Решение задач на экстремум

История развития и способы решения задач на экстремумы. Применение уровневой дифференциации в обучении математике на примере темы "Задачи на экстремум". Плюсы и минусы уровневой дифференциации. Методические основы обучения решению задач на экстремумы.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 21.04.2011
Размер файла 654,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

На сегодняшний день в дидактических и методических исследованиях разработаны различные подходы к выделению основных уровней учебного материала. Обычно методисты выделяют 3 уровня усвоения знаний по математике: - общекультурный, прикладной и творческий.

Они считают, что для учеников, овладевших первым уровнем, математика является лишь элементом общего развития, и в их дальнейшей производственной деятельности будет использоваться в незначительном объеме. Для учащихся второго уровня математика будет важным инструментом в их профессиональной деятельности. Учащиеся третьего уровня выберут математику(или близкие к ней области знания ) в качестве основы своей будущей деятельности. Поэтому для учащихся первого уровня «существенно овладение общей математической культурой », для учащихся второго уровня «существенны не только знания о математических фактах, навыки логического мышления, пространственные представления, но и прочные навыки решения математических задач». Учащиеся третьего уровня должны творчески овладеть основами математики.

1.3 Плюсы и минусы уровневой дифференциации

Традиционные программы, учебные планы, учебники и дидактические средства, требования, методы и формы, являясь одинаковыми для всех школьников, отодвигают на задний план изучение и учет индивидуальных особенностей. Сегодня во многих школах страны уже в первом классе учащихся распределяют по классам (потокам) возрастной нормы, ускоренного обучения, повышенного индивидуального внимания, коррекции, выравнивания. Правда, такой подход, особенно ранняя дифференциация, вызывает немало нареканий. Считают, что разделение на потоки вызывает снобизм у сильных учащихся и чувство неуверенности и собственной неполноценности у слабых. Жесткая дифференциация учащихся на способных, средних и слабых с последующим длительным пребыванием в разных по содержанию и методам обучения классах, имеет не только плюсы, но и существенные минусы.

Смысл уровневой дифференциации заключается в том, чтобы адаптировать учебный процесс к познавательным возможностям каждого ученика, предъявить соответствующие уровню его развития требования, программы, учебники, методы и формы обучения. Почти каждый ребенок идет в школу с большим желанием учиться, однако очень скоро у значительной части школьников это желание пропадает, учеба превращается в тяжелую повинность. Причина очевидна: им предложены такие условия обучения и предъявлены такие требования, которые превышают уровень их развития. Этого можно избежать, если с первых школьных лет каждый ребенок окажется в однородной среде, в которой он чувствует себя комфортно, а учеба сопровождается успехом. Но проведение уровневой дифференциации уже в начальной школе должно быть обставлено одним непременным условием: потоки (группы) должны быть динамическими, то есть на определенном этапе обучения наиболее успевающие или, напротив, неуспевающие учащиеся должны своевременно переводиться в классы соответствующего уровня.

§2 Методические основы обучения решению задач на экстремумы

2.1 Задачи на экстремумы в школьном курсе математики (обзор учебников)

Задачи на экстремумы в курсе алгебры 7-9 классов.

В основном, в школьных учебниках алгебры встречаются такие задачи, в которых с помощью известных методов приходят к однозначному ответу, удовлетворяющему условиям задачи.

Решение задач на экстремумы проходит в два этапа:

- на первом этапе текст задачи переводится на математический язык в виде функции, которая допускает много или бесконечно много решений;

- на втором этапе по тем или иным признакам, определяется какое из решений задачи наиболее выгодно.

Посмотрим решение задач на экстремумы на примерах учебников

А.Г. Мордковича и Ш.А.Алимова.

Сначала рассмотрим серию учебников под редакцией А.Г. Мордковича,

Т.Е. Мишустина, Е.Е. Тульчинской.

В 7 классе учащиеся первый раз сталкиваются с задачами на экстремум при изучении координатной прямой. Здесь им приходится решать задачи на нахождение наибольшего и наименьшего числа на взятом промежутке, нахождение наибольших и наименьших значений функций на отрезке.

В 8 и 9 классах учащиеся продолжают сталкиваться с задачами на нахождение наибольшего и наименьшего значения при изучении квадратичной функции, функции у=, у= (8 класс) и при изучении темы «Неравенства» (9 класс). Здесь ученикам приходится решать задачи, как на нахождение наименьшего числа удовлетворяющего системе уравнений, нахождение наименьшего и наибольшего значения функций вида у= на отрезке.

В серии учебников под редакцией Ш.А.Алимова, Ю.М. Колягина и др. курс алгебры 7-9 классов построен иначе, в этой серии с задачами на экстремум учащиеся сталкиваются только в 7 и 8 классах при изучении квадратичной функции, неравенств и систем уравнений с 2 неизвестными.

Задачи на экстремумы в курсе алгебры 10-11 классов.

Фактически все задачи на экстремумы, с которыми учащимся приходится сталкиваться в курсе алгебры 10-11 классах, решаются основным методом - с помощью производной.

В учебнике «Алгебра и начала анализа », под редакцией А. Н. Колмогорова, производной и ее применению уделена одна из самых больших глав. Авторы сначала дают понятие производной, рассматривают правила ее вычисления, а после этого в учебники приведены различные задачи на отыскание наибольшего и наименьшего значения.

В учебниках «Алгебра и начала анализа» для 10 и 11 классов под редакцией

Н.Я. Виленкина, производной тоже уделено много времени, но учащимся предлагаются задачи более высокого уровня сложности (учебник рекомендован для школ и классов с углубленным изучением математики).

Если говорить о серии учебников под редакцией А.Г. Мордковича, Т.Е. Мишустина, Е.Е. Тульчинской, то мы видим, что, начиная с 7 класса общеобразовательной школы, учащиеся приступают к знакомству с экстремальными задачами. Это происходит при изучении координатной прямой, задач на нахождение наибольшего и наименьшего числа на взятом промежутке, задач на нахождение наибольших и наименьших значений функций на отрезке. В 8-9 классе к уже полученным знаниям, навыкам и умениям добавляются задачи на нахождение наименьшего числа удовлетворяющего системе уравнений, нахождение наименьшего и наибольшего значения функций вида у= на отрезке.

Отметим, что также есть учебный курс алгебры, выстроенный иначе. Он представлен в серии учебников под редакцией Ш.А.Алимова, Ю.М. Колягина и др. Следуя этому курсу, учащиеся сталкиваются с задачами на экстремум в 7 и 8 классах при изучении квадратичной функции, неравенств и систем уравнений с 2 неизвестными

В 10-11 классах общеобразовательной школы учащиеся знакомятся с еще одним методом решения задач на экстремумы - с помощью производной. К слову, в учебнике «Алгебра и начала анализа» под редакцией А. Н.Колмогорова, для изучения производной и ее применения автор отводит одну из самых больших глав.

В учебнике «Алгебра и начала анализа» для 10 и 11 классов под редакцией Н.Я..Виленкина производной также уделяется немало времени, но предлагаются задачи более высокого уровня сложности, поскольку данный учебник рекомендован для специализированных математических школ или классов.

2.2 Методика обучения решению задач

Для того чтобы учащийся понимал, как решать задачу, он должен в первую очередь понимать, что такое задача.

Задача -- проблемная ситуация с явно заданной целью, которую необходимо достичь; в более узком смысле задачей также называют саму эту цель, данную в рамках проблемной ситуации, т.е. то, что требуется сделать.

Поиск решения задачи можно представить в виде плана, выполняя который мы прейдем к нужному результату:

1. Понять предложенную задачу.

2. Найти путь от неизвестного к данным, если нужно, рассмотрев промежуточные задачи (анализ).

3. Реализовать найденную идею решения (синтез).

4. Проверка решения.

Теперь давайте рассмотрим каждый из этих пунктов более подробно:

1. В первом пункте нам предстоит ответить на множество вопросов: Что гласит задача? Что дано? Что нужно найти? Определено ли неизвестное данными задачи, или они недостаточны, или же чрезмерны? Нельзя ли найти связь между данной задачей и какой-нибудь задачей с известным решением? Или задачей, решающейся проще, а может быть и сразу? Ответив на эти вопросы мы сможем разобраться в деталях задачи, которые впоследствии, вероятно, будут играть определённую роль.

2. Сформулировать отношение (или отношения) между неизвестным и данными. Преобразовать неизвестные элементы. Попытаться ввести новые неизвестные, более близкие к данным задачи. Преобразовать данные элементы. Попытаться получить, таким образом, новые элементы, более близкие к искомым неизвестным.

3. Выполнение во всех деталях тех алгебраических или геометрических действий, которые вы предварительно сочли выполнимыми. Проверяя правильность каждого шага либо при помощи логических рассуждений, либо при помощи интуитивных рассмотрений, либо, если это возможно, обоими способами. Если задача сложная, можно разбить её на «большие» и «малые» шаги, разделяя каждый большой шаг на несколько малых. Тем самым мы сможем добиться решения, каждый шаг которого будет, без сомнения правилен.

4.Проверяя решение задачи нам вновь приходится ответить на некоторые вопросы: Правдоподобен ли результат? Нет ли другого пути, ведущего к полученному результату, более прямому? Какие результаты ещё можно получить на том же пути? Ответив на эти вопросы мы возможно сможем найти новое, лучшее решение, можем обнаружить новые интересные факты.

Таким образом, решая задачу мы даём ответ на вопрос этой задачи, но во время поиска этого решения нам нужно дать ответ на другие вопросы возникающие во время работы с задачей.

Итак, вернёмся к задачам на отыскание экстремальных значений функции на промежутках. Из обзора школьных учебников учебников можно сделать вывод, что знакомство с задачами на экстремум начинается с решения задач на нахождение наименьшего и наибольшего числа на взятом промежутке, либо значения функции на отрезке. Постепенно задача усложняется, появляются задачи на вычисление наименьшего числа удовлетворяющего системе уравнений, нахождение наименьшего и наибольшего значения квадратичных функций. И уже в 10 - 11 классах после знакомства с производными, ученики начинают решать задачи на нахождение наибольшего и наименьшего значения сложных степенных функций, решать прикладные задачи.

Требования стандарта образования к умениям и навыкам учащихся гласят, что учащиеся должны уметь:

- вычислять производные и первообразные элементарных функций, используя справочные материалы;

- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

- вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Исходя из требований стандарта можно сделать вывод, что учащиеся должны владеть элементарными навыками математического моделирования и в частности, уметь применять математический аппарат при решении задач на отыскание наибольших и наименьших значений различных величин при заданных условиях. Таким образом реализуется прикладная направленность обучения математике и осуществляются межпредметные связи с другими дисциплинами. В первую очередь учащиеся должны владеть универсальным методом решения задач на оптимизацию, методом, включающим в себя построение некоторой функции и отыскание ее экстремумов с помощью производной. Алгоритм решения задач этим методом включает в себя три основных этапа:

Первый этап. Составление математической модели:

1. Анализ условий задачи, выделение оптимизируемой величины, т.е. величины, о наибольшем или наименьшем значении которой идет речь. Обозначьте ее буквой у (или S, R, V - в зависимости от фабулы).

2. Одна из участвующих в задаче неизвестных величин, через которую сравнительно не трудно выразить оптимизируемую величину, принимают за неизвестную переменную и обозначают её буквой х (или какой либо другой буквой). Установка реальных границ изменения неизвестной переменной, в соответствии с условиями задачи.

3. Исходя из условия задачи, выразить у через х. Математическая модель задачи представляет собой функцию у=f(х) с областью определения Х, которую нашли на втором шаге.

Второй этап. Работа с составленной моделью.

На этом этапе для функции у=f(х), хХ находится унаим или унаиб в зависимости от того, что требуется в условии задачи.

Третий этап. Ответ на вопрос задачи.

Получение конкретного ответа на вопрос задачи, опираясь на результаты, полученные на этапе

работы с моделью.

Помимо универсального метода решения задач на экстремумы, полезно было бы познакомить учащихся и с методами решения этих задач, опирающимися на сведения из элементарной математики (метод перебора, метод преобразования плоскости, метод оценок и неравенств). Эти методы предполагают алгебраический или геометрический подход к решению задачи, тем самым актуализируя знания учащихся из курса алгебры и геометрии и развивая их математическую интуицию.

Таким образом, в понятие задачи на экстремумы входит очень широкий спектр задач, весьма разнообразных по уровню сложности, а значит, в этом задачном материале возможно и весьма полезно провести уровневую дифференциацию таких задач. Т.е. распределить предъявляемые учащимся задачи по уровням сложности и использовать эту дифференциацию при проведении практических занятий с учащимися.

Глава 3. Разработка факультативных занятий по теме: «Решение экстремальных задач»

Еще на рубеже XIX и XX веков некоторые педагоги поняли, что преподавание в общеобразовательной школе какого-либо предмета по обязательной единой общегосударственной программе становится существенно более успешным, если его дополнить циклом не обязательных для учащихся, предназначенных только для желающих, внепрограммных групповых занятий.

Такие занятия должны были, прежде всего, учитывать «местные» условия, а именно: реальные и потенциальные запросы и интересы конкретного коллектива учащихся данного класса, и отдельно каждого ученика.

Так возникла идея факультативных занятий в школе.

Хорошо поставленные факультативы обеспечивают высокое качество знаний, повышаю уровень общего развития учащихся, стимулируют учебную деятельность и повышают интерес к предмету.

Задача факультатива состоит в том, чтобы в результате посещения занятий ученик углублял знания, полученные на уроках, совершенствовал умения и навыки, развивал мыслительные и творческие способности.

При проведении факультатива необходимо установить оптимальное сочетание теоретической и практической частей.

Очень важным является проведение факультатива в 11 классе, целью которого является подготовка учащихся к сдаче ЕГЭ.

Разработка факультативных занятий по теме:

«Решение задач на экстремум».

Занятие 1

Тема: «Геометрический подход к решению задач на экстремумы».

Тип: Комбинированный урок.

Цели:

Обучающая: изучение метода преобразования плоскости для решения экстремальных задач.

Развивающая: развитие мыслительной деятельности, создать условия для продвижения учащихся в интеллектуальном развитии.

Воспитательная: воспитание интереса к математике, воспитание эмоционально-положительной направленности на практическую деятельность..

Задачи: вспомнить понятие «экстремальная задача», дать понятие метода преобразования плоскости, рассмотреть применения метода при решении задач.

Оборудование: доска, мел, карточки с заданиями.

План урока

Содержание

Методы и приемы

Время

1. Орг. момент

Сообщение цели урока

Инструктаж учителя

3 мин

2. Изучение нового материала

1.Суть метода преобразования плоскости.

2. Пример решения задачи методом преобразованием плоскости.

Лекция

(объяснительно-иллюстра-тивный с элементами проблемного изложения)

Учащиеся конспектируют, задают вопросы.

20 мин

3. Закрепление пройденного материала.

Учитель предлагает учащимся задачи для самостоятельного решения. Учащиеся самостоятельно решают задачи своего уровня сложности (репродуктивный, частично-поисковый)

29 мин

4. Подведение итогов

беседа

3 мин

5. Запись домашнего задания

Инструкция учителя

(репродуктивный)

5 мин

Ход урока:

Деятельность учителя

Деятельность учащихся

I. Орг. момент.

Здравствуйте, садитесь.

Откройте тетради, запишите число.

Сегодня мы с вами начинаем изучение темы "Решение задач на экстремум". На занятиях по этой теме мы рассмотрим решения задач на нахождение наибольших и наименьших величин различными методами. Начнем мы с геометрических методов, сегодня мы рассмотрим метод преобразования плоскости.

Но сначала давайте вспомним, какие задачи называют экстремальными, и где в повседневной жизни мы с ними встречаемся?

Конечно, с нахождением максимальных и минимальных значений, наиболее выгодных условий и т.д. - т.е. с нахождением (выбором) лучшего мы сталкиваемся постоянно.

И очень часто лучший вариант не очевиден. В его нахождении помогает математика. Существует много решения таких задач, начнем с преобразования плоскости.

Садятся

Выполняют инструкции учителя, слушают, задают вопросы.

Высказывают свои предположения.

Слушают учителя.

II. Лекция.

1. Суть метода преобразования плоскости.

В качестве одного из основных подходов решения геометрических экстремальных задач используется метод преобразования плоскости. Суть метода заключается в следующем.

Пусть требуется найти экстремум элемента х фигуры F, однозначно определенного элементами x,аi,i = 1,2,...,n.

Метод нахождения экстремума:

Элементу х зададим определенное значение х = С и решим задачу на построение фигуры F по заданным элементам х и аi.

Решив эту задачу, считаем элемент с перемещением. Затем, применяя те или иные преобразования плоскости, замечаем те особенности, которые возникают при достижении элементом х максимального или минимального значения.

Выделение указанной особенности позволяет сделать заключение об экстремуме элемента х фигуры F.

Посмотрим применение метода при решение конкретной задачи.

2. Пример решения задачи методом

преобразованием плоскости.

Решим следующую задачу: построить прямую, проходящую через вершину А треугольника ABC, так, чтобы сумма расстояний до нее от вершин В и С была наибольшей.

Сначала построим треугольник АВС. Через вершину А проведем произвольную прямую EF .

Из точек В и С опустим перпендикуляры KB и CN на
EF. Если КВ=х, CN=y, то расстояние
KB+CN=x+y. Построим точку

B}=ZA(B) и точку K1=ZA(K), тогда

х + у = KB + GN = К1В1 + CN< В1 C1, так как В 1 К 1 ? В 1 М и СN? CM где М- точка пересечения прямой EF и отрезка В{С.

Мысленно вращая прямую EF вокруг точки А так, чтобы точка М перемещалась по В 1С от точки В1 до точки C1 замечаем, что х + у ?В1 С. Знак равенства имеет место в случае, когда EF В1 С.

Если прямую EF мысленно поворачивать дальше вокруг точки А, то точка М будет перемещаться по отрезку ВС от точки С до точки В, а сумма х + у < ВС. Знак равенства достигается тогда, когда EF ВС.

Ученики конспектируют, задают вопросы

Слушают учителя, записывают решения в тетрадь, задают возникающие вопросы.

III Закрепление пройденного материала.

Сейчас возьмите карточки с заданиями своего уровня и решите предложенные там задачи.

Учитель следит за тем, что бы все работали, отвечает на возникающие вопросы. Если какая-та задача вызывает у многих затруднения, ее (полностью или частично) прорешивают на доске.

Учащиеся берут карточки с задании-

ями и преступаю к решению задач. Если возникают трудности, они обращаются за по-

мощью к учителю.

IV Подведение итогов

Итак, сегодня мы с вами изучили один из методов решения экстремальных задач, рассмотрели применение этого метода при решении задач.

Какие у вас есть вопросы по пройденному сегодня материалу? (отвечает на вопросы, если они есть)

Задают вопросы, которые остались непонятными.

V Запись домашнего задания

Домашнее задание: посмотреть конспект сегодняшнего занятия, дорешать 2 задачу.

Записывают.

Задачи предлагаемые учащимся.

I уровень сложности.

Задача 1.

В каком месте следует построить мост MN через реку, разделяющую деревни А и В, чтобы путь AMNB был кратчайшим? (Берега реки считаются параллельными прямыми, мост перпендикулярен берегам).

Решение:

Заметим, что длина отрезка MN не зависит от положения точки М на прямой а, а вектор v = MN определяется лишь прямыми а и b. Поэтому надо найти такое положение точки М, чтобы сумма AM+NB была наименьшей. Пока отрезки AM и NB удалены друг от друга. Поэтому переведем отрезок AM в положение A'N параллельным переносом на вектор v.

Если переносить другую точку, то тогда точки А, М, В' должны принадлежать одной прямой, (рис.).

Получим ломаную A'NB. И теперь становится ясно, что длина ломаной A'NB, а значит и длина пути AMNB будет наименьшей в том случае, когда точки А', N, В лежат на одной прямой. Итак, N - точка пересечения отрезка А'В с прямой Ь, а М - проекция N на прямую а.

Тогда М - точка пересечения отрезка АВ' с прямой а, а N - проекция М на прямую b .

Вся трудность задачи заключается в том, чтобы заметить особенности, при которых искомая ломаная может принять наименьшую длину.

Задача 2.

Среди всех трапеций с заданной высотой 3 см и диагоналями длиной 6 см и 5 см найдите трапецию максимальной (минимальной) площади. Вычислите

площадь.

Решение:

SABCD = · h = h = S?ACD1= const. SABCD= S?ACD1= Ѕ () · 3

задача экстремум дифференциация математика

Нетрудно заметить, что параллельные перенос чаще всего используется в тех случаях, когда объектом задачи является трапеция, параллелограмм и другие четырехугольники с параллельными сторонами.

Задача 3.

Две деревни А и В находятся по одну сторону от прямого шоссе а. В какой точке С на шоссе а надо установить остановку автобуса, чтобы сумма расстояний АС + СВ была кратчайшей?

Решение:

Построим точку В, симметричную точке В, относительно прямой а. Для любой точки Упрямой аВХ = ВХ. Поэтому АХ+ХВ = АХ+ ХВ. Ясно, что сумма АХ + ХВ/ становится кратчайшей, когда X попадает в точку пересечения отрезка АВ! с прямой а. Эта точка С и дает решение задачи.

В

II уровень сложности.

Задача 1.

Объекты А, В и С расположены между двумя прямолинейными путями l1 и l2 (рис.). Соединить эти объекты между собой замкнутой дорогой кратчайшей длины с выходом на прямолинейные пути.

Решение:

Построим В' = (В), С = S (C); AC/ пересекает 12 в точке D, а АВ' пересекает l1 в точке К (рис.).

Ломанная AKBCDA имеет наименьшую длину.

Задача 2.

Дан угол и две точки С и D внутри него. Найти точки А и В на сторонах угла так, чтобы сумма длин СА + АВ + BD, была наименьшей.

Решение:

Выполним следующее построение. Построим d1 и С1 симметричные D и С относительно сторон KL и LM. Проведем отрезок D1C1 и ломаную CABD. Длина ее равна длине отрезка D1C1. Нетрудно понять, что иной путь из С в D с тем же порядком захода на стороны угла будет длиннее.

Задача 3.

В квадрат, диагональ которого равна d, вписан произвольный четырехугольник ABCD. Доказать, что минимальный периметр четырехугольника равен 2d.

Решение:

Пусть MN=d L1=SNC(L) и K1=SMD(K); CL=CL1 и KD=K1D, KD+DC+CL=K1D+DC+CL1?MN так как K1MK=LNL1=90?.

Пусть MN=d . L1=SNC(L) и K1=SMD(K);

CL=CL1 и KD=K1D,

KD+DC+CL=K1D+DC+CL1?MN так

как K1MK=LNL1=90?.

Аналогично можно доказать, что LB + АВ + АК > MN

PABCD=AD+AB+BC+CD = (AK+AB+BL) + (LC+CD+DK) ? 2MN ? 2d

Pmjn = 2d, если ABCD - прямоугольник.

III уровень сложности.

Задача 1.

По разные стороны от полотна железной дороги АВ расположены два завода М и N. Где нужно построить на железной дороге платформу CD длиной а так, чтобы общая длина дороги MCDN была наименьшей?

А если заводы М и N расположены по одну cторону от железной дороги АВ?

Решение:

Получим ММ1 параллельным переносом на вектор CD. MCDN-min;

MCDN=MM1DN MM1DN - min <=> M1, D, N принадлежат одной прямой.

Если же М и N расположены по одну сторону от прямой АВ. M1

симметрична М относительно прямой АВ.

ММ2 получен параллельным переносом на вектор CD

MCDN-min

MCDN=MiM2DN

M{M2DN - min <=> M2, D, N принадлежат одной прямой.

Задача 2

Дан угол и точка С внутри него. Найти точки А и В на сторонах угла так, чтобы периметр треугольника ABC был наименьшим.

Решение:

Возьмем произвольный ?СА 1В1, две вершины которого, лежат соответственно на сторонах угла KL и LM, а третьей служит точка С.

Построим точки Е и Р, симметричные точке С относительно сторон угла KL и LM и соединим отрезками прямой эти точки соответственно с вершинами А1 и В1 треугольника. Так как нас интересует треугольник с наименьшим периметром, а наименьшим будет периметр, равный длине отрезка ЕР. Поэтому вершины треугольника А и В искомого треугольника определяются как точки пересечения прямой ЕР со сторонами данного угла.

Занятие 2

Тема: «Геометрический подход к решению задач на экстремумы».

Тип: Комбинированный урок

Цели:

Обучающая: изучение различных геометрических методов решения экстремальных задач, обучение решению задач с использованием этих методов.

Развивающая: Развитие критичности мышления, делать выводы, обобщать; развитие навыков самостоятельной работы.

Воспитательная: воспитание личной ответственности за результаты своей работы, активной жизненной позиции, умения ставить и достигать цели.

Задачи: Рассмотреть различные геометрические методы решения экстремальных задач, показать на примерах их использование при решении задач.

Оборудование: доска, мел, карточки с заданиями.

План урока

Содержание

Методы и приемы

Время

1. Орг. момент

Сообщение цели урока

Инструктаж учителя

3 мин

2. Изучение нового материала

1.Обзор различных

геометрических методов

решения экстремальных

задач.

2. Пример решения задачи.

Лекция

(объяснительно-иллюстра-тивный с элементами

проблемного изложения)

Учащиеся конспектируют,

задают вопросы.

20 мин

3. Закрепление пройденного материала. (Учитель предлагает учащимся задачи для

самостоятельного решения).

Учащиеся самостоятельно

решают задачи своего уровня сложности (репродуктивный, частично-поисковый)

29 мин

4. Подведение итогов

беседа

3 мин

5. Запись домашнего задания

Инструкция учителя

(репродуктивный)

5 мин

Ход урока:

Деятельность учителя

Деятельность учащихся

I. Орг. момент.

Здравствуйте, садитесь.

Откройте тетради, запишите число.

Сегодня мы с вами продолжаем изучение темы "Решение экстремальных задач геометрическим подходом".

Но прежде чем перейти к изучению новых способов решения экстремальных задач я хотел бы узнать, возникли ли какие-нибудь вопросы при выполнении домашней работы? Может у кого-то возникли трудности при решении какой-нибудь задачи?

Слушает детей, возможно частично прорешивают какую-то задачу у доски.

Садятся

Выполняют инструкции учителя, слушают, задают вопросы.

Задают возникшие вопросы.

II. Лекция.

1.Обзор различных геометрических методов

решения экстремальных задач.

На прошлом занятии мы с вами решали различные экстремальных задач. Какой метод мы использовали при решении этих задач? В чем его суть?

Вы совершенно правы, мы решали задачи методом преобразования плоскости. Но задачи на экстремум решаются не только преобразованием плоскости. Есть еще очень много геометрических подходов к решению экстремальных задач, самые используемые из них метод перебора и оценки. Сегодня мы будем решать экстремальные задачи, используя эти методы.

Посмотрим на примере.

2. Пример решения задачи

Решим задачу:

Дан прямоугольный параллелепипед ABCDEFGJ, в котором AB=AE=12, AD=30.

Точка М расположена на грани АВFE на расстоянии 1 от середины АВ и на равных расстояниях от А и В. Точка N принадлежит грани DCGJ и расположена симметрично точки М относительно центра АВСDEFGJ. Найти длину кратчайшего пути по поверхности параллелепипеда между точками М и N.

Учитель с помощью детей решает задачу у доски, объясняя учащимся свои выкладки.

Решение:

Рассмотрим следующие варианты:

1. Пусть путь пересекает EF и GJ. Длина кратчайшего пути в этом случае равна 11+30+1=42.

2. Пусть путь последовательно пересекает ребра BF, FG, GJ. Сделаем развертку. Обозначим точки на развертки так же, как и на параллелепипеде. По теореме Пифагора MN=(MK2 +NK2)1|2 =(372+172)1|2=16581|2.

3. Путь последовательно пресекает ребра АВ, ВС,FG,GJ. Сделаем развертку. Длина кратчайшего пути в этом случае: MN= (MK2+NK2)1|2=(242+322)1|2=40. Этот путь и оказывается кратчайшим, т.к. его длина равна 40.

Ученики слушают, отвечают на вопросы.

Конспектируют, задают вопросы.

Слушают учителя, записывают решения в тетрадь, задают возникающие вопросы.

III Закрепление пройденного материала.

Сейчас возьмите карточки с заданиями своего уровня и решите предложенные там задачи.

Учитель следит за тем, что бы все работали, отвечает на возникающие вопросы. Если какая-та задача вызывает у многих затруднения, ее (полностью или частично) прорешивают на доске.

Учащиеся берут карточки с

заданиями и

преступаю к

решению задач.

Если возникают

трудности, они

обращаются за

помощью к

учителю.

IV Подведение итогов

Итак, сегодня мы с вами рассмотрели еще два метода решения экстремальных задач и их приминение..

Какие у вас есть вопросы по пройденному сегодня материалу? (отвечает на вопросы, если они есть)

Задают вопросы, которые остались непонятными.

V Запись домашнего задания

Домашнее задание: посмотреть конспект сегодняшнего занятия, дорешать задачки своей карточки.

Записывают.

Задачи предлагаемые учащимся.

I уровень сложности.

Задача 1.

На стороне ВС треугольника ABC найти точку D так, чтобы отрезок AD имел:

а) наибольшую длину;

б) наименьшую длину.

Решение:

а) Пусть di - произвольная внутренняя точка ВС

и АВ > АС. Так как AD1B> C>B, то AB >ADl.

Следовательно, отрезок AD имеет наибольшую длину, если он совпадает со стороной АВ. Если АВ = АС, то имеем два решения: стороны АВ и АС.

б) Пусть в треугольнике ABC ни один из углов В и С не тупой. Тогда основание высоты, проведенной из вершины А находится на стороне ВС и отрезок AD имеет наименьшую длину, если ADBC.

Пусть теперь угол С тупой. В этом случае основание Н высоты АН треугольника лежит на продолжении стороны ВС за точку С. Так как наклонная А С меньше всякой другой наклонной AD1 с основанием на ВС, то отрезок AD имеет наименьшую длину, если он совпадает со стороной АС треугольника.

Задача 2.

Прямая MN отсекает от данного угла А треугольник данной площади Q (М и N - точки на сторонах угла А). При каком условии отрезок MN имеет наименьшую длину, и какова эта длина?

Решение:

Обозначив отрезки AM и AN соответственно через х и у, по теореме косинусов получим:

MN2 = x2 + y2 - 2xycosA = (x-y)2 + 2xy (1-cosA) = (x-y)2 + 4 Q tg

так как Ѕ xy sin А = Q.

Следовательно, при х= у (AM = AN) отрезок имеет наименьшую длину, равную .

Задача 3.

Под каким углом к берегу нужно направить лодку, что бы за время ее переправки лодку как можно меньше снесло течением, если скорость течения 6 км/ч, а собственная скорость лодки - 3 км/ч.

Решение.

Необходимо направить лодку так, чтобы ее абсолютная скорость (относительно берегов) составляла, возможно, больший угол с берегом.

Пусть вектор - скорость лодки относительно воды. Сумма + = дает абсолютную скорость лодки (относительно берегов). Длина вектора

=3 и его можно направить в любую сторону. Множество возможных положений точки М - окружность радиуса 3 с центром в точке А.

Из всех векторов наибольший угол с берегом составляет , направленный по касательной к окружности. Получаем прямоугольный треугольник, у которого катет вдвое меньше гипотенузы. У такого треугольника угол равен 600.

II уровень сложности.

Задача 1.

Какой из всех параллелограммов с заданными диагоналями а и b имеет наибольшую площадь?

Решение:

Граничное значение переменной площади S параллелограмма ABCD непосредственно заметить трудно, но если эту переменную площадь выразить формулой

S = АС* DK= ah, то легко заметить, что S = ah ? ab, так как h ? .

Если использовать формулу S = abs'ma, то наибольшую площадь S нетрудно найти, граничное значение sin а хорошо известно.

Задача 2.

Расстояние от пункта А до пункта В 4 км, а от пункта В до пункта С вдвое больше. Какое наибольшее и наименьшее расстояние может быть от пункта А до пункта С?

Решение:

Расстояние АС зависит от места расположения

точки С. Так как расстояние ВС постоянное, то точка С

принадлежит точкам окружности с R = ВС, В - центр. Легко заметить, какие граничные значения может принимать АС, т.е.

4 = АСг < ACi < AB + BCi = 12.

Отсюда, max [AСi] = 12 km

min [ACi] = 4 km

Искомыми точками Ci являются концы диаметра длиной 16 км с центром окружности в пункте В.

Задача 3.

Данный треугольник ABC разделить отрезком наименьшей длины на две равновеликие части.

Решение:

Пусть а<b<с, тогда с < а + b < 2b, т.е. b<c<2b. Как показано выше, длина наименьшего отрезка MN, отсекающего от данного треугольника ABC треугольник площади 1/2 S с углом А, равна . Отрезок MN и является искомым, так как он меньше наименьших отрезков, отсекающих треугольники с углами В и С:

Таким образом, на сторонах наименьшего угла А треугольника ABC

нужно построить точки М и N так, чтобы АМ= AN=.

III уровень сложности.

Задача 1.

На сторонах АВ и АС треугольника ABC найти соответственно точки М и N так, чтобы треугольник ABC делился отрезком MN на две равновеликие части и чтобы отрезок MN имел наименьшую длину.

Решение:

Пусть MN - искомый отрезок. Обозначим площадь треугольника ABC через S,

тогда площадь треугольника AMN равна S.

AM = AN и MN =

Выразим отрезок AM через стороны b и с треугольника ABC. Так как площадь треугольника AMN составляет половину площади треугольника

ABC, то АМ2 sin А=b c sin A, откуда AM = .

По условию точки M и N должны лежать на сторонах АВ и АС треугольника. Значит, полученное выражение для AM является решением задачи

лишь при условии, что не больше каждой из сторон b и с треугольника.

Пусть b ? с, тогда? b в том и только в том случае, если с ? 2b.

Итак, если b < с < 2b, то на сторонах АВ и АС треугольника ABC строим

точки М и N такие, что AM=AN = .

Нетрудно показать, что если с > 2b, то искомым отрезком является медиана треугольника, проведенная к стороне с, причем длина этой медианы

более .

Задача 2.

На какое наименьшее число треугольных пирамид (тетраэдров) можно разбить куб?

Решение.

Куб ABCDA1B1C1D1 можно разбить на 5 тетраэдров: если отсечь от него тетраэдры BACВ1 и DACD1, A1B1D1А и C1B1D1С, то останется еще пятый тетраэдр ACB1D1. Он правильный. Попробуем установить, что меньше чем на 5 тетраэдров куб разбить нельзя. Допустим, что куб ABCDA1B1C1D1 разбит на некоторое число тетраэдров.

При этом грань АВСD куба разбивается на части, являющиеся гранями не менее чем двух тетраэдров (квадрат АВСD может быть разбит на 2 или большее число треугольников ), причем сумма площадей оснований этих тетраэдров равна a2, а высота каждого из них не больше а, поэтому объемов примыкающих к грани АВСD тетраэдров разбиения не превосходит а2 а=.

Аналогично этому к грани A1B1C1D1 куба примыкает не менее двух тетраэдров, причем общий объем этих тетраэдров также не превосходит .

Так как ни один тетраэдр не может одновременно иметь граней, являющихся частью квадрата АВСD и частью квадрата A1B1C1D1 (ведь никакой тетраэдр не имеет параллельных граней!), то мы уже имеем не менее 4 тетраэдров, причем общее число тетраэдров не превышает 2, то есть меньше объема а3. Отсюда и вытекает, что число тетраэдров не может быть меньше пяти.

Задача 3.

В шар радиуса R вписан конус, осевое сечение которого - равносторонний треугольник. Определить, между какими пределами может изменяться разность площадей двух сечений, из которых первое (КGFD) получается в результате пересечения шара плоскостью, параллельной основанию конуса, а второе(NPF) - в результате пересечения конуса той же плоскостью.

Решение.

Площади обоих сечений равны нулю в том случае, когда проводимая плоскость касается шара в точке В (вершина конуса). Площади обоих сечений будут равны, когда проводима плоскость совпадает с плоскостью основания конуса. Когда же проводимая плоскость занимает промежуточное положение между положениями рассмотренными выше, то площади сечений шара и конуса не равны. Итак, разность S площадей сечений шара и конуса изменяется от нуля до нуля, переходя через максимум, который мы определим.

S=( MK2- MN2 ); OB=R; MB=x;

MK2 = OK2 - OM2 = R2- (R - x)2 = 2Rx - x2/

Так как ? АВС равносторонний по условию и АС || NP, то и ? NBP также равносторонний, следовательно, MN2 = .

Следовательно S= 2x (3R - 2x),

которое будет максимально, когда максимально S1= 2x(3R- 2x). Так как сумма множителей 2x + 3R - 2x = 3R, то S1 максимально, когда 2х= 3R- 2х, т.е.

х= ѕR. Следовательно, максимальное значение S равно .

Занятие 3

Тема: «Алгебраический подход к решению задач на экстремумы».

Тип: Комбинированный урок.

Цели:

Обучающая: Отработка и совершенствование навыков решения экстремальных задач аналитическими методами.

Развивающая: Развитие мышления в процессе перевода словесной информации в математические символы, развитие ответственности и добросовестности во время индивидуальной работы.

Воспитательная: воспитание объективного отношения к результатам своей работы, эстетическое восптание..

Задачи: обзор методов решения экстремальных задач - геометрических и аналитических, рассмотрения аналитического метода решения задач с использованием квадратичной функции. Рассмотрение конкретных задач, решаемых этим методом.

Оборудование: доска, мел, карточки с заданиями.

План урока

Содержание

Методы и приемы

Время

1. Орг. момент

Сообщение цели урока

Инструктаж учителя

3 мин

2. Изучение нового материала

1.Суть метода.

2.Пример решения задачи

методом перебора.

3.Решение задачи с использованием квадратичной функции.

Лекция

(объяснительно-иллюстра-тивный с элементами

проблемного изложения)

Учащиеся конспектируют, задают вопросы.

29 мин

3.Закрепление пройденного материала.

Учитель предлагает

учащимся задачи для

самостоятельного решения. Учащиеся самостоятельно решают задачи своего уровня сложности (репродуктивный, частично-поисковый)

23 мин

4.Подведение итогов

беседа

2 мин

5.Запись домашнего задания

Инструкция учителя

(репродуктивный)

3 мин

Ход урока:

Деятельность учителя

Деятельность

учащихся

I. Орг. момент.

Добрый день.

На протяжении последних двух занятий мы с вами решали задачи на нахождение наибольших и наименьших величин геометрическим подходом.

Какие методы мы использовали?

Сегодня мы рассмотрим алгебраические подходы к решения экстремальных задач.

Садятся

Слушают учителя, отвечают на его вопросы.

II.Лекция.

1.Суть метода.

Как и геометрических, алгебраических подходов очень много, сегодня мы рассмотрим два из них: метод перебора и использование квадратичной функции.

В практике часто встречаются экстремальные задачи, при решении которых получается одно уравнение с несколькими переменными, заданными на множестве целых неотрицательных чисел. Решение таких задач сводится к исследованию линейной функции.

2.Пример решения задачи методом перебора.

Примером может послужить такая задача:

Содержание витамина С в 1 кг фруктов и стоимость 1 кг заданы следующей таблицей:

Фрукты

Витамин С (кг)

Стоимость(у.е.)

Вишни

Абрикосы

150

75

0,3

0,4

Обозначим количество килограммов вишни через х, а количество килограммов абрикосов - через у. Тогда решение задачи сводится к нахождению min(0,3 x + 0,4y), если 150 х + 75у =75, где х < 0,25.

min (0,3 x + 0,4 - 0,8 x ) = min (- 0,5x + 0,4) = 0,275.

В дневной рацион следует включать 0,25 кг. Вишни и 0,5 кг. Абрикосов.

При решении задач квадратичной функции мы будем опираться на следующую теорему:

Теорема:

Функция ах2 + вх + с при а>0 имеет наименьшее значение, равное (4ас-b2)/4, и при а<0 - наибольшее значение, равное тоже (4ас-b2)/4. Эти наименьшие и наибольшие значения получаются при х = - b/2а.

3.Решение задачи с использованием квадратичной функции.

Найти наименьшее значение функции

и построить ее график.

Поиски решения. Данную функцию можно изобразить аналитически так:

Отсюда видно, что при х = -1 она теряет смысл, а при всех других действительных значениях х принимает только положительные значения. Следовательно, ее наименьшим значением может быть только положительное число. Обнаружить это наименьшее значение непосредственно не представляется возможным. Поэтому надо обратиться к каким-то целенаправленным преобразованиям данного аналитического изображения функции.

Решение:

Очевидно, что

Обозначив дробь буквой u, получим:

Искомое наименьшее значение равно и получается оно при т.е. при

х = 1

Перейдем к построению графика данной функции. Составим таблицу нескольких значений х и у, пользуясь формулой

х

-3

-2

-3/2

-1

-1/2

0

1

2

3

у

7/4

3

7

Х

3

1

3/4

7/9

13/16

Если аргумент х будет приближаться к -1 (слева или справа), то у будет неограниченно возрастать.

Теперь посмотрим, как будет вести себя у, когда х станет стремиться к плюс бесконечности или минус бесконечности. Очевидно, что

Отсюда видно, что при стремлении х к бесконечности у стремится к

Ученики конспектируют, задают вопросы

Слушают учителя,

записывают решение в тетрадь, задают

возникающие вопросы.

IIIЗакрепление пройденного материала.

Сейчас возьмите карточки с заданиями своего уровня и

решите предложенные там задачи.

Учитель следит за тем, что бы все работали, отвечает на возникающие вопросы. Если какая-та задача вызывает у многих затруднения, ее (полностью или частично) прорешивают на доске.

Учащиеся берут карточки с заданиями и преступаю к решению задач. Если возникают трудности, они обращаются за помощью к учителю.

IVПодведение итогов

Итак, сегодня мы с вами рассмотрели еще два метода решения экстремальных задач и их применение.

Какие у вас есть вопросы по пройденному сегодня материалу? (отвечает на вопросы, если они есть)

Задают вопросы, которые остались непонятными.

VЗапись домашнего задания

Домашнее задание: посмотреть конспект сегодняшнего занятия, дорешать задачки своей карточки.

Записывают.

Задачи предлагаемые учащимся.

I уровень сложности.

Задача 1.

В швейном цехе имеется 164 м ткани. На шитье одного халата требуется 4 м. ткани, а одной пижамы - 3 м. Сколько следует изготовить халатов и пижам для получения наибольшей прибыли от реализации продукции, если халат стоит 7 руб., а пижама - 6 руб.? Известно, что халатов требуется изготовить не менее 14 шт.

Решение.

Пусть в швейном цехе изготовлено х халатов и у пижам. Тогда решение задачи сводится к нахождению max(7x + 6y), если 4х + 3у =1 64.

max(7x + 6y) = max (328- x) = 314 , где x? 14.

Для получения наибольшей прибыли следует изготовить 14 халатов и 36 пижам.

Задача 2.

Требуется соорудить канал с поперечным сечением ABDC, где АВ=CD, АВ и CD перпендикулярны к BD. Сумма длин АВ, ВD и СD должны быть равной Р метрам.

Спрашивается, какими надо сделать ширину и глубину канала, чтобы площадь его поперечного сечения, т.е. площадь прямоугольника с вершинами в точках А, В, С, D, оказалась бы наибольшей?

Поиски решения. Поскольку мы еще не знаем, какими надо сделать глубину и ширину канала, то естественно обозначить эти переменные какими-либо подходящими буквами. Например, положить АВ = х и BD = у. Далее надо выразить через х и у ту величину, наибольшее значение которой нам надо найти, т.е. площадь сечения канала. Эта площадь выразится произведением ху, т.е. будет зависеть от двух переменных величин х и у. Но наше исследование облегчится, если нам удастся выразить площадь в зависимости только от одной переменной. Очевидно, что в данном случае это сделать легко, т.к. по условию задачи 2х + у = Р.

Решение.

Пусть АВ = х, тогда и CD = х, а BD = P - 2x. Площадь сечения будет равна х (Р - 2х). Задача сводится к определению наибольшего значения функции х (Р - 2х), которая представляет собой многочлен второй степени, имеющий вид -2х2+Рх. Очевидно, что

Отсюда видно, что наибольшая площадь получится в том случае, когда мы сделаем глубину канала х = Р/4. Тогда окажется ширина у равной Р/2, а наибольшая площадь равной Р2/8.

Задача 3.

Найти наибольшее и наименьшее значения функции y = 9x - 2•3 x на отрезке [-1; 2].

Решение.

Пусть t= 3x. Так как -1 ? x ? 2, то , у= t2 - 2t. Таким образом, решение задачи сводится к вычислению наибольшего и наименьшего значений квадратичной функции

у = t2 - 2t на отрезке [; 9]. Абсцисса t0 вершины параболы, являющейся графиком э той функции , равна 1, ветви параболы направлены вверх. Так как t0 є [; 9], то min y(t) =y (1) = - 1, а максимальное значение достигается на том конце отрезка, который наиболее удален от t0 , т.е. max y(t) = y(9) = 63. Если t = 1, то х = 0, если t= 9, то х =2. Поэтому max y(x) = y(2) = 63, min y(x) = y(0) = - 1.

II уровень сложности.

Задача 1.

Предполагается, что рацион составляется из двух видов кормов - сена и концентратов. В таблице приведены числовые данные о суточной потребности одного животного в питательных веществах и о себестоимости кормов в данном хозяйстве:

Виды кормов

Содержание в 1 кг. Кормов кормовых единиц

Себестоимость 1 кг(в руб.)

Сено

0,5

1,5

Концентраты

1,0

2,5

Суточная потребность на одного животного

20

-

Требуется найти самый дешевый рацион, если ежедневный рацион кормления сельскохозяйственных животных должен включать не менее 16 кг. сена.

Решение.

Пусть ежедневный рацион кормления состоит из х кг. сена и у кг. концентратов. Тогда ежедневный рацион содержит (0,5 х + у) кормовых единиц, себестоимость которого равна (1,5 х + 2,5 у).

Решение задачи сводится к нахождению min (1,5 х + 2,5 у), если 0,5 х + у =20.

min (1,5 х + 2,5(20 - 0, 5х )) = min (0,25 х + 50) = 54.

Задача 2.

Найти наибольшее значение функции f = х4 (32-х4).

Решение:

Поиски решения.

Данная функция принимает отрицательные значения

при , а при - положительные. Поскольку ее наибольшее значение надо искать среди значений х меньших, чем .

Если мы положим х4 = у, то задача сведется к нахождению наибольшего значения многочлена второй степени, имеющего вид:

- у2 +32у.

Однако если проявить наблюдательность и заметить, что сумма множителей х4 и (32 - х4) является величиной постоянной, то можно воспользоваться теоремой 3 и решить задачу проще.

Задача 3.

Найти наибольшее и наименьшее значения функции у=6 - 2х на отрезке [2 ; 8] .

Решение.

Пусть t = . Так как 2 ? х ? 8 , то 1 ? t ? . При этом 2х = t2 + 3, откуда

y=6 t - t2 -3. Таким образом, решение задачи сводится к вычислению наибольшего и наименьшего значений квадратичной функции на отрезке.

Графиком этой функции является парабола, ветви которой направлены вниз, абсцисса t0 вершины параболы, равна 3. Так как t0 є [1; ] , то max y(t) =y (3) =6, а наименьшее значение достигается в том из концов отрезка который наиболее удален от t0, т.е.

min y(t) =y (1) = 2.

Если t = 3, то х = 6, если t= 1, то х =2. Поэтому max y(x) = y(6) = 6, min y(x) = y(2) = 2.

III уровень сложности.

Задача 1.

Завод должен переслать заказчику 1100 деталей. Детали упаковывают в ящики трех видов.6 по 70, 40 и 25 деталей в каждый. Стоимость пересылки одного ящика каждого вида соответственно равна 20 руб., 10 руб. и 7 руб. Сколько ящиков и какого вида должен использовать завод , чтобы стоимость пересылки была наименьшей.

Решение.

Оценим, в каком из ящиков пересылка одной детали будет наиболее дешевой: в первом руб., во втором руб., в третьем руб. Поскольку < , то выгоднее пересылать детали в ящиках по 40 штук, менее выгодно- по 25 штук, наименее выгодно - по 70 штук.

Но 1100 деталей в ящики по 40 штук полностью вместить нельзя. Следовательно, необходимо найти максимальное количество деталей, которые можно переслать в ящиках по 40 деталей.

Максимальное количество стоит искать среди чисел, близких к 1100 и кратных 40, т.е. среди чисел, 1080, 1040, 1000 и т.д. Первые два числа не подходят, т.к. останется в первом случае 20, а во втором -60 деталей; в третьем случае останется 100 деталей, которыми можно загрузить 4 ящика по 25 деталей.

Можно подсчитать, что в этом случае затраты на пересылку составят 10 • 25 + 4 • 7 =278 руб. А если, например, отправить 10 ящиков по 70 деталей и 16 ящиков по 25 деталей, то затраты составят 312 руб..

Задача 2.

Найти наименьшее и наибольшее значение функции y=4x+6|x-2|-x2 на отрезке

[-1;3].

Решение:

y=-( x2-4x+4-4)+ 6|x-2|=-(x-2)2 +6|x-2|+4. Так как а2=|а|2, то y=

-|x-2|2+6|x-2|+4. Пусть t=|x-2|. Поскольку -1 ? х ? 3, то 0 ? t ? 3. При этом y=-t2+6t+4 возрастает и, следовательно,

min y(t)=y(0)=4, max y(t)=y(3)=13.

[0;3] [0;3]

Если t=0, то x=2. Если t=3, то |x-2|=3

Но по условию х[-1;3], поэтому остается только значение х=-1.

Ответ: min y(х)=y(2)=4, max y(х)=y(-1)=13.

[-1;3] [-1;3]

Задача 3.

Найти наименьшее и наибольшее значения функции у=2sin x - cos 2x +cos2 x.

Решение.

Так как

cos 2x = 1 -2 sin2 x, cos2 x = 1- sin2 x, то y= sin2 x+ 2 sin x. Пусть t =sin x, -1 ? t ? 1.

Тогда, решение задачи сводится к вычислению наибольшего и наименьшего значений квадратичной функции на отрезке.

Графиком этой функции является парабола, ветви которой направлены вверх, абсцисса t0 вершины параболы, равна - 1. Так как t0 є [- 1;1] , то max y(t) =y (1) =3, min y(t) =y (-1) = -1.

Если t = 1, то sin x = 1x = . Если t= - 1, то

sin х = -1n, nZ. Поэтому max y(x) = 3, min y(x) = - 1.

Занятие 4

Тема: «Алгебраический подход к решению задач на экстремумы».

Тип: Комбинированный урок.

Цели:

Обучающая: Обучить способу решения экстремальных задач различными аналитическими методами, совершенствование навыков решения экстремальных задач аналитическими методами.

Развивающая: дать возможность учащимся убедится в том, на сколько развиты их возможности и над чем нужно поработать.

Воспитательная: воспитание потребности и умения работать в коллективе для решения совместных задач, активной жизненной позиции, умения ставить и достигать цели.

Задачи: Рассмотреть различные аналитические методы решения экстремальных задач, и их применение при решении конкретных задач; закрепление умений и навыков решения экстремальных задач аналитическими методами.

Оборудование: доска, мел, карточки с заданиями.

План урока

Содержание

Методы и приемы

Время

1.Орг. момент

Сообщение цели урока

Инструктаж учителя

3 мин

2.Изучение нового

материала

1.Суть метода.

2.Пример решения

задачи c

использованием

неравенств.

Лекция

(объяснительно-иллюстра-тивный с элементами

проблемного изложения)

Учащиеся конспектируют, задают вопросы.

20 мин

3.Закрепление пройденного материала.

Учитель предлагает

учащимся задачи для

самостоятельного решения.

Учащиеся самостоятельно

решают задачи своего

уровня сложности

(репродуктивный, частично-поисковый)

31 мин

4.Подведение итогов

беседа

2 мин

5.Запись домашнего задания

Инструкция учителя

(репродуктивный)

4 мин

Ход урока:

Деятельность учителя

Деятельность учащихся

I.Орг. момент.

Добрый день.

На прошлом занятии мы в вами начали изучать алгебраические подходы к решению задач на экстремумы. Сегодня мы рассмотрим еще один подход - использование стандартных неравенств.

Садятся.

Слушают учителя,

отвечают на его

вопросы.

II. Лекция.

1.Суть метода.

Напомним, что для любых двух неотрицательных чисел а и в справедливо неравенство, называемое неравенством между средним арифметическим и средним геометрическим этих чисел (неравенство Коши):


Подобные документы

  • Дифференциация, ее виды. Уровневая дифференциация обучения на основе обязательных результатов. Формы организации учебной деятельности на уроке. Групповая работа учащихся на уроке как средство уровневой дифференциации.

    дипломная работа [86,7 K], добавлен 08.08.2007

  • Понятие текстовой задачи и ее роли в курсе математики. Способы решения текстовых задач. Методика обучения решению составных задач на пропорциональное деление. Обучение решению задач на движение. Выявление уровня умений учащихся решению составных задач.

    курсовая работа [231,8 K], добавлен 20.08.2010

  • Общие вопросы методики начального обучения математике. Арифметическая задача. Виды арифметических задач. Моделирование как средство формирования умения решать задачи. Виды моделирования. Графическое моделирование. Обучение решению задач на движение.

    курсовая работа [800,8 K], добавлен 11.01.2005

  • Классификация и функции задач в обучении. Методические особенности решения нестандартных задач. Особенности решения текстовых задач и задач с параметрами. Методика решения уравнений и неравенств. Педагогический эксперимент и анализ результатов.

    дипломная работа [387,1 K], добавлен 24.02.2010

  • Сущность алгебраического метода решения текстовых задач. Типичные методические ошибки учителя при работе с ними. Решение текстовых задач алгебраическим методом по Г.Г. Левитасу и В. Лебедеву. Анализ практического применения методики обучения их решению.

    курсовая работа [260,9 K], добавлен 30.09.2010

  • Роль и основные функции задач в обучении математике. Основные понятия теории графов. Роль факультативных занятий как формы обучения математике. Методика проведения занятий по решению задач на факультативных занятиях по теме "Элементы теории графов".

    курсовая работа [752,1 K], добавлен 08.06.2014

  • Подбор комплекса олимпиадных задач по математике для детей младшего школьного возраста. Структура и виды олимпиадных задач, способы их решения. Обучение детей умению и навыкам выполнять семантический, логический и математический анализ текстовых задач.

    курсовая работа [36,0 K], добавлен 01.10.2014

  • Виды и приемы обобщений в философской, психолого-педагогической, математико-методической литературе и их роль в процессе обучения математике, условия осуществления. Обобщения по аналогии и индуктивные обобщения при обучении решению математических задач.

    дипломная работа [1,4 M], добавлен 24.06.2009

  • История, основные понятия и сущность задачного обучения. Модельный эксперимент по дифференцированному использованию ситуационных задач в обучении биологии в начальных классах. Изучение различных подходов к конструированию и решению ситуационных задач.

    курсовая работа [204,7 K], добавлен 09.09.2014

  • Формирование деятельности учащихся при обучении методу моделирования. Функции метода моделирования. Развивающие функции задач в обучении. Анализ содержания школьного курса алгебры с точки зрения подготовки учащихся к решению задач с параметрами.

    дипломная работа [585,5 K], добавлен 23.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.