Использование элементов ТРИЗ-педагогики в обучении школьников математике

"Прикладная диалектика" и ее применение в педагогике. Теория решения изобретательских задач (ТРИЗ). Ситуация как средство развития творческих способностей. Методы технического творчества при обучении школьников математике. Тренинг креативного мышления.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 24.06.2009
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Педагогическая технология должна обладать признаками системы. В структуру педагогической технологии обязательно должны входить:

· концептуальная основа;

· содержательная часть (цели обучения, содержание учебного материала);

· описание технологического процесса (процессуальная часть): организация учебного процесса; деятельность учителя по управлению процессом усвоения материала; методы и формы работы учителя; диагностика учебного процесса.

В ТРИЗ определена [55] (небесспорно) содержательная часть, а также делаются попытки определить часть процессуальную (ведется апробация отдельных форм и методов обучения). Концептуальная часть (а здесь под концепцией понимаются не основы «железной» ТРИЗ, а концепция усвоения опыта, научное обоснование процесса достижения образовательных целей) не определена совершенно [51].

Все вышесказанное не позволяет считать на сегодняшний день использование элементов ТРИЗ в учебном процессе ни педагогической технологией, ни, тем более, новой отдельной педагогикой.

В пособиях по ТРИЗ говорится о мышлении (его «системности», «функциональности», «диалектичности» и даже «синергетичности», т. е. о том, что связано с понятиями ТРИЗ: система, функция, противоречие и т. д.), а также о воображении (поскольку традиционная «железная» ТРИЗ имеет разработанный курс РТВ - развитие творческого воображения). Однако возрастные закономерности развития того же мышления отражены слабо, несмотря на декларируемые в пособиях требования учета возрастных и других психологических особенностей детей. Хотя методы развития мышления с учетом психологических особенностей можно встретить в работах П. Я. Гальперина, М. И. Махмутова, А. М. Матюшкина, И. С. Якиманской и т. д.

На сегодняшний день отрицательными сторонами применения ТРИЗ в педагогике можно также назвать следующие:

· в школах насаждается неразработанная методика преподавания ТРИЗ, основанная на поверхностном знании самих основ ТРИЗ;

· наблюдающаяся «порча» самой школы ТРИЗ, большое количество дилетантов в рядах ТРИЗ, выдающих себя за экспертов или разработчиков;

· внедрение ТРИЗ в учебный процесс без какого-либо учета возрастных и психологических закономерностей.

Можно с большой эффективностью использовать элементы ТРИЗ в учебном процессе, но выборочно. Эффективность отдельных приемов убедительно была доказана в ходе экспериментальной работы по применению ТРИЗ в педагогике [57, 58, 77, 78, 79]: по физике (А. Гин), литературе (Ю. Мурашковский, О. Алешина), по биологии (И. Андржеевская), по информатике [36] и естествознанию [31, 37].

Внедрение отдельных элементов ТРИЗ в учебный процесс способствует развития системности мышления, благодаря разработанному инструментарию самого ТРИЗ [27, 50]. Наиболее ценным положительным результатам внедрения в преподавании общеобразовательных предметов в школе элементов ТРИЗ может стать укрепления единства теоретико-методологической (концептуальной) трактовки образования и ее реализации в конкретных учебных технологиях, благодаря созданию преемственности материала основанного на инструментарии ТРИЗ. Например:

· на уроке математики учитель вводить дробные числа как бисистему из числителя и знаменателя, формируя противоречие и применяя для его разрешения закон перехода в бисистему;

· на уроке биологии материал о фасеточных органах зрения подается как проявление в живой природе закона перехода в полисистему и закономерностей, соответствующих принципу дробления.

· на уроке русского языка, когда речь идет о возникновении приставки, ее появление связывается с стихийным применением законна перехода в бисистему.

Таким образом, появляется некая комфортность усвоения различного (на первый взгляд) материала, информация, которую получает ученик, уже не кажется «взятой с потолка», формируется фундаментальность приобретенных знаний и в этом положительный эффект применения ТРИЗ в педагогике.

Но ТРИЗ-педагогика - это не преподавание ТРИЗ и не развитие системы образования методами ТРИЗ. Под термином «ТРИЗ-педагогика» мы будем понимать подготовку мышления для решения творческих задач. Эта подготовка подразумевает и особую дидактику, и предметную сферу. Предмет - творческие задачи и правила их решения. Дидактика - особые упражнения, подготавливающие к решению задач, и особая деятельность по решению этих задач.

При этом ТРИЗ-педагогика может использовать в своих дидактических целях методы, никак не относящиеся к собственно ТРИЗ. Так, мозговой штурм или морфологический анализ имеют ряд своих дидактических преимуществ, которые целесообразно использовать. Методологической основой для ТРИЗ-педагогики является ТРИЗ [24].

Таким образом, внедрение отдельных элементов ТРИЗ в школьные предметы дает положительный результат, но о методике внедрения в школьный курс математики на данный момент говорят всего несколько работ [9, 10] одного автора, ориентированных на младших школьников. Поэтому вопрос о внедрение элементов ТРИЗ в преподавание школьного курса математики остается открытым.

Глава 2. Использование инструментов ТРИЗ
в обучении школьников математике

2.1. Ситуация как средство развития творческих способностей

Математика, особенно в школе, воспринимается как «нетворческий» предмет. О развитии творческих математических способностей на уроках математики можно прочитать в книгах Д. Пойа [64], Н. Тучнина [73] и др. Однако разговор в них идет именно о математическом творчестве, а сегодняшний социальный заказ общества предъявляет к личности, среди прочих качеств, умение действовать в нестандартных ситуациях [53], причем далеких от применения «явной» математики. Таким образом, речь идет о формировании такого качества личности как креативность, а не математическая креативность.

При решении текстовых задач рекомендуется от задачи переходить к модели задачи (алгебраической и аналитической), таким образом, дальнейшее решение заключается в решении модели [39] (рис. 2).

С точки зрения ТРИЗ это система (антропогенная) и к ней предъявляется требование: способствовать развитию креативности в процессе ее реализации. Опыт преподавания показывает сложность выполнения этого требования на практике. Кардинально преобразовывать данную систему не рационально (ее применения эффективно для достижения других дидактических целей математики, методика ее использования хорошо отработана) с одной стороны, а с другой преобразование необходимо для выполнения указанного требования к системе.

Сформулируем ИКР: система осталось неизменной, но требование стало выполняться. Используем инструмент ТРИЗ - вепольный анализ, который позволяет добавить в систему новое «вещество» Х, которое создает поле, отвечающее предлагаемому требованию (рис. 3).

129

Тогда, используя общий алгоритм решения задачи в ТРИЗ [5], элемент Х - это некоторая ситуация (рис. 4).

Именно переход от ситуации к задаче должен помочь развивать на уроках математики креативность, причем при использовании данной схемы отработанная методика по использованию модели перехода от задачи просто необходима для сохранения других дидактических целей.

Задача отличается от ситуации наличием четкой формулировки, условие содержит все необходимые данные в явном виде, метод решения зачастую известен и представляет собой цепочку формальных операций, правильный ответ определен однозначно. Ситуация Под ситуацией мы будем понимать задачи «открытого» типа, внедрением в школу которых занимается ТРИЗ-педагогика (см. [21,26]) в свою очередь имеет неопределенное условие, разные подходы к решению, множества решений, благодаря чему она ближе к проблемным ситуациям, возникающим в жизни.

Основная цель практико-ориентированных (прикладных и практических) задач в школе на уроках математики (А. Азевич, Е. В. Величко, М. В. Крутихина, В. А. Петров, В. В. Пикан, Н. А. Терешин, А. Н. Тихонов, Ю. Ф. Фоминых, И. М. Шапиро и др.) заключается в осуществлении содержательной и методологической связи школьного курса математики с профессиональной составляющей образования, то есть способствуют развитию профессиональных умений, входящих в состав учебной и познавательной деятельности в процессе изучения математики, а не развитию креативности учащегося. Поэтому практико-ориентированные задачи нельзя в полной мере назвать ситуацией.

Пример 1. Окно имеет форму прямоугольника, завершенного сверху полукругом. Укажите такие размеры окна, чтобы при данном периметре Р оно пропускало больше света.

Данный пример - практико-ориентированная задача, и её решение заключается в применении производной (задача на максимум и минимум). Четкое формулировка условия задачи, все необходимые данные в явном виде, метод решения представляет собой цепочку формальных операций. Поэтому это задача, а не ситуация.

Пример 2. Как можно, не переплывая реки, измерить ее ширину [59, 60].

Данный пример - ситуация. Из условия не совсем ясно, чем можно пользоваться, какая река. Она имеет разные подходы к решению, причем в каждом подходе мы переходим к формулировке новой задачи (модели задачи).

1-ый способ. Используем прибор с тремя булавками на вершинах равнобедренного прямоугольного треугольника. Пусть требуется определить ширину АВ реки (рис. 5), стоя на том берегу, где точка В, и не перебираясь на противоположный.

Встав где-нибудь у точки С, держите булавочный прибор близ глаз так, чтобы, смотря одним глазом вдоль двух булавок, вы видели, как обе они покрывают точки В и А. Понятно, что, когда это вам удастся, вы будете находиться как раз на продолжении прямой АВ. Теперь, не двигая дощечки прибора, смотрите вдоль других двух булавок (перпендикулярно к прежнему направлению) и заметьте какую-нибудь точку D, покрываемую этими булавками, т.е. лежащую на прямой, перпендикулярной к АС. После этого воткните в точку С веху, покиньте это место и идите с вашим инструментом вдоль прямой CD, пока не найдете на ней такую точку Е (рис. 6), откуда можно одновременно покрыть для глаза булавкой b шест точки С, а булавкой а - точку А. Это будет значить, что вы отыскали на берегу третью вершину треугольника АСЕ, в котором угол С - прямой, а угол Е равен острому углу булавочного прибора, т.е. половине прямого. Очевидно, и угол А равен половине прямого, т.е. АС = СЕ.

Если вы измерите расстояние СЕ, например, шагами, вы узнаете расстояние АС, а отняв ВС, которое легко измерить, определите искомую ширину реки.

2-ой способ. Здесь также находят точку С на продолжении АВ и намечают при помощи булавочного прибора прямую CD под прямым углом к СА (рис. 7).

На прямой CD отмеряют равные расстояния СЕ и EF произвольной длины и втыкают в точки E и F вехи. Став затем в точке F с булавочным прибором, намечают направление FG, перпендикулярное к FC. Теперь, идя вдоль FG, отыскивают на этой линии такую точку H, из которой веха Е кажется покрывающей точку А. Это будет означать, что точки Н, Е и А лежат на одной прямой. Задача решена: расстояние FH равно расстоянию АС, от которого достаточно лишь отнять ВС, чтобы узнать, искомую ширину реки.

Другие способы разрешения ситуации, использующие признаки подобия треугольников, прямоугольный треугольник с углом в 30° можно посмотреть у Я. И. Перельмана [60].

При разрешении данной ситуации мы сначала переходили к задаче (модели задачи), формулировали ее на математическом языке, и только после чего ее решали. В первом способе мы ставили перед собой задачу: используя известный равнобедренный прямоугольный треугольник измерить длину отрезка АВ. Во втором способе: использовать признаки равенства треугольников для нахождения длины отрезка АВ. Рассмотрим другой пример.

Пример 3. Задача древних индусов (перевод В.К. Лебедева).

Над озером тихим,

С полфута размером, высился лотоса цвет.

Он рос одиноко. И ветер порывом

Отнес его в сторону. Нет

Воле цветка над водой,

Нашел же рыбак его ранней весной

В двух футах от места, где рос.

Итак, предложу я вопрос:

Как озера вода

Здесь глубока?

Обозначим (рис. 8) искомую глубину CD пруда через . Тогда, по теореме Пифагора легко найди искомую глубину.

Это задача, у неё четкое формулировка условия, все необходимые данные в явном виде, метод решения представляет собой цепочку формальных операций. Попробуем превратить данную задачу в ситуацию.

Пример 4. Как можно измерить глубину реки с берега

Контрольное решение: рассмотрим ресурсы с точки зрения ТРИЗ, которыми мы располагаем. Текущая вода, берег, дно, человек. Упростим задачу. Как измерить с берега глубину водоема с неподвижной водой? Например, с берега озера. Тоже непросто, упростим еще. Как измерить глубину неподвижной воды у самого берега. А это равносильно измерению глубины колодца. Надо привязать к камню веревку или леску с поплавками, разнесенными, скажем, на 1 метр и бросить камень в колодец, или может помочь метод из примера 3. А как измерить глубину озера с берега? Во-первых, надо чтобы веревка была перпендикулярна поверхности воды. Как это сделать? На веревку с камнем навесим поплавки и бросим камень в нужное место озера, тогда будет видно, сколько поплавков утонуло, а сколько лежит на поверхности.

Введем следующее усложнение задачи - течение. Отметим место на берегу реки и перпендикулярно берегу бросим камень с веревкой и с поплавками на середину реки. Течение отнесет веревку с поплавками на расстояние В. Определим число погруженных поплавков K и рассчитаем по теореме Пифагора глубину реки .

В данном примере мы снова переходили от ситуации к формулировке задачи (модели задачи), уточняли ее, рассматривали используемые ресурсы. Вариантов решения у данного примера скорее очень много, они опираются на использование каких-либо свойств, причем некоторые решения нематематические.

Переход от задачи к ее модели для решения достаточно хорошо применяется в основной школе, а переход от ситуации к задаче применятся редко, «неосознанно», но как показывает первый опыт использования данного перехода [80], именно он может стать опорой для развития творческих способностей у учащихся на уроках математики в школе.

2.2. Мета-алгоритм изобретения ТРИЗ и решение учебных математических задач

ТРИЗ является качественной теорией. Строгое соответствие моделей качественных теорий концепциям конструктивной математики очень упрощенно; можно сказать, что конструктивная математика имеет дело с качественными моделями, определяемыми следующим конструктивным способом [19]: 1) фиксируются исходные конструктивные объекты, определяемые, в частности, в виде примеров или образцов; 2) фиксируются правила (не обязательно аксиоматические), по которым строятся новые объекты из уже имеющихся; 3) фиксируются условия, налагаемые на исходные и построенные объекты и определяющие их конструктивность (например, осуществимость, полезность и эффективность).

Совокупность правил, определяющих построение новых конструктивных образов, называется алгоритмом. Обобщенные алгоритмы, на основе которых могут быть построены специализированные (ориентированные на определенное приложение, на определенный класс моделей) или детализированные (более точные) алгоритмы в ТРИЗ называются мета-алгоритмами [55].

Поэтому логично рассмотреть применение мета-алгоритма ТРИЗ в преподавании математики. Хотя школьная математика отлична от математики [48], но преемственность построения рассуждений сохраняется.

Рассмотрим обобщенную схему мета-алгоритма изобретения (рис. 9, Prof. Dr. Dr. Sc. techn. M. Orloff, Modern TRIZ Academy International, Berlin), а также упрощенный мета-алгоритм для решения некоторого класса учебных математических задач (рис. 10).

Тогда ход решения задачи можно уложить в 4 крупных этапа:

· диагностика (исследование задачи),

· редукция (построение модели задачи (алгебраической, аналитической и др.)),

· трансформация (выбор метода решения (вычисления) модели),

· верификация (проверка решения).

При этом данная схема совпадает с методикой организации решения учебной математической задачи соблюдением формально-логической схемы рассуждения «анализ - построение - доказательство - исследование» при решении геометрических задач на построение и т.п. [39, 82].

Переходы 1 и 3 требуют знания теории моделей и прикладных областей ее применения. Переход 2 требует умения строить и решать модели теории.

Пример 5. В двух цехах завода стоят станки двух типов. Первого типа 2 и 1 соответственно в первом и втором цехе, второго - 6 и 2. Определите среднею мощность, потребляемой станком каждого типа, если первый цех потребляет 340 киловатт-часов, второй - 130.

Решение представим в виде мета-алгоритма (рис. 11).

Пусть в двух цехах завода работает разное количество станков двух типов. Для точного определения средней мощности, потребляемой станком определенного типа, было решено воспользоваться имеющимися измерениями расхода электроэнергии по каждому цеху за сутки. На этапе диагностики проблемы было установлено количество станков каждого типа и данные по потреблению электроэнергии. На этапе редукции была построена система из двух линейных уравнений с двумя неизвестными. На этапе трансформации из двух простейших подходящих методов (метод исключения переменных и метод замены и подстановки переменных) выбрали последний. На этапе верификации путем прямой подстановки полученных значений искомых переменных в исходные уравнения убедились в правильности решения задачи.

Этот пример служит практической иллюстрацией абстрактной схемы, приведенной на рис. 10.

Пример 6. Что больше или ?

Решение представлено на рис. 12. Необходимо сравнить два числа. На этапе диагностики проблемы было установлено что непосредственное сравнение затруднительно. На этапе редукции была построена функция (обобщение по двум ее значениям) . На этапе трансформации из методов доказательства монотонности функции выбрали наиболее подходящий с использованием производной . На этапе верификации доказали монотонность.

На этапе верификации путем исследования полученного решения убедились в правильности решения задачи.

Таким образом, при использовании мета-алгоритма для решения учебных математических задач появляется возможность наглядней представлять ход решения задачи.

Причем на этапах диагностики и редукции преимущественно используется анализ (проблемы решения), на этапах трансформации и верификации - синтез (идеи решения). Тем самым, используя при решении задачи мета-алгоритм, ребенок на уроках математики осознано учиться использовать разные способы мышления.

2.3. Вепольный анализ при решении учебных математических задач

Обучение - это замена удивления пониманием …

Виктор Кротов

Известно, что ни одно событие в материальном мире не происходит без видоизменения вещества и энергии (поля). Взаимодействие этих двух составляющих и определяет все многообразие мира.

При решении задач зачастую трудно сразу найти решение, требуются тактические шаги, конкретизирующие наши действия. Для этого нужен точный анализ взаимодействия веществ и энергии в оперативной зоне задачи, с точки зрения ТРИЗ.

Выйти из этого положения в изобретательской деятельности позволяет так называемый вепольный анализ. Слово «веполь» образовано от слов «вещество» и «поле». Вепольный анализ проводится в оперативной зоне возникновения задачи, т. е. там, где выявлено физическое противоречие. В этом месте обязательно должны быть два вещества и , полезно или вредно взаимодействующие между собой, и поле П, которое связывает эти два вещества (рис. 12).

В нашей работе будем придерживаться упрощенной схемой вепольного анализа [2, 35], основанного на двух правилах:

1) если одно вещество вредно воздействует на другое, то между ними вводят третье вещество;

2) если поле вредно воздействует на вещество, то между ними водят второе поле, нейтрализующее действие первого, или его вредное действие оттягивает третье вещество.

При решении учебных математических задач в роли «веществ» выступают объекты математики (геометрические фигуры, числа), а в качестве поля свойства объектов, их движение и т.п.

Пример 7. Может ли пятизначное число равняться произведению своих цифр [49]?

Решение. Применим вепольный анализ ТРИЗ, для этого необходимо определить как минимум два вещества и поле, воздействующее на них.

Пусть есть число . Произведение цифр числа равняется . Рассмотрим два вещества - , - К и поле - П, действующее на вещества «вредно» (вещества между собой связаны, изменение одного вещества ведет к изменению другого, что затрудняет нахождения такого вещества, что бы ), (рис. 12).

129

Используем первое правило вепольного анализа, введем новое вещество , оттягивающие на себя вредное воздействие поля П. (рис. 13). Решение задачи на вепольном языке составлено. Теперь надо определить, что же такое третье вещество оттягивающие на себя вредное действие поля. Это вещество должно взаимодействовать с , если учесть, что отношение двух чисел - это их сравнение, получим, вспомнив условие задачи, что надо найти такое число, которое легко сравниваться с числами и К. Тогда в качестве такого вещества можно взять , а , получим . Равенства нет, а значит, таких чисел нет.

Пример 8. Как нужно у квадрата срезать 4 угла, чтобы получился правильный восьмиугольник?

129

На вепольном языке получаем, что есть одно вещество и на него «вредно» действует некоторое поле П (рис. 14), (первоначально трудно увидеть положительные стороны действия поля П). Второе правило гласит, что необходимо внести новое поля (рис. 15). Новое поле создает некое действие применительно к геометрическим объектам, можно сказать, что это движение. Тогда решение задачи свелось к нахождению какого-либо движения для ответа на поставленный вопрос задачи. В книге «Математическая шкатулка» [49] предлагается движение, заключающееся в повороте квадрата, тогда общая часть двух квадратов будет правильным восьмиугольником.

При использовании элементов вепольного анализа решение задачи сводиться к нахождению третьего вещества или нового поля, что значительно легче решения первоначальной задачи. Начальные рассуждения на вепольном языке кажутся слишком «затянутыми» и затруднительными, но, как показывает практика, при хорошей отработке элементов вепольного анализа их использование при решении задач происходит уже «подсознательно».

2.4. Метод переизобретения знаний Пазработка осуществлена на основе статьи [62]

ТРИЗ является продолжением диалектики Аристотеля и Гегеля и дополняет их конкретными инструментальными методами преодоления противоречий. Поэтому ТРИЗ позволяет более описывать, а главное - проектировать процессы развития различных систем [30]. Таким образом, изучая любую систему, можно более глубоко понять эту систему и одновременно формировать творческое мышление, если рассматривать ее как результат развития системы-предшественницы, преодоления в ней противоречий в соответствии с теми закономерностями, которые теперь известны, как законы, принципы, приемы, стандарты ТРИЗ [40]. Один из вариантов такого рассмотрения - переизобретение знаний с помощью ТРИЗ.

Объектами изучения в математике являются глубинные закономерности нашего мира, выраженные в математических понятиях и правилах. И те, и другие, согласно ТРИЗ, а также философским наукам системологии и диалектике, являются развивающимися системами. Рассмотрим возможности их переизобретения в учебном процессе.

При использовании элементов ТРИЗ-педагогики при изучении школьной математики путем переизобретения знаний вполне возможно, если переизобретать не закономерности, а описывающие их понятия и правила.

Пример 9. Рассмотрим совокупность равенств типа , и т. д., т. е. таблицу умножения. Из истории арифметики известно, что раньше людям было известно сложение, а уже затем умножение. У операции сложения была проблема, связанная, например, с определением площадей. Необходимо было многократно складывать одинаковые слагаемые. Переизобрести с учащимися операцию умножения можно, применяя к сложению закон развертывания-свертывания (в части свертывания) и принцип объединения. Многократные операции сложения одинаковых слагаемых можно объединить, свернуть в операции умножения.

Пример 10. Когда-то людям были известны только целые числа. Но их оказывалось недостаточно, когда было необходимо измерять доли каких-либо объектов. В результате стихийного применения принципа дробления люди создали идею дробей. Развитие дробных чисел можно рассматривать и дальше. Первые дроби у древних (унция и т. п.) были очень неудобны, особенно при арифметических операциях. Проблема была решена с использованием для записи дробных чисел их предшественников - целых чисел - стихийным применением закона перехода в бисистему. Современная простая дробь - это бисистема из числителя и знаменателя. Смешанные числа - это полисистемы из целой части, числителя и знаменателя. Проблема сложения и вычитания простых дробей с разными знаменателями была решена путем стихийного применения принципа эквипотенциальности (приведение к общему знаменателю). Все же у простых дробей правила выполнения арифметических операций, хотя и достаточно понятны, но не совсем просты, отличаются от правил операций с целыми числами. Проблема была решена стихийным применением к целым числам принципа инверсии. В десятичных дробях вес разрядов справа от запятой (по степеням 10) - отрицательный, в противоположность положительному весу разрядов слева от запятой.

Пример 11. Отрицательные числа получаются из положительных применением принципа инверсии.

Пример 12. Иррациональные числа получаются из рациональных применением принципа непрерывности полезного действия: числа занимают непрерывно всю числовую ось.

Пример 13. Комплексные числа получаются из вещественных применением принципа перехода в другое измерение: от числовой прямой к числовой комплексной плоскости.

Пример 14. Переменные получаются из постоянных применением принципа динамичности.

Пример 15. Функции одной переменной получаются из одиночных переменных по закону перехода в бисистему.

Пример 16. Функции нескольких переменных получаются из одиночных переменных по закону перехода в полисистему.

Пример 17. Создание Ньютоном и Лейбницем интегрального исчисления - классический пример перехода на микроуровень.

Таким образом, можно аналогично рассуждать в отношении других математических объектов, используя метод переизобретения знаний. Использовать данный метод можно на факультативных занятиях. Учащаемся наглядно показывается, как их уровень знакомства с математикой соответствует общим законам развития систем.

2.5. Методы технического творчества при обучении школьников математике

В конце первой главы в инструменты ТРИЗ-педагогики мы включили методы мышления, не относящиеся собственно к ТРИЗ. По сравнению классическими инструментами ТРИЗ методы технического творчества лучше отработаны при использовании их в учебном процессе [22, 42, 67, 68, 70] начиная с начальной школы [20, 28, 29, 87], но об использовании данных методов при обучении школьников математике литературы не встречается, хотя они являются ценным дидактическим материалом.

К основным методам научного творчества можно отнести: метод проб и ошибок; метод морфологического анализа; мозговой штурм; синергетику.

Данные методы достаточно легко можно применять при решении учебных математических задач.

Пример 18. В каком случае произведение двух натуральных чисел дает четное число?

Используем метод проб и ошибок, переберем все возможные варианты четности двух чисел. И сделаем соответствующий вывод. В альтернативу можно показать применение идеального конечно результата ТРИЗ, сформулировав, что произведение данных чисел дало четной число , тогда вывод о необходимости четности хотя бы одного из них достаточно логичен.

При решении многих математических задач при использовании метода проб и ошибок другого математического аппарата рассуждений, учащиеся осознанно усваивают ценность математики.

Пример 19. Укажите способы определения высоты здания без сложных приборов.

Коллективное (групповое) решение этой задачи методом мозгового штурма приводит к разнообразным выводам. Наиболее оптимальное и эффективное из них, как правило, попутно подводит к изучению темы «Подобные треугольники» [76].

Рассмотрим два из возможных вариантов решения. Первый вариант предполагает, что человек AB стоит и смотрит на здание ED (рис. 16). Измерив расстояния AD и AO, зная свою высоту AB, можно рассмотреть подобные треугольники BEC и ОВА, из соотношения сторон которых можно

узнать искомое.

Второй вариант решения предполагает, что человек смотрит из точки О на некоторый предмет AB, высоту которого мы можем измерить, например, палку (рис. 17). Тогда из подобия тех же треугольников, что и в первом варианте с легкостью находится искомое.

Другие контрольные ответы заключается с применением тени, зеркала и построение высотомеров [59].

Пример 20. В кафе встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. «Замечательно, что один из нас имеет белые, один черные и один рыжие волосы, но ни у одного из нас нет волос того цвета, на который указывает его фамилия», - заметил черноволосый. «Ты прав», - сказал Белов. Какой цвет волос у художника?

Для решения этой задачи можно воспользоваться морфологическим анализом и составить морфологический ящик, используя который решение становиться более наглядным.

Морфологический ящик

Друзья

Цвет волос

Белые

Рыжие

Черные

Белов

-

+

-

Рыжов

-

-

+

Чернов

+

-

-

Морфологический анализ хорошо применим для решения логических задач, где морфологический ящик применяется в другой интерпретации и уже давно используется при решении задач.

Аналогичным образом использование других методов научного творчества в математике делает разнообразным способы подачи материала, и разработки по использованию их представляются возможными т.к. научное творчество отчасти схоже с математическим [73].

2.6. Принципы решения математических задач Разработка осуществлена на основе книг [15, 16].

На основе ТРИЗ можно сформулировать советы - принципы решения математических задач, которые могут помочь избежать многих ошибок и подсказать, как найти решение.

Принцип отсроченного действия. После прочтения задачи первое желание, которое возникает - это не решать ее. Пойди на поводу у этого желания, повремени с преобразованиями и другими действиями. Возможно, именно в этот момент ты подметишь полезную закономерность. Если данный этап не принес плодов, то попытайся найти область определения или хотя бы некоторое множество ее содержащее.

Пример 21. Решите уравнение: .

Не будем спешить возводить обе части уравнения в квадрат, а найдем область определения:

Подставляя х = 1, убеждаемся, что это единственный корень.

Принцип максимума локальной информации. На каждом шагу процесса поиска решения необходимо стремиться к получению максимальной информации из структуры полученной ситуации. Данный принцип мы использовали при решении предыдущей задачи.

Принцип правильности решения. Некоторые описки и ошибки совершаются человеком на подсознательном уровне (порой достаточно при решении задачи один раз заменить знак «плюс» на «минус» и дальше можно уже никуда не спешить, ибо все последующие правильные действия приведут к неправильному результату) и поэтому обнаружить их самому очень трудно. Отсюда вытекает необходимость как локального контроля (каждый шаг в решении проверять дважды), так и глобальной проверки (проверка результата решения, хотя бы частично, на правильность и реальность).

Пример 22. Решите уравнение: .

Возведем обе части уравнения в квадрат. Имеем:

, .

На этом решение не окончено, было использовано возведение в квадрат, которое может привести к посторонним корням. Поэтому использовать принцип правильности решения обязательно. Тем самым после проверки получим .

Принцип отсечения ложных гипотез. В процессе решения задачи часто приходиться различного рода предположения (выдвигать гипотезы). Главное, чего здесь следует опасаться - это не пойди на поводу у ложной гипотезы.

Пример 23. Основанием пирамиды является трапеция с основаниями a, b и высотой h. Грань пирамиды, проходящая через меньшее основание трапеции, перпендикулярна плоскости основания. Противоположная грань является равнобедренным треугольником с углом при вершине пирамиды. Через точку пересечения диагоналей трапеции параллельно ее основаниям и вершину пирамиды проведена плоскость. Найти площадь треугольника, получившегося в сечении.

Гипотезой зачастую принимается, что прямая, по которой плоскость пересекает основание пирамиды, является средней линией трапеции. После этого предположения уже можно не суетиться, задача будет решена неверно.

Отсечение ложных гипотез осуществляется через метод вариации параметров. Так, если в нашей задаче изменить длины боковых сторон и основание трапеции, то станет очевидно, что наша гипотеза ложна. Для отсечения ложных гипотез может пригодиться и метод от противного. Предполагаем, что гипотеза верна, и смотрим, к каким последствиям это приведет.

Принцип наихудшего случая. С задачей надо обращать нежно, не навязывать ей своей воли. Так если в задаче речь идет о пирамиде, то совсем не обязательно, что бы она была правильной; центр вписанного в пирамиду шара не обязан лежать на высоте пирамиды и т.д.

Принцип непрерывности логических цепочек. Нельзя использовать недоказанные утверждения в процессе решения, ибо недоказанное утверждение может оказаться неверным, а из неверного утверждения можно вывести и истину и ложь с помощью правил рассуждения. Поэтому в логической цепочке в идеале все составляющие звенья должны присутствовать в явном виде.

Пример 24. Решите неравенство: .

Найдем область решения: .

Рассмотрим исходное неравенство на интервалах:

· . Значит, в правой части исходного неравенства на данном интервале стоит отрицательное выражение. Но в виду не отрицательности квадратного корня. Следовательно, все х из данного интервала являются решениями исходного неравенства.

· . Итак, на данном интервале обе части неравенства неотрицательные и допустимо возведение в квадрат. Имеем: . И далее: .

Объединяя решения из интервалов, получим ответ: .

Принцип полноты пространств альтернатив. Принцип утверждает необходимость исчерпывающего учета всех необходимых составных частей основания. Или все возможные случаи должны быть рассмотрены.

Пример 25. Доказать, что произведение трех последовательных целых чисел делиться на 6.

Пусть произведение трех последовательных целых чисел. Так как НОД(2;3)=1 то достаточно доказать, что А делиться на 2 и на 3.

При делении целого числа на 2 возможно два остатка 0 или 1. В соответствии с этим имеем две альтернативы:

·

·

Очевидно, что в обоих случаях А делиться на 2.

При делении целого числа на 3 возможны три остатка: 0, 1 и 2. Получаем три альтернативы:

·

·

·

Очевидно, что в каждом из рассмотренных случаев А делится на 3. Что и требовалось доказать.

Принцип простоты. Выбранное решение поставленной задачи должны быть достаточно простым. На своем пути к познанию истины человечество стремилось к простым оригинальным и ярким решениям и ценило их. С другой стороны, лишние выкладки решения, которые присутствуют в нерациональных решениях, могут послужить источником дополнительных ошибок.

Пример 26. Решите уравнение: .

Первый способ. Умножим обе части уравнения на (по свойству показательной функции ) получим: . Решая это уравнение, считая его квадратным, получим: . Откуда , и равенство принимает вид: . Но . Значит и есть единственно решение уравнения.

Второй способ. Используя неравенство при . Можно получить, что , но с другой стороны . Тогда можно сразу сделать вывод о том, что единственный корень при .

Принцип системности решения. Решая задачу, после того как решение нами осмыслено, мы своеобразно обращаемся к надсистеме (с точки зрения ТРИЗ) и ее базе данных, стараясь набросить на задачу некую информационную сеть. Затем мы приступаем к анализу составных частей и структуры задачи, привлекая для этого соответствующие подсистемы и информационное обеспечение (в ТРИЗ это называется переход в подсистему). Если эта деятельность не принесли результата, то опять обращаемся к надсистеме исходной задачи, пытаясь наиболее полно детерминировать поведение задачи, а затем снова возвращаемся к подсистеме. Этот системный подход может повторяться многократно, причем на разных уровнях. Отсюда однозначно вытекает заключение: необходимое условие решение задачи - это знание соответствующей теории, без которой информационная сеть будет с просветами.

Пример 27. Решите уравнение: .

Начнем с «экспериментальной стадии», пытаясь попросту угадать корень (переход в подсистему). Очевидно, один корень .

Если бы нам удалось показать, что других корней нет, то задача была бы решена. Перейдем в надсистему: есть две функции, причем строго возрастающие. Тогда накидываем информационную сеть (сумма двух строго возрастающих функций, функция, строго возрастающая на их общей области определения). Тем самым доказываем единственность корня.

В процесс решения задачи учащемуся приходиться преодолевать не только психологические барьеры, но вызванные ими отрицательные эмоции. Может быть, рассмотренные советы помогут преодолеть и то, и другое.

С необходимостью использования данных советов человек сталкивается во многих видах интеллектуальной деятельности, в частности, в процессе принятия решения. Поэтому навыки, приобретенные им при использовании данных задач на уроках математики, могут оказаться полезным и в очень отдаленных от нее областях, несмотря на имеющиеся различия принципиального характера.

2.7. ТРИЗ-педагогика на уроках математики

Интеграция в общеобразовательные дисциплины методологии творчества, базирующейся на ТРИЗ и других методах поиска нестандартных решений, ставящих своей целью развитие творческого воображения и фантазии, формирование творческого системного мышления, выявление и развитие творческих способностей школьников, овладение способами, необходимыми для творческой деятельности, позволит повысить движущую силу развития творческого потенциала - интерес школьников к учебной работе, обеспечит самостоятельный поиск необходимой дополнительной учебной информации.

В этой главе мы адаптировали некоторые инструменты ТРИЗ для использования их на уроках математики. Приемы мышления, используемые в математике [38]: абстрагирование и конкретизация, обобщение и специализация, аналогии, можно сравнить с аналогичными принципами используемыми в ТРИЗ: принципом перехода в надсистему, принципом перехода в подсистему и принципом копирования.

Рассмотренные в этой главе способы по применению ТРИЗ-педагогики на уроках математики могут помочь решить проблему по формированию продуктивного мышления (креативность + системность) [83] у учащихся в школе на уроках математики.

Рассмотренные способы учат как надо действовать для того, чтобы получить желаемый продукт, результат, какие нормы надо соблюдать, чтобы получить продукт гарантированного качества. Кроме того, они дают возможность интегрировать часть полученной учебной информацию на уроках математики с гуманитарными и естественными наукам в единую систему знаний.

Глава 3. Описание и анализ опытно-экспериментальной работы

В рамках выпускной квалификационной работы был разработан и апробирован курс «Тренинг креативного мышления» на основе внеклассных занятий по математике в средней школе, базирующийся на инструментах ТРИЗ-педагогики.

3.1. Психологические аспекты сущности креативности

Чтобы перейти от репродуктивного обучения к творческому, деятельность … должна организовываться таким образом, что бы она приводила к получению учеником качественно новых результатов, как в обучении, так и в его развитии.

А. В. Хуторской

Понимание сущности творчества и лежащих в его основе способностей - вопрос, по которому существует множество разноречивых психологических, педагогических и философских теорий мнений и концепций [33, 42, 81].

Рассмотрим некоторые психологические аспекты, которые важны для понимания сущности предлагаемого тренинга развития креативности (от анг. create - творить, создавать).

Творчество в широком смысле рассматривается как деятельность в ситуации неопределенности, направленная на получение результатов, обладающей объективной или субъективной новизной. В этом плане она не обязательно связанна с такими видами деятельности, традиционно относимыми к «творческим», как рисование, сочинение музыки и стихов, и т.п. Оно проявляется, когда приходиться действовать в ситуациях неопределенности, отсутствия четких алгоритмов, неизвестности сути и способов решения, встающих перед человеком проблем, непредсказуемо меняющихся условий.

Креативность как система творческих способностей рассматривается в психологии в нескольких ракурсах. Под ней понимают:

· систему личностных качеств;

· характеристику интеллектуальной сферы (Айзенк, 2004);

· самостоятельное качество мышления, не сводимое к интеллекту в его традиционном понимании (Гилфорд, 1967; Пономарев, 1988).

Существуют различные определения креативности, в которых акцент может делаться на:

· продукты, создаваемые благодаря ей: креативность как способность порождать нечто новое, необычное, оригинальное;

· процессы: креативность как особая разновидность творческого мышления, высокоразвитое воображение, эстетическое мировосприятие и т.п.

· личностные качества: креативность как открытость новому жизненному опыту, независимость, гибкость, динамичность, оригинальность, самобытность личности;

· внешние условия: креативность как способность продуктивно действовать в ситуациях с высокой степенью неопределенности, где отсутствует заранее известные алгоритмы, гарантированно ведущие к успеху.

Так или иначе, под креативностью понимается некая противоположность обыденности, стандартности, комфортности (податливости внешнему влиянию), а также восприятие человеком себя как «субъекта» действительности [45].

Под творческими способностями мы будем понимать характеристики, которые позволяют продуктивно осваивать деятельность, направленную на получение результатов, обладающих новизной.

Таким образом, креативность включает:

1) интеллектуальные предпосылки творческой деятельности, позволяющие создавать нечто новое, ранее не известное (творческие способности в узком смысле этого понятия), а также предварительный набор знаний и умений, необходимых для того, чтобы это новое создавать;

2) личностные качества, позволяющие продуктивно действовать в ситуациях неопределенности, выходить за рамки предсказуемого, проявлять спонтанность;

3) «метатворчество» - жизненную позицию человека, подразумевающую отказ от шаблонности, стереотипности в суждениях и действиях, желание воспринимать и создавать нечто новое, изменяться самому и изменять мир вокруг себя, высокую ценность свободы, активности и развития.

Согласно концепции Дж. Гилфорда и Э. Торренса, креативность рассматривается как самобытная разновидность мышления - так называемое дивергентное («расходящееся, идущее в разных направлениях») мышление (рис. 18), которое опускает варьирование путей решения проблемы, приводит к неожиданным выводам и результатам [12]. Такое мышление противопоставляет конвергентному («сходящемуся»), (рис. 19), направленному на поиск единственно правильного решения на основе анализа множества предварительных условий (Дружинин, 1999). Дивергентное мышление не ориентируется на известное или подходящие решение проблемы, а проявляется в том случае, кода проблема еще не раскрыта и неизвестен путь ее решения.

Приведем обобщенную сравнительную характеристику разновидностей мышления, соответствующих традиционному, академическому интеллекту и ориентированных на творческий поиск [32].

Завершающая стадия - выбор верного варианта решения проблемы, отсечение всех остальных.

Стадия сбора информации - варианты анализируются, критически оцениваются, ошибочные отсекаются, число альтернатив сокращается.

Начальная стадия - предполагаются различные варианты способов решения проблемы.

Завершающая стадия - критическая оценка предложенных вариантов, выбор наиболее приемлемых.

Стадия сбора информации - максимальное расширение видения проблемного поля, генерирование идей о других возможных способах решения проблемы (без критической оценки этих идей)

Начальная стадия - число видимых способов решения проблемы относительно не велико. Задача - собрать дополнительную информацию, позволяющую расширить представления об этих способа.

3.2. Ключевые психологические идеи тренинга

Современный мир стремительно меняется. И на учебе, и на работе, и в быту человек раз за разом сталкивается с новыми ситуациями, в которых велика степень неопределенности, нет заранее известных способов действий, гарантированно ведущих к успеху. В рамках выпускной квалификационной работы разработан курс «Тренинг креативного мышления», на основе внеклассных занятий по математике, призванный помочь научить справляться с такими ситуациями, опираясь на свои творческие способности.

При разработке курса были использованы положение о развитии креативности учащихся (Дж. Гилфорд, Е. Торренс, Е. Е. Туник) и о возрастной динамике креативности (Д. Б. Богоявленская, В. Н. Дружинин, Е. Торренс, В. С. Юркевич).

Главных проявлений креативности всего два:

1) возможность продуктивно действовать в ситуациях новизны и неопределенности, при недостатке информации, когда нет заранее известных способов действий, гарантированно ведущих к положительному результату;

2) возможность создавать какой-либо продукт, обладающий новизной (субъективной или объективной) и оригинальностью.

Отметим ключевые идеи, на которых базируется программа тренинга.

· Поле для развития креативности - это не только виды деятельности, традиционно относимые к творческим (рисование, игра на гитаре и т.п.), но и любые жизненные ситуации, в которых присутствуют новизна и неопределенность.

· Креативность - это не единичная способность, а комплекс особенностей интеллекта и качеств личности, а также общая жизненная позиция человека. Она не сводится ни к какому-то единичному психологическому качеству, ни к специальным творческим способностям (художественным, музыкальным и т.п.).

· Креативности не специфична, она не связана жестко с конкретными видами деятельности и может активизироваться в самых разных ситуациях. Ее тренировка в каком-то одном виде деятельности ведет к тому, что она начинает ярче проявляться и в других видах.

· Креативность в той или иной степени свойственна всем людям, а не является уникальным психологическим качеством, «печатью гения». Конечно, степень ее вырожденности существенно различается, однако у большинства людей она вполне достаточна, чтобы творчески подходить к решению жизненных проблем. Если этого не случится, то проблема обычно не в отсутствии творческих способностей, а в их недостаточной «настройке», неумении им пользоваться.

· Креативность управляема и развиваема - ее можно активизировать и тренировать, в том числе и посредством специально разработанного материала на основе общеобразовательных дисциплин. Предлагаемый тренинг как раз и выступает способом тренировки креативности на основе кружковых занятий по математике.

3.3. Тренинг креативного мышления

Среди целей, предъявляемых к современному школьному образованию, выделяется формирование личности, способной решать поставленные перед ней задачи в условиях рыночной экономики, в частности, быстро находить наиболее оптимальное и эффективное решение преодолеваемой проблемы. Такая цель направлена на реализацию внутреннего потенциала школьника, развитие творческого начала, его креативности. А также, все более остро обозначаются проблемы интеграции в образовании, раскрывающиеся в фундаментальном изучении дисциплин и, в то же время, межпредметных связях с другими образовательными областями. Однако вопросы организации учебно-воспитательного процесса, в котором на основе интегрированного подхода подготавливается выпускник школы, обученный основным практикам жизнедеятельности общества, затрагиваются мало, с позиции его необходимости, а не конкретной реализации [75], что подчеркивает актуальность тренинга.

В разработанном курсе «Тренинг креативного мышления» предлагается одна из возможных реализаций обозначенных тенденций, при которых учебно-воспитательный процесс направлен на развитие креативности ученика в интегративной связи математики с другими образовательными областями [76].

Целью курса является содействие развитию креативной мыслительной деятельности средствами математики.

Концепция обучения базируется на использование инструментов ТРИЗ-педагогики. Тренинг разбит на девять взаимосвязанных занятий: метод проб и ошибок; мозговой штурм; обратный мозговой штурм; морфологический анализ; идеальный конечный результат; отрицание или взгляд со стороны; принцип перехода в другое измерение; переход в надсистему; переход в подсистему (см. Приложение 1).


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.