділауроілфосфатидилхоліну (DLPC)/мол вихідної концентрації в резервуарі.
У найбільш кращому варіанті відповідно до винаходу пропонується високодозована аерозольна композиція будезонід-ліпосоми, що містить до близько 12,5 мг/мл будезоніду в до близько 200 мг ділауроілфосфатидилхоліну (DLPC)/мл вихідної концентрації в резервуарі.
Інші фосфоліпіди в готових препаративних формах комплексу будезонід-ліпосоми можуть замінятися на DLPC.
Таким чином, сьогодення винахід пропонує високодозовану аерозольну композицію комплексу протизапальні глюкокортикоїди-, іммуносупресивне з'єднання-, противогрибкове з'єднання-, антибіотик-, противірусне з'єднання- і протиракове з'єднання-ліпосоми, що містить біля 12-30 мг/мл фармацевтичного з'єднання в до біля 130-375 мг фосфоліпіду/мол вихідної концентрації в резервуарі.
Інші додаткові особливості й переваги справжнього винаходу будуть очевидні з наступного опису справжніх кращих втілень винаходу, наведених з метою розкриття винаходу.
Для більше чіткого розуміння в описі приводяться креслення. Слід зазначити, що ці креслення ілюструють кращі варіанти винаходу й не є обмежуючий заявлений обсяг винаходу.
Фіг. 1 ілюструє розподіл ліпосомного аерозольного препарату з високими й низькими дозами циклоспорину A-DLPC, що розпорошуються за допомогою розпилювача Aerotech II при швидкості потоку 10 літрів у хвилину по визначенню каскадного вимірника ударів Андерсена. Дані (середня середньоквадратичне відхилення) представляють процентний вміст фракції загальної кількості циклоспорину A, виділеного на кожному етапі впливу ударного пристрою з асоційованим граничним розміром у мкм (n=3 аналізи). Діапазон аеродинамічного діаметра по медіані маси (MMAD) і геометричне стандартне відхилення розраховують на ділянці логарифмічної ймовірності.
Фіг. 2 ілюструє циклоспорин A, що розпорошується з розпилювача Aerotech II з високими й низькими дозами препарату циклоспорин A-DLPC липосомі при швидкості потоку 10 літрів у хвилину, як визначено на моделі, що імітує легені людини. Значення представляють циклоспорин A, зібраний при різному часі розпилення зразків аерозолю на фільтри, приєднані до Респіратора Харварда, доведені до загального обсягу (TV) в 500 мл і при швидкості 15 вдихань у мінуту (ВРМ).
Фіг. 3 представляє профіль розподілу аерозольного ліпосомного препарату форми: Budesonide-DLPC з високими й низькими дозами, розпилений за допомогою розпилювача Aerotech II при швидкості потоку 10 літрів у мінуту, як визначено за допомогою каскадного вимірника ударів Андерсена. Отримані дані (середня величина середньоквадратичне відхилення) представляють процентний вміст фракцій стосовно загальної кількості циклоспорину A, виділеному на кожній стадії впливу з асоційованим граничним розміром у мкм (n=3 аналізи). Аеродинамічний діаметр по медіані маси (MMAD) і стандартне геометричне відхилення (GSD) розраховувалися на графіку логарифмічної ймовірності.
Фіг. 4 показує Будезонід, вдихуваний у вигляді ліпосомних препаратів форм Будезонід-DLPC з дозами від низьких до високих, що розпорошуються за допомогою розпилювача Aerotech II при швидкості потоку 10 літрів у хвилину, як визначено на моделі, що імітує легені людини із загальним обсягом (TV) 500 мл і при 15 вдихань у мінуту (ВРМ). Значення представляють Будезонід, зібраний при різному часі розпилення зразків аерозолю на фільтри, приєднані до Респіратора Харварда, доведені до загального обсягу (TV) в 500 мл і при швидкості 15 вдихань у хвилину (ВРМ).
Фіг. 5 ілюструє тимчасову залежність Cs концентрацій, вдихуваних через що розпорошуються ліпосомні й кремофорні готові препарати. На діаграмі представлені комплекси Cs-Cremophor (50 мг/мл; кружки), Cs-DLPC (5 мг/мл; зафарбовані трикутники) і Cs-DLPC (20 мг/мл; ромби).
Фіг. 6 ілюструє концентрацію пульмональної Cs за час вдихання в ICR мишей
(35 г) після вдихання розпиленого комплексу Cs-DLPC (20 мг/мл).
Фіг. 7 ілюструє протизапальний ефект комплексу Bud-DLPC з високими лозами на лейкоцити при проведенні легеневого бронхиоальвеолярного лаважу (BAL) у відповідь на LPS (ендотоксин) стимул.
Фіг. 8 ілюструє аналіз перколяціонного градієнта Bud-DLPC ліпосом.
Фіг. 9 ілюструє вихід аерозолю DLPC (мг/мл) при розпиленні ліпосомної композиції з порожнім DLPC, Cs-DLPC і Bud-DLPC зі зростаючими концентраціями. Аерозолі одержували за допомогою тестованої води й стандартизованого розпилювача Aerotech II (початковий стартовий обсяг 4 мол; швидкість потоку 10 л/хв) і парні зразки збирали в AGI-4 при 4-5 і 6-7 хвилинах розпилення. Концентрації DLPC визначали за допомогою ВЕЖХ аналізу. Представлені дані є характерними для готових препаратів, тестованих при кожній зазначеній концентрації, і нанесені на графік залежно від початкового змісту DLPC (мг/мл) у ліпосомах.
Фіг. 10 ілюструє розподіл маси (мг/хв) розпилених готових препаративних форм із порожнім DLPC, Cs-DLPC і Bud-DLPC зі зростаючими концентраціями. Аерозолі одержували за допомогою тестованої води й стандартизованого розпилювача Aerotech II (початковий стартовий обсяг 5 мл; швидкість потоку 10 л/хв) і вихід маси визначали з використанням аналітичного балансу через 10 хвилин розпилення.
Представлені дані є характерними для готових препаративних форм, тестованих при кожній зазначеній концентрації, і нанесені на графік залежно від початкового змісту DLPC (мг/мл) у ліпосомах.
Фіг. 11 ілюструє вихід Cs і Bud (мг/хв) у розпилених аерозольних ліпосомних препаратах Cs-DLPC і Bud-DLPC зі зростаючими концентраціями. Аерозолі одержували за допомогою тестованої води й стандартизованого розпилювача Aerotech II (початковий стартовий обсяг
5 мл; швидкість потоку 10 л/хв) і парні зразки збирали в отсекателе AGI-4 при 4-5 і 6-7 хвилинах розпилення. Концентрації DLPC визначали за допомогою ВЭЖХ аналізу аліквотів зразків, також аналізованих на зміст DLPC (фіг. 1). Представлені дані є характерними для готових препаративних форм, тестованих при кожній зазначеній концентрації, і нанесені на графік залежно від початкового змісту лікарського засобу (мг/мл) у ліпосомах.
Фіг. 12 ілюструє в'язкість (сантипуази) ліпосомних готових препаративних форм із порожнім DLPC, Cs-DLPC і Bud-DLPC зі зростаючими концентраціями (початковий стартовий обсяг 10 мл; при кімнатній температурі навколишнього середовища). Дані представляють середню величину від 10 спостережень для кожної з тестуємих готових препаративних форм при кожній із зазначених концентрацій і нанесені на діаграму залежно від початкового змісту DLPC (мг/мл) у ліпосомах.
Фіг. 13 ілюструє аналіз просторового натягу (діни/див) ліпосомних препаратів з порожнім DLPC, Cs-DLPC і Bud-DLPC зі зростаючими концентраціями (початковий стартовий обсяг 7 мл; при кімнатній температурі навколишнього середовища). Представлені дані представляють середню величину від 10 спостережень для кожної з тестуємих готових препаративних форм при кожній із зазначених концентрацій і нанесені на діаграму залежно від початкового змісту DLPC (мг/мл) у ліпосомах. Зразки також тестували на в'язкість.
Метою справжнього винаходу є поліпшення ефективності доставки високодозованих фармацевтичних аерозольних композицій, що складаються з комплексу з'єднення - ліпосома. Наприклад, справжній винахід описує поліпшену ефективність доставки ліпосомного аерозолю із циклоспорином A. У серії експериментів визначено, що вихід аерозольного лікарського засобу можна поліпшити при застосуванні ліпосомних готових препаративних форм із низькою температурою зміни фази, таких як DLPC (що містить 12 атомів вуглецю, жирні кислоти з насиченими бічними ланцюгами). Також було визначено, що певні розпилювачі підвищують вихід аерозольного ліпосомного лікарського засобу при бажаному розмірі аеродинамічного діаметра в діапазоні 1-3 мкм по медіані маси (MMAD). Концентрація циклоспорину A, застосовуваного в цих ранніх дослідженнях, становила 1,0 мг із 7,5 мг DLPC на мол вихідного розчину в резервуарі.
В 1993 році з'явилася необхідність у підвищенні виходу аерозольного ліпосомного циклоспорину A шляхом збільшення виробництва препарату. Це могло бути здійснене різними шляхами, такими як вибір більше ефективного розпилювача. Вихід ліпосомного аерозольного циклоспорину A підвищувався шляхом доповнення розпилювачем Aerotech II (ATII) (з CIS-USA, Bedford, Mass). ATII дає приблизно 50-процентне підвищення аерозольного виходу в порівнянні з використуваємим колись Puritan Bennett 1600sj.
Другий спосіб підвищення виходу аерозольного ліпосомного лікарського засобу складався в підвищенні концентрації лікарського засобу й фосфоліпідів у рідині в ємності розпилювача. Концентрація ліпосомного циклоспорину A-DLPC в 5 мг циклоспорину A/37,5 мг на мл була успішно підвищена при досягненні бажаного виходу аерозолю при аеродинамічному діаметрі в діапазоні 1-3 мкм по медіані маси (MMAD). При використанні моделі легенів людини аналіз даних аерозолів показав, що приблизно 3,2 мг циклоспорину A теоретично могло б розташовуватися в легенів після одного 15-хвилинного вдихання. Вивчення в Університеті Пітсбурга груп пацієнтів з легеневим аллотрансплантатом, що одержують лікування аерозольним циклоспорином A (розчиненим в етанолі або пропиленгліколі), продемонструвало клінічне поліпшення (скасування відторгнення трансплантата) при доставці 20 мг циклоспорину A у легені. При застосуванні відповідної ліпосомної системи циклоспорину A-DLPC для досягнення цієї кількості потрібно приблизно 2 години вдихання аерозолю. Такий пролонгований денний інтервал вдихання може бути важкий для пацієнта й вимагає 8 замін ємності розпилювача. Таким чином, випливало підвищити концентрацію циклоспорину A-DLPC у резервуарі. Однак, добре відомо, що неможливо розпорошувати ліпосоми при концентрації більше 50 мг/мл, тому що більші концентрації приводять до склеювання часток, що розпорошуються.
У справжньому винаході вдалося досягти концентрації циклоспорину A 20-30 мг/мл: 140-225 мг DLPC/мол вихідної концентрації в резервуарі. Розмір часток був маргинально збільшений, при цьому зрушуючи нагору MMAD аерозолю до 2,0 мкм із 1,6 мкм, як продемонстровано із циклоспорином A-DLPC (5 мг/37,5 мг), без змін в GSP (фіг. 1) Аерозольний вихід "високих доз" 20-30 мг циклоспорину A-DLPC був значно вище, ніж 5 мг циклоспорину A-A- DLPC.
Як продемонстровано на фіг. 2 на моделі, що імітує легені людини, 15 хвилин циклоспорину A-DLPC з високими дозами, період часу, необхідний для доставки необхідної терапевтичної дози пацієнтам з легеневим трансплантатом, становив би приблизно 45 хвилин і менше. Звичайно, підставою для визначення цього періоду часу послужили результати дослідження доз іншими дослідниками, що використовують інші аерозолі циклоспорину A. Тому що ліпосомний циклоспорин A є терапевтично більше ефективним при низьких дозах і менш токсичним, чим циклоспорин A в етанолі або пропиленгліколі, час вдихання бажано скоротити. Збільшення циклоспорину A-DLPC вище, ніж близько 30 мг циклоспорину A-225 мг DLPC, виявляється неефективним.
Справжній винахід демонструє придатність високодозованого ліпосомного аерозолю циклоспорину A-DLPC в інтервалі 20-25 мг циклоспорину A/ 150-200 мг DLPC на мол, хоча кількості, аж до 30 мг/мл, також входять у поняття високі дози. Інші фосфоліпіди у високодозованій аерозольної композиції циклоспорину A-Ліпосоми можуть бути заміщені на DLPC. Характерні приклади підходящих фосфоліпідів включають фосфатидилхолід яєчного жовтка, гідрований фосфатидилхолід соєвих бобів, димиристоіфосфатидилхолід, діоліеоліл дипальмітоілеоліл фосфатидил холид і дипальмітоілфосфатидилхолід.
Високодозований аерозоль циклоспорину A-Ліпосоми виявляється придатним при різних імунологічних легеневих захворюваннях, таких як відторгнення трансплантата, бронхілитична облітерація, алергія, гіперчутливість і астма, і при застосуванні різних систем розпилення придатний для застосування в педіатрії, при лікуванні підлітків і дорослих. При лікуванні різних перерахованих тут захворювань потрібне різний час вдихання.
Створення високих доз циклоспорину A-DLPC необхідно, тому що аерозолі з високими дозами циклоспорину A використовуються для лікування випадків відторгнення легеневого трансплантата. У цих дослідженнях пацієнтів лікували розпиленням циклоспорину A-Кремофор (50 мг циклоспорин A/мол). Як продемонстровано на фіг. 5, вихід аерозолю з комплексом циклоспорин A-Липосомы (5 мг/мл і 20 мг/мл) помітно вище. Циклоспорин A-Кремофор є дуже дратівним, але цей аерозоль дає деяка клінічна перевага. Таким чином, комплекс циклоспорину A-Ліпосоми буде навіть краще одночасно тестуватись на схожих пацієнтах. Циклоспорин A-DLPC ліпосомний аерозоль також ефективний при лікуванні астми, як описано для перорального циклоспорину A.
Автори даного винаходу також визначили, що із глюкокортикоїдом будезонідом можна одержувати стабільні ліпосоми, які можна розпорошувати ефективно й одержувати аерозолі в діапазоні 1-3 мкм MMAD. При такій концентрації в резервуарі для доставки денної дози при лікуванні астми потрібне звичайний час розпилення, і з розпилювачем ATII воно буде становити приблизно 15 хвилин. Це клінічно здійсненно й практично здійсненне.
Фірмою Boehringer-ingelheim досліджувалися глюкокортикоїдні ліпосоми в апарату для розпилення. Конструкція їхнього апарата призначена для доставки 100-200 мкг глюкокортикоїду на 20 мл робочого обсягу. Просте математичне перетворення показує, що потрібно 5000 - 10000 мкг/мл у резервуарі пристрою. У цих експериментах з апаратом тестувався Будезонід в етанолі.
Ґрунтуючись на попередніх експериментах, для досягнення необхідної концентрації в ліпосомному препараті одержували концентровані й грузлі суспензії. У попередніх експериментах з Будезонідом використовувалося співвідношення 1:25 (Будезонід до DLPC по вазі). Ґрунтуючись на високих концентраціях, що вимагаються, DLPC, перевірялися різні співвідношення Будезонид:DLPC, і співвідношення 1:15 було визначено як найбільш підходяще. Препарат потім концентрували спочатку до 5 мг Будезоніду: 75 мг DLPC на мл, і нарешті, до 10 мг Будезоніду: 150 мг DLPC на мл. Концентрування з іншими глюкокортикоїдами (беклометазон дипропіонат або флунізолід) було більше важким через нестабільність готових препаративних форм. Готова препаративна форма, що містить 10 мг Будезониду-150 мг DLPC, була стабільної й могла ефективно розпорошуватися за допомогою розпилювача ATII.
Фіг. 3 показує, що підвищення концентрації приводить до збільшення аерозольних часток, збільшуючи MMAD з 1,2 мкм до 1,0 мкм із комплексом Будезонід-DLPC з високими дозами. Фіг. 4 демонструє, що після одного 15-хвилинного вдихання цього препарату Будезоніду з високими дозами, буде вдихатися приблизно 6 мг Будезоніду або 6-кратна найвища клінічна добова доза. Спорідненість між виходом аерозольного комплексу Будезоніду-DLPC з низькими й високими дозами не було пропорційно.
Характерний "високодозований" Будезонід-DLPC ліпосомний аерозоль перебуває на рівні близько 12,5 мг Будезоніду/225 мг DLPC на мол. Інші фосфоліпіди в препараті ліпосомного Будезоніду з високими дозами можуть бути заміщені на DLPC. Цей ліпосомний аерозольний препарат комплексу Будезонід-DLPC клінічно придатний для лікування певних легеневих захворювань, таких як астма й інтерстиціальний фіброз, а також імунологічного захворювання відторгнення легеневого трансплантата, бронхілітичної облітерації, алергії й гіперчутливості. Він виявляється придатним для лікування дітей, підлітків і дорослих за допомогою різних систем розпилення.
Наступні приклади дані з метою ілюстрації різних втілень винаходу й жодним чином не обмежують справжній винахід.
Приклад 1
Ліпосомний препарат: Одержання високодозованого комплексу ліки/ліпосоми.
Відповідно до винаходу був здійснений процес ліофілізації для одержання оптимального препарату різних комплексів ліки/ліпосоми. Було встановлено, що оптимальне відношення по вазі між циклоспорином A і DLPC становить 1:7,5. Для визначення максимальної концентрації, сумісної з розпиленням, готові препаративні форми, призначені для аерозольної доставки лікарського засобу, одержували зі змістом від 10 до 30 мг циклоспоріну А и від 75 до 225 мг DLPC, при оптимальному ваговому співвідношенні Cs і DLPC 1:7,5. Було визначено, що готові препарати, що містять 21,3 мг циклоспоріну A: 160 мг DLPC, є оптимальними, судячи з аерозольного виходу й розмірів часток для вдихання. Для оптимізації комплексу циклоспорін A-Ліпосоми з високими дозами 100 мг циклоспоріну A (Sandoz Pharmaceuticals or Chemical Company) змішують із 750 мг синтетичного альфа-лецитину; 1, гліцеро-3- фосфохоліну (DLPC від Avanti Polar Lipids). Працюючи при 37o у теплій кімнаті, комплекс лікарський засіб/DLPC змішують в 20 мл третинного бутанолу при перемішуванні, як описано Waldrep et al. , Int'l J. of Pharmaceutics 97: 205-12 (1993). Після перемішування суміш лікарський засіб/ліпід переносять піпеткою в скляний пухирець, швидко заморожують, потім ліофілізірують протягом ночі для видалення трет-бутанолу, залишаючи порошкоподібну суміш. Багатошарові ліпосоми одержують шляхом додавання 10 мл надчистої води вище температури фазового переходу (Tc) при 25o для досягнення кінцевої стандартної концентрації лікарського засобу 1-30 мг циклоспоріну A: 7, 5-225 мг DLPC на мол. Суміш інкібірують протягом 30 хвилин при кімнатній температурі при періодичному перемішуванні для одержання багатошарових везикулярних ліпосом. Як альтернатива, ці готові препаративні форми можна одержати за допомогою роторного випарювання. Аліквоти беруть для визначення концентрації лікарського засобу за допомогою ВЕЖХ. Цей простий спосіб одержання ліпосом обраний у зв'язку з тим, що він може бути легко масштабований для виробництва більших партій.
Після набрякання деяка кількість готових ліпосом перевіряють на розмір і на присутність кристалів лікарського засобу шляхом мікроскопії, візуально як до, так і після розпилення. Асоціація лікарський засіб-ліпід (ефективність інкапсулірування) визначається з використанням аналізу градієнта перколляції, як описано в O'Riordan et al., J. of Aerosol Med., in press (1996). Немає необхідності в зменшенні розміру препарату багатошарового везикулярного циклоспорину A-DLPC лікарський засіб - ліпосома до розпилення, тому що лікарський засіб-ліпосоми (гетерогенна стартова суміш 2,2 до 11,6 мікрометрів після набрякання) зменшується в розмірі пізніше під час розпилення (і тривалого рефлюксу) завдяки силам, що утворяться при екструзії через вихідний отвір розпилювача. Розмір цих ліпосом у краплях аерозолю становить 271-555 нм. Частки рідини в аерозолі містять від однієї до декількох ліпосом. Діаметр ліпосом менше, ніж водні аерозольні частки, у яких вони переносяться (див. Waldrep et al., Ink'l J. of Pharmaceutics 97: 205-12 (1993)). Після набрякання готові препарати використовуються для розпилення протягом декількох годин. Стерильні готові препаративні форми можна зберігати протягом місяців при кімнатній температурі або в холодильнику.
Для готових препаративних форм оптимальне співвідношення між лікарським засобом і ліпідом визначають шляхом тестування різних готових препаративних форм зі співвідношенням Будезонід-DLPC від 1:1 до 1:20. Співвідношення 1:15 (по фазі) обрано як оптимальне для готової високодозованої препаративної форми Будезонід-DLPC. Такий препарат одержують при змішуванні 10-150 мг Будезоніду з 150- 2250 мг DLPC (як описано вище для циклоспорину A-DLPC). Працюючи при 37 0С при кімнатній температурі, лікарський засіб/DLPC змішують в 20 мл третинного бутанолу при перемішуванні. Після змішування суміш лікарський засіб/ліпід переносять піпеткою в скляний пухирець, швидко заморожують і потім ліофілізірують протягом ночі для видалення тре-бутанолу, причому залишається порошкоподібна суміш. Багатошарові ліпосоми одержують шляхом додавання 10 мл надчистої води при температурі вище температури фазового переходу (Tc) при 250С для доставки кінцевої стандартної концентрації лікарського засобу в 1-15 мг Будезоніду: 15-225 мг DLPC на мол розчину. Суміш інкібірують протягом 30 хвилин при кімнатній температурі при періодичному перемішуванні для одержання багатошарових везикулярних ліпосом. Для визначення концентрації лікарського засобу аліквоти досліджуються методом ВЕЖХ. Як альтернатива, ці ліпосоми готові препаративні форми можна одержати за допомогою роторного випарювання. Фіг. 8 показує аналіз градієнта перколяції Bud-DLPC ліпосом (див. O'Riordan et al., J. of Aerosol Med., in press (1996)). Набухнув один раз, багатошарові везикулярні Будезонід-DLPC ліпосоми залишаються стабільними протягом декількох тижнів при кімнатній температурі. Стерильно приготовлені ліпосоми стабільні протягом місяців. Хлорид бензалконію (10 мг/л) може бути доданий як консервант.
Приклад 2
Ліпосомні аерозолі: Лікування аерозолем лікарський засіб-ліпосоми.
Для роботи з аерозолем лікарський засіб-ліпосоми використовується розпилювач Aerotech II ( CIS-USA, Bedford USA), хоча інші комерційні розпилювачі також можуть бути використані. ATII має високий вихід, ефективний розпилювач показує одержання ліпосомних аерозолів з оптимальним розміром часток в 1-3 мкм MMAD для доставки в периферичні відділи легенів (див. Vidgren, et al., Int'l J. of Pharmaceutics 115: 209-16 (1994)). Джерело сухого повітря доставляється в розпилювач і внутрішнє поглинання сухого повітря регулюється регулятором потоку й становить 10 літрів у хвилину. Первісний обсяг резервуара становить 5 мол і достатній для 15-20 хвилин дії аерозолю. Більше тривалі інтервали лікування вимагають повторного заповнення резервуара.
Приклад 3
Розподіл розмірів часток в аерозолі лікарський засіб-ліпосоми.
Аеродинамічний розподіл розмірів часток в аерозолі лікарський засіб-ліпосоми визначається, як описано в Waldrep et al., J. of Aerosol Med. 7:1994 (1994), використовуючи самплер для визначення невидимих розмірів навколишніх часток Andersen 1 ACFM (Graseby Andersen Instruments Inc., Atlanta, GA) як імітатор легенів людини (Andersen). Аерозолі, що містять лікарський засіб-ліпосоми, вироблені з розпилювача ATII, збирали, використовуючи вакуумний насос (1 ACFM), вимірник удару при 8 етапах при стандартному часі дії в 0,5 хвилин для кожного експерименту. Концентрації лікарського засобу в краплях аерозолю з розміром 0-10 мкм збирали на кожному етапі (0=9, 0-10,0 мкм; 1=5, 8-9,0 мкм; 2=4, 7-5,8 мкм; 3=3, 3-4,7 мкм; 4= 2, 1-3,3 мкм; 5=1, 1-2,1 мкм; 6=0, 65-1,1 мкм; 7=0, 43-0,65 мкм) і визначали після елюїруванняз 10 мл етанолу або метанолу й аналізу за допомогою ВЕЖХ. USP штучне горло, з'єднане з вихідним отвором вимірника ударів, використовується для видалення аерозольних часток більш ніж 10 мкм. На кінцевій стадії використовується скляний фільтр, що збирає. Після визначення концентрації лікарського засобу на кожному етапі за допомогою ВЕЖХ аеродинамічний діаметр по медіані маси (MMAD) і геометричне стандартне відхилення (GSD) комплексу лікарський засіб-ліпосоми підраховується за графіком логарифмічної ймовірності, з ефективним граничним діаметром на осі ординат і кумулятивним відсотком менш, ніж діапазон розміру (по концентрації) як абсциса (KaleidaGraph 3,0). MMAD і GSD визначають по змісту лікарського засобу в ліпосомі, розподіленого в масиві крапель аерозолю (див. Waldrep et al. , Int'l J. of Pharmaceutics 97: 205-12 (1993)). Область крапель більш, ніж розмір ліпосом, визначає MMAD і GSD. Обґрунтованість цього способу визначення MMAD & GSD незалежно підтверджена при використанні Лазерного лічильника часток аерозолю, модель 3300 TSI.
Приклад 4
Оцінка вдихуваної дози.
Для визначення вдихуваної дози Bec-DLPC ліпосоми розпорошуються образцы, що, збирають у систему, що імітує легені людини, як описано Smaldone et al. , Am. Rev. Respir. Dis 143: 727-37 (1991). Використовуючи респіратор Харварда, аерозольні зразки з розпилювача ATII (швидкість потоку 10 л/хв) збирають у фільтри Whatman GF/F при 15 вдиханнях у мінуту при обсязі одного вдихання 500 мол. Цей основний обсяг одного вдихання, що становить 500 для чоловіків (450 для жінок), визначений по номограмі, пристосованої для обліку частоти подиху, ваги й полу. Аерозольні зразки збирали протягом п'ятнадцятихвилинного періоду розпилення. Кількість циклоспорину A або Будезоніду, що потрапили на фільтри, визначають після екстракції за допомогою ВЕЖХ.
Приклад 5
Аналізи легеневого циклоспорину A: Твердофазна екстракція
Здійснювалися наступні етапи:
1. Після вдихання циклоспорину A-DLPC у вигляді ліпосомного аерозолю виділяють тканина легенів миші. Додають внутрішній стандартний CSD 10 мкг (1 мкл 1/мг/мл вихідного розчину). Тканина гомогенізують або в змішувачі, або в пробірках Wig-L-Bug (використовуючи 4-5 кульок на пробірку).
2. Гомогенізовану тканину екстрагують в 1 мол надчистої води протягом 1-2 мінут. Цей обсяг використовують для одного зразка тканини, а при об'єднанні більш ніж одного зразка, його розбавляють.
3. Додають 2 мол 98-процентного ацетонітрілу/ 2-процентні метаноли й зразки енергійно струшують.
4. Зразки центрифугують на повній швидкості 20 ; супернатант переносять у чисту пробірку й центрифугують 10 хвилин на повній швидкості.
5. Супернатант збирають і додають по 5 мол надчистої води до кожному 1 мол тихорєцького екстракту.
6. Готовлять стовпчик Sep-Pak C18 (Waters Sep-Pak Light для одиничної мишачої тканини) і промивають 5 мл 95-процентного этанола й 5 мл надчистої води. Зразки додають повільно й промивають 5 мол надчистої води й 5 мол 50-процентного ацетонитрила.
7. Елюат переносять у складальну пробірку й елюірують 1 мл метанолу, а потім 0,5 мл води.
8. Забруднення видаляють при промиванні елюату двічі 1,5 мл гексану й відкиданням верхнього шару.
9. Екстрагований елюат випарюють до сухого стану з використанням температури регулювання реактивного середовища з мінімальним потоком повітря.
10. Відновлення проводять в 0,3 мл рухливі фази CSA і зразку у ВЕЖХ.
Приклад 6
Аналіз лікарського засобу за допомогою високоефективної рідинної хроматографії (ВЕЖХ): аналіз будезоніду.
Дослідження за допомогою ВЕЖХ застосовується з різними цілями для визначення: змісту Будезоніду в ліпосомній готовій препаративній формі, ефективності інкапсулірування, змісту Будезоніда в аерозольних зразках, отриманих на моделі легенів. Концентрацію Будезонида визначають за допомогою ВЕЖХ аналізу з використанням автозагрузочного пристрою Waters WISP 717 і стовпчика Waters Nova-Pak C18 (3,9 x 150 мм) при кімнатній температурі. Пік реєструють при 238 нм, використовуючи детектор, що працює при різних довжинах хвиль в УФ і видимої частини спектра з кількісною оцінкою за Версією 2,15 Millenium 2010 Chromatography Manager фірми Waters. Рухлива фаза, що використовується при цих дослідженнях, представляє 50:50 етанол/ метанол при швидкості потоку 0,6 мол у мінуту (див. Anderson & Ryrfeldt, J. Pharm. Pharmacol. 36: 763-65 (1984)). Зразки для аналізу розчиняють безпосередньо в етанолі (для розчинення ліпосом). Стандарти лікарського засобу готовлять із вихідного розчину етанолу, що зберігається при -80 0С.
Приклад 7
Аналіз лікарського засобу за допомогою високоефективної рідинної хроматографії (ВЕЖХ): аналіз циклоспорину A.
Циклоспорин A у ліпосомних готових препаративних формах (для визначення змісту циклоспорину A і ефективності інкапсулювання) і аерозольних зразках визначався за допомогою ВЕЖХ. У дослідженні використовувалися автоматичний інжектор зразків Waters (Milford, MA) WISP і стовпчик Supelco LC-1, нагріта до 750С. Рухлива фаза складалася з 50 відсотків ацетонітрілу, 20 відсотків метанолу й 30 відсотків води (див. Charles et al., Ther. Drug Monitor. 10: 97-100 (1988)). Пік реєструють при 214 нм, використовуючи детектор, що працює на різних довжинах хвиль, і кількісно оцінюють за Версією 2,15 Millenium 2010 Chromatography Manager фірми Waters. Зразки для аналізу розчиняють безпосередньо в метанолі (для розчинення ліпосом). Стандарти лікарського засобу одержують із вихідного розчину метанолу, що зберігається при -800С.
Приклад 8
Аналіз лікарського засобу за допомогою високоефективної рідинної хроматографії (ВЕЖХ): аналіз DLPC
Була використана модифікація схеми проведення ВЕЖХ Grit and Commelin, Chem. & Phys. of Lipids 62: 113-22 (1992). Застосовувалися автоматичний інжектор зразка Waters 717 WISP і колонка-аміно-стовпчик Sperisorb S5 (0,25 см х 4,6 мм, 5 мкм) з рухливою фазою: ацетонітрил, метанол і 10 мМ аміак/трифторуксусна кислота, p 4,8 (64:28:8 по обсязі). Піки реєструють за допомогою випарного-мас-випарного детектора (SEDEX 55, Sedre, France) і кількісно оцінюють за Версією 2,15 Millenium 2010 Chromatography Manager фірми Waters. Зразки для аналізу розчиняють безпосередньо в етанолі або метанолі (для розчинення ліпосом).
Приклад 9
Модель легенів для тестування лікарського засобу на мишах: дослідження гострого запалення: (LPS) техніка бронхіолярного лаважа
Ліпополісахарид стінки грамвідемної клітки (LPS) використовувався для індукції, що відновлює, гострого пульмонологического запалення в миші.10-хвилинна експозиція Е. coli 055:B5 LPS (Sigma) аерозолю, випущеного з розпилювача PBsj 1600 (концентрація в резервуарі 100 мкг/мол; доставлена доза 60 нг), викликала сильний флогістичну відповідь, що визначено шляхом акумуляції PMN в альвеолах у відповідь на вироблення хемотаксических цитокінів (визначно на 3 годині; пік відповіді на 6 годині після стимулу). У різний час після застосування аерозолю LPS мишей забивали під метоксифлурною анестезією й знекровлювали через абдомінальну аорту. У трахею хірургічним шляхом вставлялася канюля з PE50 трубкою (зовнішній діаметр 0,965 мм. Clay Adams). Використовуючи збалансований розчин солей по Хенксу в загальному обсязі 2,0 мл (HBSS; Ca/Mg вільний з EDTA), легені зрошували 5 мінут обсягом приблизно в 1,0 мол. Вихід звичайно становив 85 відсотків витягу лаважної рідини. Отримані в результаті білі клітки підраховували за допомогою гемоцитометру, піддавали цитоцентріфугуванню й офарблювали. По різних підрахунках ефект лікарського засобу відзначається по зниженню кількості білих кліток і по зменшенню кількості PNM і/або міелопероксидази позитивних кліток щодо постійних макрофагів і/або міелопероксидази негативних кліток. Це дослідження використовується як стандарт для тестування режиму дії аерозолів, що містять лікарський засіб/ліпосоми, на біологічну активність за допомогою зменшення гострого запального клітинного розростання дихальних шляхів. Фіг. 7 показує протизапальний ефект високих доз Bud-DLPC на легеневий бронхоальвеолярний лаваж (BAL) лейкоцитів у відповідь на виклик LPS (ендотоксину).
Приклад 10
Цитологія: легеневий лаваж Клітинні препарати (лаваж, тимоцити, лімфовузли або спленоцити) підраховувалися на гемоцитомітрі, піддавалися цитоцентрифугуванню на слайди (використовуючи Miles Cyto-Tek) і офарблювалися за допомогою Wright-Giemsa. May-Grunwald-Giemsa або лейкоцитарна пероксидаза прямо залежить від способу готування. Диференціальний підрахунок був зроблений шляхом мікроскопічного спостереження з масляної імерсії. Біологічний ефект режиму застосування аерозолю з комплексом лікарський засіб-ліпосоми відзначався по зниженню загальної кількості білих кліток і по зниженню числа PMN або міелопероксидази позитивних кліток щодо звичайних макрофагів.
Приклад 11
Інгібірувані антиген/мітоген індукованого лімфоцитарного бластогенезу in vitro за допомогою Cs, виділеного із тканини легенів миші, після аерозольної доставки Cs-DLPC ліпосом (див. табл.A)
Біологічна активність Cs, доставленого в легені з ліпосомним аерозолем. Первинна імунна відповідь для тестування була викликана в пов'язаній із бронхами лімфоїдної тканини й у пов'язаних з легенями медіастинальних лімфатичних вузлах. Після місцевої інтраназальної імунізації мишей лінії Balb/c обложеним квасцами яєчним альбуміном ( AP-OVA (80 мкг), доповнений вакциною Bordetella pertussis) мишей забивали через 7 днів, медіастинальну тканину видаляли й ізолювали лімфоцити для аналізу in vitro. Дослідження проліферації складається в зміні в стимулюванні лімфоцитів після активації сенсибілізіруючим антигеном яєчним білком або неспецифічним T-Клітинним мітогеном, Con А плюс з'єднаною з культурою Cs ізольований із тканини легенів миші при твердофазної екстракції при ВЕЖХ. Поглинання 3[H]-Td у ДНК визначалося протягом 48-72 годин. Інгібірування специфічної або неспецифічної активації лімфоцитів було продемонстровано шляхом знищення або зменшення антиген-специфічного стимулювання або в інгібірування нечутливості до мітогену.
Приклад 12
Фізико-хімічний аналіз.
Просторовий натяг і в'язкість: Просторовий натяг (дини/див) виміряється з використанням Tensiomat (Model 21, Fisher Scientific, Indiana, PA).Платино-Іридієве кільце відомого розміру було піднято з поверхні рідини для тестування при точно контрольованих умовах. "Гадане" значення з дисплея приладу множать на фактор корекції, що включає розмір вимірювального кільця, щільність рідини й інші параметри (відповідно до інструкції виготовлювача). Вимір в'язкості проводять із використанням віскозиметра Gilmont Falling Ball (Gilmont Instruments, Barrington, IL). В'язкість у сантипуазах визначають при кімнатній температурі навколишнього середовища.
Вимір розміру комплексу лікарський засіб-ліпосоми: розмір часток комплексу лікарський засіб-ліпосоми вимірюють із Nicomp Model 370, Submicron Particle Sizer (Program Version 5,0 Nicomp Particle Sizing Systems, Santa Barbara, CA). Зразки комплексу лікарський засіб-ліпосоми, диспергірувані у воді, аналізували відповідно до інструкції виробника й дані виражали як розмір зважених везикул. Комплекс лікарський засіб-ліпосом має на увазі, що діаметр часток вимірюють із резервуарних зразків у початковому періоді через 10 хвилин розпилення й з аерозольних зразків, виділених з використанням відсікувача AGI-4, як описано Waldrep et al., Int'l J. of Pharmaceutics 97: 205-12 (1993).
Результати на фіг. 9 (графік побудований для концентрації DLPC) демонструють, що відбувається збільшення виходу аерозолю DLPC ліпосом до 170 мг/мл зі зменшенням виходу при більше високих концентраціях. Поширення цих даних на Cs-DLPC ліпосоми дає подібні результати з максимальним ліпосомним аерозольним виходом з 21,3 мг Cs: 160 мг DLPC/мол (фіг. 9). Для ліпосом Bud-DLPC максимальний вихід DLPC аерозолю був продемонстрований з готовою препаративною формою, що складається з 12,5 мг Bud:187,5 мг DLPC/мл. Аналіз порушень розпилення рідкої індиферентної речовини, продемонстрований на фіг. 10 (графік побудований для DLPC), показує залежне від концентрації зниження виходу, як визначено по масі, перетвореної в аерозоль у хвилину.
З підвищенням концентрації ліпосом відбувається супутнє подібне ж підвищення виходу аерозолю аж до критичної крапки (фіг. 11) (графік побудований для концентрації лікарського засобу). Вимір виходу аерозольного лікарського засобу Cs і Bud при ВЕЖХ аналізі показує максимальні концентрації для розпилення (фіг. 11). Для Cs-DLPC ліпосом максимальний вихід становив 21,3 мг Cs: 160 мг/мл. Для Bud-DLPC максимум становив 12,5 мг Bud:187,5 мг DLPC. Фізико- хімічний аналіз цих ліпосомних готових препаративних форм демонстрував паралельне підвищення в'язкості (графік побудований для концентрації DLPC) (фіг. 12). Результати для DLPC, Bud-DLPC і CsA-DLPC були однаковими. В'язкість готових препаративних форм Bud-DLPC була приблизно на 20 відсотків менше, ніж тільки для порожнього DLPC. В'язкість Cs-DLPC була непохитно самою низкою й коливалася між 16 мг Cs/120 мг DLPC і 24 мг Cs/180 мг DLPC/мол. Ці результати припускають, що для кожної готової препаративної форми існує максимальна в'язкість, сумісна з розпиленням аерозолю; вище цих значень не існує додаткового виходу з підвищеною концентрацією комплексу лікарського засобу-ліпосоми.
Результати на фіг. 13 (графік побудований для концентрації DLPC) демонструють, що додавання Cs і Bud до DLPC ліпосомам викликає зниження в просторовому натягу готової препаративної форми. Зниження просторового натягу залежить від концентрації, досягаючи плато при близько 100 мг DLPC/мол. Не існує певного зв'язку між аерозольним виходом ліпосомної готової препаративної форми й просторовим натягом. Однак, з підвищенням концентрації липосомной готової препаративної форми відзначається інверсивне споріднення між просторовим натягом і вимірами в'язкості.
Аналізи готових препаратів комплексу лікарський засіб-липосомы до розпилення при квазіпружному світлорозсіюванні демонстрували гетерогенний стартовий діапазон розміру часток приблизно від 2,2 до 11,6 мкм (це в або біля верхньої точної межі Nicomp 370). Після розпилення визначені мінімальні розходження між будь-якими готовими препаративними формами. Розмір часток ліпосом усередині резервуара для розпилення становив 294-502 нм, і зразки аерозолю збирали за допомогою відсікувача AGI- 4, у діапазоні від 271 до 555 нм.
Готові високодозовані препарати лікарський засіб-ліпосоми, що складаються з 10 мг Bud:150 мг DLPC і Cs 20 мг:DLPC 150 мг, обрані для подальшого аерозольного вивчення. Аналізи з каскадним вимірником ударів Андерсена показують значення 2,0 мкм MMAD/1,5 GSD для Bud-DLPC і 2,0 мкм/1,8 для s-DLPC (таблиця 1). Аналізи цих готових препаративних форм на моделі, що імітує легені людини, при 15 ВРМ і 500 мл загального обсягу демонструють, що за 3 хвилини вдихання можна вдихнути 1000 мкг денної дози Bud у ліпосомах, а за 12 хвилин аж до 5000 мкг (таблиця 1). Результати вдихання Cs-DLPC на моделі легенів людини демонструють, що з високими дозами Cs-DLPC потрібно 4 хвилини для вдихання 5000 мкг що розпорошується Cs у ліпосомах; 11,5 хвилин потрібно для вдихання 15000 мкг Cs (таблиця 1). Ці результати демонструють високу здатність ліпосом для аерозольної доставки лікарського засобу.
Справжній винахід ставиться до високодозованої ліпосомної аерозольної композиції циклоспорину A, що містить до близько 30 мг/мл циклоспорину A у до близько 225 мг фосфоліпіду/мл вихідної концентрації в резервуарі. Переважно, ліпосомна аерозольна композиція містить до близько 21,3 мг/мл циклоспорину A у до близько 160 мг фосфоліпіду/мл вихідної концентрації в резервуарі. Звичайно відповідно до винаходу, у ліпосомної аерозольної композиції із циклоспорином A розмір часток, як обмірювано методом аеродинамічного діаметра по медіані маси, перебуває на рівні від близько 1,0 мкм до близько 3,0 мкм. Крім того, у циклоспорин A ліпосомної аерозольної композиції співвідношення циклоспорину A і фосфоліпіду становить від близько 1 до близько 7,5. Переважно, фосфоліпід обраний із групи, що складає з фосфатидилхоліду яєчного білка, фосфатидилхоліду гідрованих соєвих бобів, дімірістоіфосфатіділхоліду, діоліеолілдіпальмітоілеолілфосфатіділхоліду й діпальмітоїл фосфатіділхоліду. У цілому, ліпосомна аерозольна композиція із циклоспорином A відповідно до винаходу може бути використана для лікування імунологічних легеневих захворювань. Переважно, подібні імунологічні легеневі захворювання обрані із групи, що складає з реакції відторгнення трансплантата, бронхолітичною облітерацією, алергії, гіперчутливості й астми.
Справжній винахід також стосується високодозованої будезонід-ліпосомної аерозольної композиції, що складає з до близько 15 мг/мл будезоніду до близько 225 мг фосфоліпіду/мл вихідної концентрації в резервуарі. Переважно, будезонид-липосомная аерозольна композиція містить до близько 15 мг/мл будезоніду до близько 225 мг фосфоліпіду/мол стартової концентрації в резервуарі. Для будезоніду-ліпосомної аерозольної композиції відповідно до винаходу розмір часток, обмірюваний по діапазоні аеродинамічного діаметра по медіані маси, перебуває на рівні від близько 1,0 мкм до 2,0 мкм. У цілому, будезонід-ліпосомна аерозольна композиція має співвідношення будезоніду до фосфоліпіду від близько 1 до близько 15. Характерні приклади фосфоліпідів дані вище. Звичайно будезонід-ліпосомна аерозольна композиція може використовуватися для лікування імунологічних і запальних легеневих захворювань.
Характерні приклади імунологічних і запальних легеневих захворювань наведені вище. Циклоспорин A побічно інгібірує запалення шляхом блокади імунної відповіді. Будезонід інгібірує як імунні відповіді, так і запалення. Ці легеневі захворювання мають обидва компоненти.
Справжній винахід, крім того, спрямовано на спосіб лікування хворих, що мають імунологічні легеневі захворювання, що включає етап призначення даному хворому фармакологічно прийнятної дози циклоспорину A. Справжній винахід, крім того, спрямовано на спосіб лікування хворих, що мають імунологічне легеневе захворювання, що включає етап призначення названому хворому фармакологічно прийнятної дози аерозольної композиції будезонід-ліпосоми. Одержання підходящих фармацевтичних композицій і концентрацій для застосування за наведеною методикою очевидні для кваліфікованих фахівців.
Справжній винахід також спрямований на ліпосомну аерозольну композицію із циклоспорином A, що містить до близько 30 мг/мл циклоспорину A у до близько 225 мг дилауроїлфосфатидилхоліну/мл вихідної концентрації в резервуарі. Крім того, пропонується високодозована аерозольна будезонід-ліпосомна композиція, що містить до близько 15 мг/мл будезоніду в до близько 225 мг ділауроілфосфатидилхоліну/мл вихідної концентрації в резервуарі.
Справжній винахід ставиться в цілому до високодозованих ліпосомних аерозольних композицій, що містять біля 12-30 мг/мл фармацевтичного з'єднання й біля 130-375 мг фосфоліпіду/мол вихідної концентрації в резервуарі. Наприклад, справжній винахід ставиться до протизапальних глюкокортикоїдам, імуносупресивним з'єднанням, противогрибковим з'єднанням, антибіотиків, противірусним з'єднанням і протираковим з'єднанням, що доставляється за допомогою ліпосомної аерозольної композиції у фосфоліпіді з високою дозою.
Будь-які патенти й публікації, згадані в даному описі, ілюструють лише рівень техніки в області винаходу. Ці патенти й публікації включені тут у вигляді посилань.
Справжні приклади з описаними способами, методиками, лікуванням і специфічними з'єднаннями наведені як кращі втілення й не обмежують обсяг заявленого винаходу.
ФОРМУЛА ВИНАХОДУ
1. Високодозована ліпосомна аерозольна композиція, що містить 12-30 мг/мл циклоспорину А або будезоніду й 130-375 мг/мл фосфоліпіду в надчистій воді, що перебуває в ємності розпилювача.
2. Композиція по п.1, що відрізняється тим, що містить до близько 30 мг/мл циклоспорину А и до близько 225 мг фосфоліпіду/мол вихідної концентрації в резервуарі.
3. Композиція по п.1, що відрізняється тим, що містить до близько 21,3 мг/мл циклоспорину А до близько 160 мг фосфоліпіду/мол вихідної концентрації в резервуарі.
4. Композиція по п.1, що відрізняється тим, що розмір часток названих ліпосом перебуває в діапазоні від близько 1 мкм до близько 3,0 мкм.
5. Композиція по п.1, що відрізняється тим, що відношення циклоспорину А к фосфоліпіду становить від близько 1 до близько 7,5.6.
6. Композиція по п.1, що відрізняється тим, що фосфоліпід обраний із групи, що складає з фосфатидилхоліду яєчного жовтка, фосфатидилхоліду гідрованих соєвих бобів, дімірістоіфосфатіділхоліду, ділауроїлфосфатидилхоліну, діоліеолілдіпальмітоілеолілфосфатіділхоліду й діпальмітоїл фосфатіділхоліду.
7. Композиція по п.1, що відрізняється тим, що неї використовують для лікування імунологічних легеневих захворювань.
8. Композиція по п.7, що відрізняється тим, що імунологічні легеневі захворювання являють собою групу, що складається з відторгнення трансплантата, бронхолітичної облітерації, алергії, гіперчутливості й астми.
9. Композиція по п.1, що відрізняється тим, що містить до близько 15 мг/мл будезоніду й до близько 225 мг фосфоліпіду/мл вихідної концентрації в резервуарі, причому розмір часток названих ліпосом при зміні аеродинамічного діаметра по медіані маси перебуває в діапазоні від близько 1,0 мкм до близько 3,0 мкм.
10. Композиція по п. 9, що відрізняється тим, що містить до близько 12,5 мг/мл будезоніду в до близько 187,5 мг фосфоліпіду/мл вихідної концентрації в резервуарі.
11. Композиція по п.9, що відрізняється тим, що відношення будезоніду до фосфоліпіду становить від близько 1 до близько 15.12.
12. Композиція по п. 9, що відрізняється тим, що фосфоліпід обраний із групи, що складає з фосфатидилхоліду яєчного жовтка, фосфатидилхоліду гідрованих соєвих бобів, дімірістоіфосфатіділхоліду, ділауроїлфосфатидилхоліну, діоліеолілдіпальмітоілеолілфосфатіділхоліду й діпальмітоїл фосфатіділхоліду.
13. Композиція по п.9, що відрізняється тим, що неї використовують для лікування імунологічних і запальних легеневих захворювань.
14. Композиція по п.13, що відрізняється тим, що названі імунологічні й запальні легеневі захворювання являють собою групу, що складається з відторгнення трансплантата, бронхолітичної облітерації, алергії, гіперчутливості й астми.
15. Високодозована ліпосомна аерозольна композиція із циклоспорином А, що містить до близько 21,3 мг/мл циклоспорина А в до близько 160 мг ділауроїлфосфатидилхоліну/мл початкової концентрації в резервуарі.
16. Високодозована ліпосомна аерозольна композиція з будезонідом, що містить до близько 12,5 мг/мл будезоніду в до близько 187,5 мг ділауроїлфосфатидилхоліну/мл початкової концентрації в резервуарі, що відрізняється тим, що діапазон розміру часток названої ліпосоми, як обмірювано по аеродинамічному діаметрі по медіані маси, становить від близько 1,0 мкм до близько 3,0 мкм.
Висновки
В курсовій роботі я провела дослідження технології аерозольних лікарських форм промислового виробництва, визначила переваги та недоліки аерозольних лікарських препаратів. Внаслідок проведених аналізів зрозуміла, що аерозолі досить широко застосовуються в медичній практиці, особливо при таких захворюваннях як Бронхіальна астма, хронічне обструктивне захворювання легень, а також, що досить широкий арсенал фармакологічних засобів для інгаляції пропонується в аптечній мережі, до них відносять такі:
- Сальбутамол (Вентолін, Сальгім); Тербуталін (Бриканія), Фенотерол (Беротен), Іпратронію бромід (Атровент), Іпратронію бромід + фенотерол (Беродуал), Беклометазона дипропіонат (Бекломет, Беладон “ Легке дихання”), Будесоніт (Бенакорт, Пульмікорт), Флютіказон (Фліксотід), Сальметерол (Серевент) та багато ін.
Що свідчить про перспективне виробництво аерозольних препаратів. Велику роль в якості препарату та швидкості виникнення терапевтичного ефекту відіграє інгалятор. Сучасні інгалятори лікарських засобів можна поділити на кілька основних типів:
Подобные документы
Історія створення аерозолів, їх переваги та недоліки. Пристрої та матеріали, що застосовуються при їх виготовленні. Класифікація і технологія лікарських засобів, що знаходяться під тиском, їх стандартизація та умови зберігання. Типи аерозольних систем.
курсовая работа [503,1 K], добавлен 26.09.2010Класифікація та різновиди очних лікарських форм, їх властивості та оцінка ефективності використання, вимоги до якості, існуючі проблеми та їх вирішення. Особливості технології виготовлення очних ліків, перспективи організації їх виробництва в Україні.
курсовая работа [57,5 K], добавлен 26.09.2010Антибіотики: поняття, класифікація, комбінування. Вимоги до лікарських форм. Розрахунки антибактеріальної активності антибіотиків. Особливості технології рідких та м'яких лікарських форм. Оцінка якості та зберігання лікарських форм з антибіотиками.
курсовая работа [42,4 K], добавлен 19.05.2012Розчини як лікарська форма, їх класифікація і біофармацевтична оцінка. Визначення та класифікація рідких лікарських форм. Характеристика розчинників, що використовуються в приготуванні рідких лікарських форм. Розрахунки по розведенню етилового спирту.
курсовая работа [51,2 K], добавлен 18.03.2010Історія розвитку офтальмології. Характеристика основних захворювань очей. Класифікація, технологія приготування та контроль якості очних лікарських форм (крапель, мазей, примочок, спреїв). Перспективи організації виробництва очних засобів в Україні.
курсовая работа [65,9 K], добавлен 29.01.2014Утруднені випадки приготування лікарських форм, їх різновидності. Поняття "фармацевтичні несумісності", їх класифікація. Причини, що зумовлюють фізичні, фізико-хімічні та хімічні несумісності. Способи приготування лікарських форм з утрудненою технологією.
курсовая работа [53,9 K], добавлен 17.10.2014Дозування як основна технологічна операція в процесі виготовлення екстемпоральних лікарських форм. Метрологічні властивості ваг. Дозування за об’ємом та краплями. Правила дозування твердих, рідких, густих лікарських та допоміжних речовин в умовах аптеки.
курсовая работа [4,0 M], добавлен 11.05.2009Особливості фармакології, фармакокінетики, фармакодинаміки в дитячому віці, правила дозування ліків. Класифікація лікарських форм в педіатрії та їх біофармацевтична оцінка. Нормативні вимоги до дитячих лікарських форм, їх проблеми та шляхи вдосконалення.
курсовая работа [59,9 K], добавлен 26.09.2010Сутність мазевих основ для виготовлення лікарських сумішей, їх використання в сучасній фармакології, ефективність і переваги застосування. Фактори, що впливають на терапевтичний ефект мазі. Класифікація основ для мазей, їх різновиди та оцінка якості.
курсовая работа [705,4 K], добавлен 11.05.2009Основні показники, що характеризують якість фармацевтичних емульсій, їх фізична, хімічна та мікробіологічна стабільність. Перспективність емульсійних лікарських форм. Технологія приготування олійних емульсій та додавання лікарських речовин до них.
курсовая работа [60,2 K], добавлен 28.03.2016