Методы, способы, приемы решения физических задач
Решение задач в курсе физике как элемент учебной работы. Физическая задача - проблема, решаемая с помощью логических умозаключений, математических действий на основе законов физики. Классификация физических задач, приемы, способы и методы их решения.
Рубрика | Педагогика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 31.03.2013 |
Размер файла | 2,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Резисторы R12 и R23 соединены параллельно, следовательно, их общее сопротивление равно R/2. Точно также общее сопротивление резисторов R45 и R56 равно R/2. Общее сопротивление части цепи параллельной R34 равно R/2 + R/2 = R, поэтому сопротивление всей цепи будет равно R/2.
4.6.4 Метод разделения узлов.
Метод разделения узлов схемы основан на том, что, если возможно объединение двух узлов, имеющих равные потенциалы, то возможен и обратный переход: узел схемы можно разделить на две или несколько точек, если получившиеся при этом точки имеют прежние одинаковые потенциалы.
Задача: Найти сопротивление цепи, которая представляет собой каркас из одинаковых отрезков проволоки (рис.27) сопротивлением R каждый.
рис.27
Разделим узел О на две точки, получив два варианта электрической цепи (рис.28, а) и (рис.28, б). В первом случае потенциалы точек О' и О'' не равны., Если потенциал точки А больше потенциала точки В, то потенциал точки О' больше потенциала точки О'' и наоборот. Потенциалы же точек О1 и О2 равны, так как находятся в одинаковых условиях (полностью симметричны). Отсюда следует, что верным является разделение узла О, показанное на рис.28, б. Эквивалентная схема цепи, полученная после разделения узла О, изображена на рис.28, в. Отсюда общее сопротивление цепи между точками А и В равно 3R/2.
рис.28
Задача: Найти сопротивление цепи, которая представляет собой каркас из одинаковых отрезков проволоки (рис.29, а) сопротивлением R каждый.
Единственно верным способом разделения узла О на отдельные точки О1, О2 и О3 является способ, изображённый на рис.29, б. Эквивалентное сопротивление участков (cd) и (ef) будет равноRcd=Ref=2RR/ (2R+ R) =2R/3.
рис.29
Эквивалентное сопротивление участка АО1В равно 2R. Эквивалентная схема цепи, полученная после разделения узла О, изображена на рис.29, в. Общее сопротивление цепи определим по формуле:
1/Rобщ=3/8R+3/8R+1/2R=5/4R, откуда Rобщ = 4R/5.
Метод преобразования и расчёта цепей с помощью перехода "звезда" - "треугольник".
Этот метод основан на том, что схему, имеющую три узла, можно заменить другой, с тем же числом узлов. При этом сопротивление участка между двумя любыми узлами новой схемы должно быть равно сопротивлению заменяемого участка. В результате получается схема, сопротивление которой эквивалентно сопротивлению данной по условию. Поскольку в результате такого преобразования изменяются токи внутри цепи, то такую замену проводят в тех случаях, когда не нужно находить распределение токов.
рис.30
Рассмотрим преобразование схем, имеющих три вывода (трёхполюсников).
Это преобразование называется преобразованием "звезды" (рис.30, а) в "треугольник" (рис.30, б), и наоборот.
В "звезде" сопротивление между точками 1 и 2 равно r1 + r2, в "треугольнике" R12 (R13 + R23) / (R12 + R13 + R23). Следовательно, для того чтобы сопротивления между точками 1 и 2 были одинаковы для обеих схем, необходимо выполнение равенства:
r1+r2=R12 (R13+R23) / (R12+ R13 + R23).
Аналогично для точек 1 и 3 и для точек 2 и 3:
r1+r3=R13 (R12+R23) / (R12+ R13 + R23).
r2+r3=R23 (R12+R13) / (R12+ R13 + R23).
Сложив левые и правые части этих уравнений и разделив полученные суммы на 2, получим:
r1+r2+r3= (R12R13 +R12 R23 + R13 R23) /) / (R12 + R13 + R23).
После преобразований получим:
r1=R12R13/ (R12+R13+R23);
r2=R12R23/ (R12+R13+R23);
r3=R13R23/ (R12+R13+R23).
Аналогично получаются формулы для обратного преобразования:
R12= (r1r2+r1r3+r2r3) / r3;
R13= (r1r2+r1r3+r2r3) / r2;
R23= (r1r2+r1r3+r2r3) / r1.
Задача: Определите сопротивление цепи АВ (рис.31. а), если R1=R5= 1 Oм; R2=R6=2Oм; R3=R7=3 Oм; R4=R8 =4 Oм.
рис.31
Преобразуем "треугольники" R1 R2 R8 R4 R5 R6 в эквивалентные "звёзды", тогда схема примет вид, изображённый на рис.35, б. Сопротивления r1, r2, r3, … r6 рассчитаем по формулам: r1 = R1 R8/ (R1 + R2 + R8) = 4/7 Ом;
r2 = R1 R2/ (R1 + R2 + R8) = 2/7 Ом; r3 = R2 R8/ (R1 + R2 + R8) = 8/7 Ом;
r4=R4R6/ (R4+R5+R6) =8/7Ом; r5 = R5 R6/ (R4 + R5 + R6) = 2/7 Ом;
r6 = R4 R5/ (R4 + R5 + R6) = 4/7 Ом;
Схема, изображённая на рис.31, в является эквивалентной схеме на рис.31, б. Здесь R'3 = r2 + R3 + r4 = 31/7 Ом; R'7 = r3 + R7 + r5 = 31/7 Ом, R'3 = R'7. Общее сопротивление цепи
Rобщ = r1 + R'3/2 + r6 = 47/14 Ом.
Задача: Определить общее сопротивление неуравновешенного моста (рис.32, а), если R1 = 1,0 Oм; R2 = 1,6 Oм; R3 = 2,0 Oм; R4 = 1,2 Oм; R5 = 2,0 Oм.
рис.32
Если преобразовать "треугольник" из резисторов R1, R3, R5 в эквивалентную "звезду", то получится простая схема (рис.32, б). Рассчитаем сопротивления r1, r2 и r3 по формулам:
r1 = R1R3/ (R1 + R3 + R5) = 0,4 Ом; r2 = R1R5/ (R1 + R3 + R5) = 0,4 Ом; r3 = R3R5/ (R1 + R3 + R5) = 0,8 Ом;
Общее сопротивление цепи
Rобщ = r1 + (r2 + R2) (r3 +R4) / (r2 + R2 + r3 + R4) = 1,4 Ом.
Векторный метод решения задач
Этот метод используется в случае, если при сложении векторов получается замкнутый треугольник. Это может быть треугольник скоростей, сил, импульсов, напряжённостей электрических и индукций магнитных полей.
Задача: Мальчик и девочка решили попасть из пункта А в пункт В, расположенные на противоположных берегах реки, скорость течения которой u. Мальчик плывёт так, чтобы сразу оказаться в пункте В. Девочка направляет скорость своего плавания поперёк скорости течения реки и, чтобы попасть в пункт В, должна пройти по противоположному берегу то расстояние, на которое её снесёт течением. С какой скоростью должна перемещаться девочка по берегу, чтобы оказаться в пункте В одновременно с мальчиком? Скорости и мальчика, и девочки относительно воды одинаковы и равны V.
При решении используем закон сложения скоростей, согласно которому скорость тела относительно неподвижной системы отсчёта равна сумме скорости относительно подвижной системы и скорости самой подвижной системы. На рис.33, а показана скорость мальчика V1 относительно берегов, которая получается путём сложения скорости мальчика относительно воды V и скорости течения реки u. Модуль скорости V1 определим по теореме Пифагора: V1= (V2 - u2) 1/2.
Время, за которое мальчик сумеет переплыть реку по прямой АВ, определим по формуле: t1 = L/V1, L - ширина реки.
На рис.33, б показана скорость девочки V2 относительно берегов реки, которая также равна сумме векторов скоростей девочки относительно воды V и течения реки u. Однако по модулю она равна V2= (V2+u2) 1/2.
рис.33
Время, которое потребуется девочке, чтобы переплыть реку по прямой АС равно:
t2=L/V,
т.к. вдоль прямой АВ она плывёт со скоростью V. Поскольку V > V1, то t2 < t1 на величину
Дt = t1 - t2 = L (1/V1 - 1/V).
Девочка приплывает в пункт С и, чтобы попасть в пункт В вместе с мальчиком ей требуется перемещаться по прямой ВС со скоростью V ` = S/ Дt, где S - длина прямой ВС, представляющая собой расстояние, на которое сносит девочку течение реки. Из подобия векторного треугольника и треугольника АВС (рис.33, б) составим пропорцию S/L = u/V, откуда найдём S:
S = Lu/V.
Скорость перемещения девочки по прямой ВС будет равна: V `= S/Дt= Lu/VДt или после подстановки значения Дt и V1:
V `=u/V (1/V1-1/V) =u/V [1/ (V2 - u2) 1/2 - 1/V].
Задача: (стр.17) можно решить не только координатным методом, но и векторным.
На шарик действуют силы: mg - сила тяжести, FA - архимедова сила, T - сила натяжения нити и FE - сила, действующая на заряд шарика со стороны электрического поля (рис.9).
рис.34
Произведя сложение векторов этих сил, получим векторный треугольник со сторонами (mg - FA), FE и Т.
По условию равновесия сумма векторов сил должна быть равна нулю, поэтому конец вектора Т должен совпасть с началом вектора mg (рис.34). Так как сила натяжения направлена вдоль нити, а сила тяжести вертикально вниз, то между ними будет угол б. Угол между векторами mg и FE прямой. Отношение противолежащего катета к прилежащему для угла б равно тангенсу этого угла: tgб=FE/ (mg-FA).
Метод решения обратной задачи
Многие физические явления, изучаемые в школьном курсе физики, рассматриваются в идеальных условиях.
При рассмотрении механических явлений часто пренебрегают сопротивлением среды, трением, рассеянием энергии, поэтому такие явления носят обратимый характер. Для таких случаев направление прямого процесса можно заменить обратным процессом.
Задача:
С какого расстояния S от центра полусферы радиуса R =1,35 м, с какой скоростью и под каким углом в нужно бросить маленькую шайбу (из положения 1), чтобы она, попав на полусферу, остановилась на её вершине (положение 2) (рис.35, а)? Трением шайбы о полусферу и сопротивлением воздуха пренебречь. Ускорение свободного падения считать равным 10 м/с2.
рис.35
Сформулируем обратную задачу: на каком расстоянии S от центра полусферы, с какой скоростью V и под каким углом в упадёт шайба, скатывающаяся с вершины полусферы радиуса R (рис.35, б)? Трением шайбы о поверхность полусферы и сопротивлением воздуха пренебречь.
Определим, с какой скоростью V0, под каким углом б к горизонту и с какой высоты от уровня основания полусферы (R cosб) отрывается шайба от поверхности полусферы. Точка отрыва лежит ниже вершины на расстоянии равном h, поэтому скорость шайбы в момент отрыва определится по формуле: V0 = (2gh) 1/2.
В момент отрыва шайбы от поверхности сферы сила реакции опоры становится равной нулю, сила трения равна нулю по условию, поэтому единственной силой, действующей на шайбу в этот момент, является сила тяжести. Точка отрыва шайбы является точкой перехода её траектории с дуги окружности радиуса R на параболическую кривую. Составляющая силы тяжести, действующая вдоль радиуса, является силой, сообщающей шайбе центростремительное ускорение, поэтому скорость шайбы в момент отрыва можно определить по второму закону Ньютона: mg cos б = m V02/R, откуда
V0 = (gR cosб) 1/2.
Так как h=R (1-cosб) (рис.35, б), то: V0= [2gR (1 - cosб)] 1/2.
Приравняв правые части равенств определим косинус угла б, под которым направлен вектор V0: cosб=2/3.
Подставив значение cos б в одно из уравнений или, получаем значение скорости в момент отрыва шайбы: V0= (2gR/3) 1/2= (2.10.1,35: 3) 1/2 = 3 м/с.
Запишем уравнения движения шайбы после её отрыва в координатной форме, направив оси координат Х и У так, как показано на рис.35, б:
Х=Voxt= (Vocosб) t; Y=Voyt+gt2/2= (Vosinб) t+gt2/2
При t = tп - времени полёта шайбы до точки падения, X = Xmax, a
Y = R cos б = 1,35.2/3 = 0,9 м.
Определим sin б= (1-cos2б) 1/2 = (1-4/9) 1/2 = 51/2/3.
После подстановки tп в уравнение оно примет вид:
0,9=51/2tп+5tп2,откуда tп = (51/2 + 231/2) /10 = 0,7 с.
Подставив значение tп в определим Xmax = (Vo cosб) tп =3.2/3.0,7 = 1,4 м.
Точка падения шайбы лежит от центра полусферы на расстоянии
S = Xmax + R sin б = 1,4 + 1,35.51/2/3 = 2,41 м.
Точка падения шайбы будет той точкой, откуда нужно бросить шайбу, чтобы она остановилась на вершине полусферы. Теперь определим скорость, с которой нужно бросить шайбу. Она будет равна скорости V, с которой шайба падает на горизонтальную поверхность: V= (Vox2+Vy2) 1/2.
Vox = Vo cosб = 3.2/3 = 2 м; Vy = Vo sin б + gtп = 3.51/2/3 + 10.0,7 = 9,24 м/с,
подставив эти значения, получим значение скорости
V= (22+9,242) 1/2=9,45 м/с.
Определим угол, под которым нужно направить вектор скорости V при бросании шайбы. Он будет равен углу в, под которым шайба падает на горизонтальную поверхность. tg в = Vy / Vox = 9,24/ 2 = 4,62; в = 77,8o.
Таким образом, чтобы шайба, будучи брошенной, остановилась на вершине полусферы радиуса 1,35 м. её нужно бросить с расстояния 2,41 м от центра полусферы, со скоростью 9,45 м/с под углом 77,8о к горизонтальной поверхности, на которой расположена полусфера.
Метод усложнения - упрощения
Метод усложнения - упрощения - это своеобразное использование анализа и синтеза. Метод связан с введением новых элементов, которые на первый взгляд усложняют задачу, но в результате дают эффективное решение. В некоторых задачах удобно разбить систему на составные части, или же наоборот достроить её, упрощая тем самым ход решения.
Задача: доска массой m и длиной l лежит на горизонтальном полу. Коэффициент трения доски о пол равен k. Какую работу надо совершить, что бы повернуть доску в горизонтальной плоскости на малый угол вокруг одного из концов? (рис.36)
рис.36
1-й способ. Рассмотрим элемент доски dx массой dm=, который при повороте на проходит расстояние x. При этом совершается работа dA=kg x или A=l=, 2-й способ. A==
Результат получен после поворота и второго конца на угол . Искомая работа равна половине работы по перемещению доски на L.
Задача: В полусферический колокол, плотно лежащий на столе, наливает через отверстие вверху воду. Когда вода доходит до отверстия, она приподнимает колокол и начинает вытекать снизу. Радиус колокола R, плотность воды . Найти массу колокола М. (рис.37)
1-й способ. Прямое динамическое решение задачи (рис.41, а) F=Mg+. F=, M= 2-й способ. Поместим систему в цилиндрический сосуд высотой и радиусом R. (рис.37, б)
Пусть колокол тонок и его масса мала. Давление на колокол снаружи и изнутри равно во всех точках. Если колокол убрать, то
M= () , M= () =
рис.37
Задача: Найти кинетическую энергию стержня, вращающегося в горизонтальной плоскости вокруг вертикальной оси, проходящей через его середину. Известны: (рис.38, а)
Для половины стержня (рис.38, б) . Но К=2, следовательно К=.
рис.38
Для того чтобы в полной мере овладеть использованием вышеизложенного метода необходимо решить не одну задачу с применением данного метода.
Метод дифференцирования и интегрирования
В основе метода лежат два принципа:
1) принцип возможности представления закона в дифференциальной форме;
2) принцип суперпозиции.
При использовании метода дифференцирования и интегрирования, разделяют тело на материальные точки или траекторию и время на такие промежутки, на которых процесс можно считать равномерным. Далее по принципу суперпозиций производят суммирование (интегрирование).
Задача: Найти силу гравитационного взаимодействия между расположенными на одной прямой материальной точкой массой m и однородным стержнем длиной L и массой M. Расстояние от точки до ближайшего конца стержня равно С. (рис.39)
рис.39
Выделяем на расстоянии х от точки элемент стержня длиной dx и массой dx. Сила его взаимодействия с точкой dF=.
Поэтому F=.
Задача:
Найти кинетическую энергию однородного диска радиусом R и массы M, вращающегося с постоянной угловой скоростью вокруг оси, проходящей через центр диска перпендикулярно его плоскости.
Разобьем диск на кольца шириной dx, каждое из которых отстоит от оси вращения на x [0: R]. Масса каждого кольца, вращающегося с линейной скоростью
: dm=
Величиной (dx) 2 в сравнении с 2xdx можно пренебречь.
dk=
Откуда К=
Метод дифференцирования и интегрирования применяется также для вывода формул.
Вариационные принципы механики, метод виртуальных перемещений
Невариационные принципы устанавливают закономерности движения, совершаемого системой под действием приложенных сил.
Вариационные принципы разделяются на дифференциальные и интегральные. Дифференциальный - это метод виртуальных перемещений, интегральный - следствие из принципа наименьшего действия.
Принцип: Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ, действующих на систему сил при любом виртуальном перемещении, равнялась нулю.
Задача: В системе (рис.40) к нижнему блоку подвешен груз массой m. Какую минимальную силу надо приложить к свободному концу нити, чтобы удерживать систему в равновесии? Нити нерастяжимы, блоки невесомы. Нити между блоками считать параллельными.
Пусть точка приложения силы перемещается вертикально вниз на расстояние (-обозначение приращения по Лагранжу). При этом груз m переместится вверх на расстояние h=H
A1A2=0, H-mgh=0, F=
рис.40
Традиционное решение:
Груз пребывает в равновесии, значит силы натяжения, приложенные к любому участку нити, взаимно компенсируют друг друга:
Т0=Т1, Т1=Т2, Т2=Т3, Т3=Т4.
Кроме того, F= Т0; mg= Т1 +Т2 +Т3 +Т4=4F F=.
Задача: В коробке К (рис.41) заключен передающий механизм неизвестной конструкции. При повороте ручки Р вертикальный винт В плавно поднимается. При одном полном обороте (радиус оборота r) винт перемещается на расстояние h. На винт кладут груз массой m. Какое усилие надо приложить к ручке, чтобы удержать систему с грузом в равновесии?
рис.41
Пусти искомая сила F при бесконечно малом повороте на угол совершает работу . При этом груз m поднимается на высоту и работа силы тяжести . Тогда из имеем
F=mg.
Традиционными методами задача не решается так как ничего не известно о механизме передачи скрытом в коробке.
Метод зеркальных изображений
Метод основан на построении изображений предметов в плоских зеркалах. С помощью этого метода можно решать задачи кинематики, оптики, электростатики.
Перед тем как отрабатывать навыки решения задач данным методом со школьниками, либо со студентами необходимо вспомнить как построить изображение в плоском зеркале. На рис.42 показано изображение А1В1 предмета АВ в плоском зеркале ОО1.
Угол падения 1 равен углу отражения 1, ; АО=А1О; ВО1=В1О1. Плоское зеркало меняет "лево" на "право", это свойство имеет значение в оптике и электростатике.
рис.42
Задача: Автомобиль, находящийся на расстоянии l от длинной бетонной стены и движущийся от нее со скоростью v так, как показано на рис.47, посылает короткий звуковой сигнал. Какое расстояние пройдет автомобиль до встречи с отраженным сигналом. Скорость звука u.
рис.43
Сложность задачи связанна с тем, что бы найти точку О1, отразившись от которой звуковой сигнал "нагнала" автомобиль. Построим изображение А1 автомобиля А в бетонной стене. При этом АО=А1О. Пусть АА2 =х - искомое расстояние. Соединив полученные точки А1 и А2, найдем О1. Равные углы обозначим . Путь звукового сигнала АО1А2 равен А1О1А2. По теореме косинусов из AA1A2 найдем
Учитывая, что A1A=2l; AA2=x; Cos () =-Sin =ut=u
x=
Задача: Найти силу взаимодействия точечного заряда q, расположенного на расстоянии r от проводящей бесконечной заземленной плоскости (рис.44) с этой плоскостью.
рис.44
На плоскости в силу явления электростатической индукции находится заряд - q, распределенный по ней. Сила взаимодействия заряда q и индуцированного на плоскости заряда - q эквивалентна силе взаимодействия заряда q и его "зеркального" изображения - q. Так в электростатике появляется "лево" - "право".
F=
Метод экстремума потенциальной энергии
Применяя этот метод можно решать задачи статики, гидростатики, динамики вращательного движения, молекулярной физики и электростатики.
Для решения задач на нахождение условия равновесия системы неободимо найти выражение для потенциальной энергии, продифференцировать его и, приравняв к нулю, решить относительно неизвестного.
Задача: однородная тонкая палочка шарнирно укреплена за верхний конец. Нижняя часть её погружена в воду, причем равновесие достигается тогда. когда она расположена наклонно к поверхности воды и в воде находится её половина. Какова плотность материала палочки.
рис.45
За нулевой уровень U выберем горизонталь через О (рис.45).
Потенциальная энергия надводной части палочки U1= - , а подводной U2= () . Условие равновесия палочки , откуда
Задача: На гладкое проволочное кольцо радиуса R надет маленький шарик массой m (рис.46) Кольцо вместе с шариком вращается вокруг вертикальной оси, проходящей через диаметр кольца с угловой скоростью . Где находится шарик?
рис.46
За нулевой уровень u примем нижнюю точку кольца. Тогда потенциальная энергия шарика в поле тяжести u1=mgR (1-Cos), а потенциальная энергия в поле центробежных сил инерции u2=-. Но в положении равновесия шарика Поэтому при при .
Метод экспоненты
Метод экспоненты в некотором роде является комбинацией методов дифференцирования и интегрирования и операции аналогии.
Экспонента обладает следующим свойством: её производная повторяет саму функцию (
Задача: Найти зависимость давления атмосферы от высоты.
Пусть давление столба воздуха единичной площади на высоте h=0 равно Ро (начальные условия).
При увеличении высоты на dh давление уменьшается на dP: dP=. Плотность воздуха выразим из уравнения Менделеева - Клапейрона.
откуда dP=-P
Далее, разделив переменные с учетом начальных условий получим:
P=Po
Полученная формула называется барометрической (или формулой Больцмана).
Задача: В схеме, изображенной на рис.47 в момент t=0, когда заряд конденсатора равен q0, замыкают ключ. Найти зависимость q=q (t)
рис.47
За время dt заряд конденсатора уменьшиться на dq=-Idt. Но I=, а . Поэтому dq=- или q=q0
Метод минимума и максимума
Довольно часто встречаются задачи, в которых требуется определить наибольшее или наименьшее значение величины из всех возможных. Основы такого метода следуют из принципа Ферми, экстремума энергии.
В некоторых задачах удается воспользоваться известными алгебраическими неравенствами (Нер-во Коши).
Задача: Нагруженные сани массой m движутся равномерно по горизонтальной поверхности под действием силы F. Коэффициент трения k. Найти значение минимальной силы и угол между силой и горизонталью.
Из второго закона Ньютона следует: F=
Минимальное значение силы Fmin возможно при максимальном значении знаменателя. Обозначим tg=k.
Заметим, что Sin=; Cos=
Поэтому F=
Максимальное значение =1, откуда
Fmin=
Задача: К висящей очень тонкой пружине жесткостью k подвешен шарик. Вначале пружина не растянута. Затем шарик отпускают. Какой наибольшей скорости достигнет шарик при своем движении? Масса шарика m.
Из закона сохранения энергии
На рис.48 представлен график зависимости . Подставив x=, найдем .
рис.48
Метод софизмов и парадоксов
Метод парадоксов - это создание противоречащих здравому смыслу ситуаций, доказательств, неожиданно и непривычно приводящих к противоречию с традиционными утверждениями и выводами, истинность которых, как кажется не вызывает сомнений. С помощью этого метода понять суть процесса, его тонкости, он стимулирует интерес к учебе.
Софизмы - уловки, выдумки наподобие головоломки, в которых мнимое доказательство выдается за правдоподобное.
Задача: Половину окружности велосипедист на треке проехал с постоянной скоростью . Средняя скорость на всем треке была 10 м/с. Определить скорость на второй половине пути.
Обычно, решение данной задачи получается с помощью известной формулу . Так как , а ,, . В результате получим , подставляя значения получим =-40м/с.
Время движения со средней скоростью должно быть равно сумме времени, затраченного на прохождение каждого участка
или .
Но 2/10=1/5<1/4 …. без прибавления второй дроби.
Значит, что время, затрачиваемое на прохождение первой половины пути, больше, чем время, отпущенное на прохождение с данной средней скоростью всего пути. При таких данных задача лишена смысла.
Задача: В романе "Гектор Сервадак" Жюль Верн описал комету "Галия". Период её обращения вокруг Солнца составил 2 года, а расстояние от Солнца в афелии равнялось 820 млн. км. Могла ли сушествовать такая комета?
Согласно третьему закону Кеплера квадраты периодов небесных тел относятся как кубы больших полуосей их орбит. Зная расстояние от Земли до Солнца (150 млн. км.) и период обращения Земли вокруг него (1 год),
или
Получим х=-343млн. км. Понятно, что этого быть не может и описанные параметры комет - это фантазия писателя.
Заключение
Вспоминая свои школьные годы, практику начинаешь понимать, что большинство учителей не обучает школьников решению физических. Кто-то утверждает, что главное знать определения, кто-то решает задачи только на факультативных занятиях и с учащимися которым необходимо сдать ЕГЭ. Про методы, способы, приемы решения физических задач на уроках вообще не упоминается ни слова. Мне кажется, что на уроках физики необходимо решать задачи. Решение задач способствует запоминанию определений, законов, правил, развитию логического мышления и таких мыслительных операций как анализ и синтез. Надо не просто решать задачи по теме, но и комментировать каким способом, методом, с помощью какого приема она была решена, какие ещё задачи мы сможем решить подобным образом, чтобы учащийся, увидев аналогичную задачу, смог сразу вспомнить алгоритм её решения. К сожалению на уроках не разберешь всех методов из-за нехватки времени, но уделить внимание основным стоит попробовать.
Список литературы
1. Беликов Б.С. Решение задач по физике. Общие методы: Учебное пособие для студентов вузов. - М.: Высш. шк., 1986. - 256 с.: ил.
2. Каменецкий С.Е., Пурышева Н.С. Важеевская Н.Е. и др. Теория и методика обучения физике в школе: Общие вопросы: Учебное пособие для студентов высш. пед. учеб. заведений. - М.: Издательский центр "Академия", 2000. - 368с.
3. Кудрявцев Ю.Н. "Методы решения физических задач". Ульяновск:
4. Новая российская энциклопедия. в 18 томах, М.: ООО "Издательство "Энциклопедия" 2012 - 480 с. ил. том 10 (2) с-327
УИПКПРО, 2010 - 43 с.
5. Шапиро А.И., Бодик В.А. Оригинальные метод в решения физических задач: Пособие для учителя. - К.: "Освiта", 1992.
Размещено на Allbest.ru
Подобные документы
Программа элективного курса физики профильной школы. Приемы составления задач, их классификация по трем-четырем основаниям. Решение задач по механике, молекулярной физике, электродинамике и классификация по требованию, содержанию, способу решения.
учебное пособие [11,8 K], добавлен 18.11.2010О возможности применения векторных многоугольников для решения физических задач. Роль решения задач в процессе обучения физике. Традиционный способ решения задач кинематики и динамики в школьном курсе физики. О векторных способах решения задач механики.
курсовая работа [107,3 K], добавлен 23.07.2010Классификация физических задач по способу выражения условия и степени трудности. Изучение аналитико-синтетического метода решения качественных и количественных вопросов. Специфические особенности оформления и методики расчета экспериментальных задач.
реферат [162,5 K], добавлен 03.07.2010Способы решения математических задач в начальной школе: арифметический, алгебраический, графический и комбинированный, их отличительные черты и особенности применения. Порядок и правила оформления краткой записи на примере математической задачи.
реферат [9,0 K], добавлен 20.08.2009Понятие, задачи, виды и этапы решения задач. Сущность эвристического подхода в решении задач по физике. Понятие эвристики и эвристического обучения. Выявление различных эвристических методов в решении задач и подбор задач к этим методам.
курсовая работа [29,6 K], добавлен 08.02.2011Понятие, классификация и роль задач в процессе обучения физике. Аналитический, синтетический и смешанный методы и способы их решения. Структура учебного алгоритма. Алгоритмические предписания для решения качественных и количественных задач по механике.
курсовая работа [1,3 M], добавлен 22.10.2015Классификация и функции задач в обучении. Методические особенности решения нестандартных задач. Особенности решения текстовых задач и задач с параметрами. Методика решения уравнений и неравенств. Педагогический эксперимент и анализ результатов.
дипломная работа [387,1 K], добавлен 24.02.2010Сущность и особенности физических задач, их классификация и основные функции. Понятие о качественной задаче в методике обучения курсу физики в школе, примеры их решения и необходимость применения для совершенствования учебного процесса преподавания.
курсовая работа [43,5 K], добавлен 15.08.2011История возникновения и развития уравнения как способа решения математических задач. Определение содержания и роли линии уравнений в современном школьном курсе математики. Методика работы над уравнениями и основные способы их решения в начальных классах.
курсовая работа [64,1 K], добавлен 19.01.2015Образовательная роль задач по химии. Пути реализации межпредметных связей. Методы решения качественных и расчетных задачи по химии. Алгебраические способы решения химических задач. Вычисление состава соединений, смесей, выведение формул соединений.
курсовая работа [219,2 K], добавлен 04.01.2010