Формування в учнів умінь розв’язувати задачі на рух

Сутність і роль задач у початковому курсі математики, їх функції та критерії розбору за роками. Аналіз системи задач на рух і методика формування в учнів навичок їх розв’язання. Організація та зміст експериментального дослідження, його ефективність.

Рубрика Педагогика
Вид дипломная работа
Язык украинский
Дата добавления 13.11.2009
Размер файла 680,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Аналіз навчальних програм та підручників з математики дає змогу стверджувати, що під час роботи над задачами на рух в учнів формуються такі основні поняття: зустрічний рух (швидкість зближення, час зближення); рух у протилежних напрямках (швидкість віддалення, час віддалення); рух в одному напрямі (швидкість зближення (віддалення), час зближення (віддалення); рух за течією чи проти течії (власна швидкість плавзасобу, швидкість плавзасобу за течією, швидкість плавзасобу проти течії, швидкість зближення і час зближення, швидкість віддалення і час віддалення); середня швидкість руху.

2.2 Методика розв'язування задач на рух

Навчання учнів математики на уроці організовують у формі колективної фронтальної або індивідуальної самостійної роботи, застосовують також і групову форму навчання. Колективна форма роботи має характер бесіди вчителя й учнів з елементами зв'язного пояснення. В роботі над конкретним математичним матеріалом бесіда використовується на різних етапах його опрацювання.

Особливою формою фронтальної роботи є така, коли учитель сам ставить запитання і сам відповідає на них (за суттю це метод зв'язного викладу, розповіді). Застосування такої форми в початкових класах доцільне, оскільки молодші школярі великою мірою у навчанні наслідують учителя. Коментоване розв'язування завдань учителем призначене найчастіше не для ознайомлення з новим матеріалом, а для подання учням зразків міркування.

У практиці навчання є багато ситуацій, коли необхідно, щоб ту саму задачу діти розв'язали одночасно із записом його розв'язання на дошці. Це напівсамостійна робота: один з учнів розв'язує завдання на дошці або коментує розв'язання з місця, а решта розв'язує його в зошитах. Звичайно, вчитель рекомендує дітям працювати самостійно, але учень у будь-який час може побачити запис розв'язання чи почути пояснення ходу розв'язування і звірити його зі своїм [20, 53].

Напівсамостійна форма роботи може бути застосована:

а) у процесі первинного закріплення, тобто під час розв'язування перших після показу вчителем задач на ознайомлення з новими поняттями чи новими видами задач;

б) під час розв'язування задач підвищеної складності;

в) для порівняння різних способів розв'язування того самого завдання;

г) для аналізу помилок, допущених учнями під час самостійного розв'язування завдань;

д) у ході підготовки дітей до сприймання нового матеріалу, в тому числі задач нового виду [26, 21].

Індивідуальна самостійна робота передбачає розв'язування задачі кожним учнем окремо. Вона застосовується на будь-якому з етапів навчання, але найчастіше в процесі розвитку вмінь виконувати завдання того чи іншого виду. Самостійне розв'язування задач у початкових класах майже завжди для учнів є творчим процесом.

Отже, в організації такої роботи слід враховувати вимоги щодо проблемного навчання. Вчитель спрямовує дітей на самостійне розв'язування задач за допомогою відповідних підготовчих вправ або засобів унаочнення, своєчасно виявляє помилкові міркування учнів у процесі розв'язування завдань і допомагає їм, підтримує при цьому емоційний тонус і впевненість у тому, що кожен з учнів спроможний самостійно розв'язати завдання.

В організації діяльності учнів щодо розв'язування тієї чи іншої задачі вчитель завжди ставить певну мету і залежно від неї визначає форму роботи. Зрозуміло, що колективна й індивідуальна форми роботи можуть змінюватись навіть у процесі виконання одного завдання. Наприклад, ознайомлення зі змістом задачі було проведено у формі колективної фронтальної роботи, а аналіз задачі, складання плану і її розв'язування вчитель пропонує здійснити самостійно [12, 73].

Практикуються також групові форми навчання. Здебільшого це парні, ланкові або диференційовано-групові. У початкових класах найчастіше використовують диференційовано-групову форму, що передбачає організацію роботи груп з різними навчальними можливостями. Найчастіше учнів поділяють на три групи: сильнішу, середню і слабку. За диференційовано-груповою формою навчання всі діти здебільшого працюють за завданнями, що мають спільну пізнавальну мету. Дія різних за навчальними можливостями груп учнів завдання відрізняються за обсягом, рівнем складності, мірою допомоги.

Під час ознайомлення, наприклад, з новою задачею, застосовують два способи диференціації. За першим способом диференційовану роботу організовують у комплексі з фронтальною. Ознайомлення зі змістом нової задачі проводиться фронтально. Наявність різних груп учнів учитель враховує під час первинного закріплення матеріалу. Діти першої і другої груп працюють самостійно за картками або з підручником. З учнями третьої групи вчитель повторно аналізує задачі, розглядає окремі питання, в яких висвітлюється суть задачі, її новизна [2, 44].

За другим способом учням першої групи надається можливість спробувати самостійно розв'язати задачу нового типу. Вчитель повідомляє мету роботи. Потім роздає їм картки з текстами задач нового виду, а з учнями другої і третьої груп працює над задачами фронтально.

Організовуючи самостійну роботу учнів, найчастіше застосовують такі три види диференціації: індивідуалізацію вимог до спільного завдання; надання допомоги в одному з варіантів самостійної роботи (індивідуальна допомога); спрощення одного з двох варіантів самостійної роботи.

При використанні індивідуалізації вимог до спільного завдання для всіх учнів учитель записує на дошці або вказує в підручнику одне й те саме завдання, але інструкція його виконання передбачає й деякі прийоми диференціації [15, 19-20].

Коли застосовується індивідуалізація вимог до розв'язання задач, то усім учням пропонується, наприклад, та сама задача, причому одразу подається й додаткове завдання щодо цієї задачі. Такими додатковими завданнями можуть бути: розв'язати задачу іншим способом; скласти вира; за розв'язанням задачі окремими діями; змінити запитання й знайти на нього відповідь, скласти подібну задачу: скласти і розв'язати обернену задачу, записати план розв'язування задачі та ін.

Якщо учням пропонується вправа, наприклад на обчислення виразів, то додатковими завданнями можуть бути: знайти значення виразу іншим способом, всіма можливими способами; записати подібний вираз і обчислити його значення; обчислити значення виразів і записати їх значення в зростаючому (спадному) порядку та ін.

При використанні постановки кількох запитань до умови задачі вчитель записує на дошці умову задачі і до неї 2-3 запитання. Кожен учень знаходить відповідь на стільки запитань, на скільки зможе. Зрозуміло, що бажано відповісти на всі запитання [2, 43].

За умови, що використовується додаткове завдання, не пов'язане з основним, учитель зазначає: «Учням, які першими розв'яжуть завдання, треба спробувати виконати ще й додаткове». Ним може бути: обчислення виразів, розв'язування нової задачі. а найчастіше - завдання з логічним навантаженням. Робота над додатковим завданням припиняється одразу, як тілам вчитель організує учнів на інший вид діяльності. Дітям, які не встигли чи не змогли виконати додаткове завдання, пропонується подумати над ним вдома. Невиконання його не впливає на оцінку роботи молодшого школяра.

У випадку використання індивідуальної допомоги завдання для самостійної роботи пропонується у кількох варіантах. В одному чи двох з них міститься додаткова інформація. розрахована на допомогу в розв'язуванні задач. Реалізується цей вил диференціації найчастіше через індивідуальні картки. Розгляньмо прийоми допомоги [5].

Для конкретизації задачі до задачі додається малюнок або її короткий запис. При цьому слід прочитати задачу, розглянути до неї малюнок і обґрунтувати дію, якою вона розв'язується. Розв'язання записати в зошит.

При повідомленні відповіді до задачі або числових значень виразів, коли розв'язують задачу на 2-3 дії або знаходять значення виразу, то знання відповіді допомагає аналізувати хід роботи. Знаючи відповідь, учень самостійно виправляє допущену помилку.

Використовуючи навідні вказівки чи запитання, слід мати на увазі, що вказівки безпосередньо пов'язані з конкретним змістом задач, але взагалі вони бувають на зразок таких: це задача на три дії; для розв'язання задачі буде потрібно виконати дію віднімання, а потім дію множення; подумай, як знайти ціну за вартістю і кількістю товару; будь уважний: блокнотів купили стільки, скільки зошитів; якою дією дізнаємось, у скільки разів одне число більше від іншого?

За умови використання такого виду допомоги учням, як початок розв'язування задачі, у картці подається виконання першої дії або початок аналізу числових даних і запитання для першої дії.

Також вчителі використовують подання схеми розв'язування чи графічного зображення результату аналізу задачі [65, 23]. Користуючись схемою, учням слід розв'язати задачу, склавши вираз. Використовується й подання інформації, потрібної для розв'язування завдання. Такою інформацією є правила, тлумачення залежностей між величинами та ін. Наприклад: а) щоб знайти невідоме зменшуване, до різниці слід додати від'ємник; б) щоб за відомою площею прямокутника і його довжиною знайти ширину, треба площу поділити на довжину; в) щоб скласти обернену задачу, потрібно одне з даних (яке саме?) вважати невідомим.

Наприклад, після колективного розбору умови, змісту і скороченого запису ми пропонували дітям наступне:

- Підніміть руку, хто може цю задачу розв'язати самостійно? (Сильніші учні).

- Підніміть руку, хто буде працювати над розв'язанням задачі разом зі мною? (Середні і слабкі учні).

Після розбору задачі від числових даних ми пропонували школярам:

- Хто вже виконав розв'язання задачі, розв'яжіть задачу другим способом. (Для сильніших учнів, при умові, що існує другий спосіб розв'язування задачі).

Зі слабшими учнями ми працювали індивідуально, стежили за записами і пояснювали незрозуміле додатково.

Після розв'язання задачі ми запитували одного із середніх учнів, яку відповідь одержали.

Далі сильніший учень зачитував розв'язання задачі другим способом із поясненням [62, 41].

Наведені прийоми допомоги, полегшення чи ускладнення завдань за умови неодноразового застосування кожного з них забезпечать практичну основу для реалізації принципу диференційованого підходу в навчанні молодших школярів. Застосовуючи принцип диференційованого підходу, вчитель має бути тактовним, спиратися на позитивні риси характеру дитини. Не слід оперувати словами «сильні учні», «слабкі учні». Краще відзначити ступінь просування дітей в опануванні вмінь, а також самостійність, оригінальність розв'язку і т. ін.

Розглянемо методику роботи з молодшими школярами над системою задач на рух [41-44].

Розв'язуванню задач на зустрічний рух передувала тривала робота з розв'язування простих та складених задач на знаходження швидкості, часу та відстані. Поняття швидкості ми вводили на основі життєвого досвіду дітей та безпосередніх практичних дій. Підготовча робота до розв'язування задач, пов'язаних а рухом, передбачала узагальнення уявлень дітей про рух; ознайомлення з новою величиною - швидкістю, розкриття зв'язків між величинами: швидкість, час, відстань. Для цього ми провели спеціальну екскурсію для спостереження за рухом транспорту, після чого організували спостереження в умовах класу, де рух демонстрували самі діти.

Спостерігаючи такі ситуації в умовах класу, ми вчили дітей будувати креслення з допомогою умовних позначень: відстань позначають відрізком; місце (пункт) відправлення, зустрічі, прибуття тощо позначають або точкою на відрізку і відповідною буквою, або рискою, або прапорцем; напрям руху позначають стрілкою.

Під час ознайомлення із швидкістю учні визначали швидкість свого руху пішки. Для цього в спортзалі позначалася «замкнута доріжка», поділена на відрізки по 10 м, щоб зручніше було визначати шлях, який проходив кожний учень. Ми пропонували дітям іти доріжкою протягом 2-х хвилин. Учні, користуючись десятиметровими позначками, легко обчислювали пройдену відстань. Ми повідомляли, що відстань, яку пройшов учень за хвилину, називають його швидкістю. Учні називали швидкість свого руху. Потім ми називали швидкості деяких видів транспорту.

Зв'язки між величинами: швидкість, час, відстань - розкривалися за такою самою методикою, як і зв'язки між іншими пропорційними величинами. Внаслідок цієї роботи діти засвоювали такі зв'язки: якщо відомі відстань і час руху, то можна знайти швидкість дією ділення; якщо відомі швидкість і час руху, то можна знайти відстань дією множення. Якщо відомі відстань і швидкість, то можна знайти час руху дією ділення.

Далі, спираючись на ці знання, діти розв'язували складені задачі з величинами швидкість, час, відстань. Під час роботи над цими задачами часто використовувалися ілюстрації у вигляді креслення.

На підготовчому етапі ми виходили з важливості усвідомлення дітьми поняття «швидкість». Для цього ми пропонували учням таку систему завдань та запитань:

- Хто швидше рухається - пішохід чи велосипедист, велосипедист чи машина?

- Яке слово вживають водії, порівнюючи швидкість руху різних марок машин? Що ж таке швидкість, як ви гадаєте?

- Чому деякі поїзди називають швидкими, чим вони відрізняються від звичайних?

- Допоможіть хлопчикам, які посперечалися, хто з них швидше прийшов до школи:

а) Петрик пройшов 120 м за 5 хвилин, а Дмитрик - 120 м за 3 хвилини. Хто швидше йшов?

б) Микола пройшов 300 м за 6 хвилин, а Сергій - 450 м за 9 хвилин. Хто швидше йшов?

в) Антон пройшов 280 м за 7 хвилин, а Михайло - 480 м за 16 хвилин. Хто швидше йшов?

Підготовча робота даного змісту готувала молодших школярів до розв'язування складених задач на рух. Розглянемо методику роботи над задачами на рух у зустрічному напрямку.

Задача 1. З пристані Київ до пристані Кременчук вийшов теплохід, і одночасно йому назустріч з пристані Кременчук вийшов катер. Теплохід ішов зі швидкістю 30 км/год, а катер - 24 км/год. Через 5 год вони зустрілися. Яка відстань між пристанями? Під час повторення змісту задачі вчитель креслить на дошці ілюстрацію:

Бесіда. Що означає: «Через 5 год вони зустрілися»? (Теплохід і катер з моменту виходу до моменту зустрічі були в дорозі 5 год.) Яку відстань пройшов за 5 год теплохід? («Від пристані Київ до прапорця», - показує один учень біля дошки.) Яку відстань пройшов катер за 5 год? (Другий учень показує на кресленні.) То з яких двох частин складається шукана відстань між пристанями? (З відстаней, які пройшов кожен теплохід за 5 год.) Чи можемо ми взнати відстань, яку пройшов теплохід до зустрічі? (Можемо, бо відомо його швидкість і час руху до зустрічі.) Чи можемо взнати відстань, яку пройшов до зустрічі катер? (Можемо.)

А коли обидві відстані будуть відомі, про що зможемо дізнатися? (Про відстань між пристанями.) Давайте запишемо розв'язання виразом. Що знайдемо в першій дії? Якою дією? (Вчитель пише на дошці, а учні в зошитах: 30 * 5.) Про що дізнаємося в другій дії? Якою дією? Поруч з'являється другий запис: 30 * 5; 24 * 5. Про що дізнаємося в третій дії? Чого бракує, щоб скласти остаточний вираз? (Вписують знак «+»: 30 * 5 + 24 * 5.) Чи потрібні дужки? Учні усно обчислюють проміжні результати. Записи мають вигляд: 30 * 5 + 24 * 5 = 150 + 120 = 270 (км).

Ми розв'язали задачу першим способом. Її можна розв'язати і по іншому. Чи можемо ми взнати, на скільки кілометрів наблизяться теплохід і катер один до одного за першу годину руху? (Так, 30 + 24 = = 54 км.) На яку відстань наблизяться вони за другу годину? (На 54 км.) За третю годину? Четверту? П'яту? Ви бачите, що за кожну годину вони наближаються на 54 км, а таких годин до зустрічі пройшло 5. То про що тепер можна дізнатися? (Скільки кілометрів пройшли до зустрічі теплохід і катер разом.) А це і означає, що ми знайдемо відстань між пристанями. Якою дією? Хто запише на дошці вираз? (Учень записує: (30 + 24) * 5 = 270 (км).) Ви бачите, що відповіді в обох способах вийшли однакові.

Далі вчитель ще раз аналізує другий спосіб розв'язання. Звертає увагу учнів на те, що відстань, яку проходять за кожну годину теплохід і катер разом, дорівнює сумі швидкостей і називається швидкістю зближення. Щоб обчислити відстань між пристанями, ми швидкість зближення множили на час руху до зустрічі.

Задача 2. Відстань між пунктами А і В 18 км. З пункту А у напрямку до пункту В вийшов турист, а другий турист одночасно вийшов йому назустріч з пункту В. Через який час зустрінуться туристи, якщо їхні швидкості однакові і дорівнюють 3 км/год?

Графічна ілюстрація буде опорою під час аналізу задачі. Прапорець позначає місце зустрічі.

? год

Аналіз можна провести від числових даних.

Запитання до учнів:

– З якою швидкістю рухалися туристи?

– Де буде місце зустрічі туристів?

- На скільки кілометрів наближаються туристи один до одного за 1 год?

– Яка швидкість зближення?

– Що відомо про відстань АВ?

– Чи можна дізнатися, через який час зустрінуться туристи?

Розв'язання:

1) 3 + 3 = 6 (км/год) - швидкість зближення туристів;

2) 18: 6 = 3 (год) - час, через який зустрінуться туристи.

Відповідь. Через 3 год.

Задача 3. Відстань між пунктами А та В складає 24 км. З пункту А до пункту В вийшов турист зі швидкістю 3 км/год, а з пункту В назустріч йому через 1 год вийшов другий турист зі швидкістю 4 км/год. Через який час після виходу другого туриста відбулася їхня зустріч?

Графічна ілюстрація змісту задачі.

? год

Запитання до учнів під час аналізу задачі можуть бути такими:

– Що відомо про відстань АВ?

– Скільки кілометрів пройшов перший турист до виходу другого?

– Як ви це знайшли?

– Яку відстань залишилось пройти обом туристам до зустрічі?

– Які швидкості туристів?

– На скільки кілометрів зближаються туристи за 1 год?

- Якщо відомі швидкість зближення і відстань, яку залишилося пройти до зустрічі, що можна знайти?

Учні складають план розв'язування задачі і записують розв'язання.

Розв'язання:

1) 3 * 1 = 3 (км) - пройшов перший турист до виходу другого;

2) 24 - 3 = 21 (км) - залишилось пройти обом до зустрічі;

3) 3 + 4 = 7 (км/год) - швидкість зближення;

3) 21: 7 = 3 (год) - час, через який після виходу другого туриста відбудеться зустріч.

Відповідь. Через 3 год.

Задача 4. Відстань між пунктами А та В складає 28 км. З пункту А до пункту В вийшов турист зі швидкістю 3 км/год, а з пункту В назустріч йому вийшов одночасно другий турист зі швидкістю 4 км/год. На якій відстані від пункту А зустрінуться туристи?

Графічна ілюстрація змісту задачі.

Запитання до учнів аналогічні тим, що були під час розв'язування задачі 1. Наприкінці можна запитувати:

– Що треба знати, щоб знайти місце зустрічі?

– Як знайти відстань від пункту А до місця зустрічі?

Крім того, можна розібрати з учнями такі питання:

– Від чого залежить місце зустрічі?

- На якій відстані зустрілися б туристи, якщо б їхні швидкості були однакові?

– Ближче до якого пункту станеться зустріч? Чому?

– Що можна сказати про час руху обох туристів до місця зустрічі?

Розв'язання:

1) 3 + 4 = 7 (км/год) - швидкість зближення;

2) 28: 7 = 4 (год) - час до зустрічі;

4) 3 * 4 = 12 (км) - відстань від пункту А, на якій зустрілися туристи.

Відповідь. Через 12 км.

Після розв'язання задачі можна поставити такі запитання:

- Якими способами можна знайти відстані від місця зустрічі до пункту В?

- Як перевірити правильність розв'язання задачі?

Розглянемо методику роботи над задачами на рух у протилежних напрямках.

Задача 5. Два пішоходи вийшли з одного міста у протилежних напрямках. Перший пішохід ішов зі швидкістю 5 км/год, а другий 4 км/год. Дай відповідь на такі запитання:

1) На скільки кілометрів віддалялися пішоходи за 1 год?

2) На скільки кілометрів віддалилися пішоходи за З год?

3) Скільки кілометрів пройшов кожний пішохід за 3 год?

Вчитель ставить двох учнів посередині класу і дає кожному картку з його швидкістю. Учні стоять поряд спиною один до одного і за командою вчителя починають віддалятися один від одного. Вчитель зупиняє їх і говорить, що пройшла година. Діти з'ясовують, що пішоходи віддалилися один від одного на суму їхніх швидкостей. Учні знову починають іти і за наказом учителя зупиняються - пройшла ще одна година. Знову підраховують, на скільки кілометрів віддалилися пішоходи протягом другої години та за дві години разом.

Процедуру проробляють втретє і знову підраховують. Вчитель говорить, що кожної години пішоходи віддаляються на однакову відстань - 9 км. Тому кажуть, що 9 км/год - це швидкість їхнього віддалення. Вона, як і швидкість зближення під час зустрічного руху, дорівнює сумі швидкостей. Знаючи швидкість віддалення і час руху, можна обчислити, на якій відстані один від одного опиняться пішоходи через вказаний час. Вчитель зображує на дошці ілюстрацію:

На малюнку діти показують, з яких двох частин складається ця відстань, і обчислюють кожну частину (шляхи обох пішоходів). Один учень записує розв'язання задачі виразом на 3 дії. Після цього відстань обчислюють за допомогою швидкості віддалення і записують другий спосіб обчислення. Діти бачать, що розв'язання таке ж, як і в роботі з задачами на зустрічний рух, тільки сума швидкості має іншу назву. Вчитель пропонує уявити, що пішоходи повернулися обличчям один до одного і починають іти з тими ж швидкостями. Яку задачу тепер можна скласти? Яким буде її розв'язання? Воно повністю співпадає з розв'язанням попередньої задачі.

Задача 6. Два пішоходи рухаються у протилежних напрямках. Швидкість одного - 5 км/год, а другого - 4 км/год. На скільки кілометрів вони віддаляються один від одного за 1 год; за 2 год; за 3 год?

Графічна схема до цієї задачі:

Передумовою до розв'язання цієї задачі є попереднє з'ясування з учнями таких питань:

- У якому напрямку рухаються пішоходи, коли йдеться про швидкість зближення?

- Як знаходять швидкість зближення?

- У якому напрямку рухаються пішоходи, коли вони віддаляються один від одного?

- Як можна назвати швидкість, з якою пішоходи віддаляються один від одного?

– Як знаходять цю швидкість?

– Що спільного у знаходженні швидкостей зближення і віддалення?

– Від чого залежить відстань між двома пішоходами через певний час, якщо вони вирушають одночасно?

– Назустріч один одному?

– У протилежних напрямках? Як знаходять відстань у цих випадках?

– Що спільного у її знаходженні?

Запитання до учнів під час аналізу задачі:

– Що відомо про швидкості пішоходів?

– Яке перше запитання задачі, чи можна на нього відповісти?

Розв'язання:

1) 5 + 4 = 9 (км) - пройшли пішоходи за 1 год (швидкість віддалення);

2) 9 * 2 = 18 (км) - пройшли пішоходи за 2 год;

3) 9 * 3 = 27 (км) - пройшли пішоходи за 3 год.

Відповідь. На 9 км; на 18 км; на 27 км.

Задача 8. З пункту М вирушив пішохід зі швидкістю 5 км/год. Через 4 год з цього ж самого пункту у протилежному напрямку виїхав вершник зі швидкістю 11 км/год. Через скільки годин після виїзду вершника відстань між ним і пішоходом становитиме 68 км?

Графічна схема до цієї задачі:

Запитання до учнів під час аналізу задачі:

– Що спільного між цією задачею і попередньою?

– Що відомо про швидкості пішохода і вершника?

– Скільки часу рухався пішохід, доки виїхав вершник?

- Як дізнатися, скільки кілометрів пройшов пішохід, доки виїхав вершник?

- Чи можна дізнатися, скільки кілометрів пройшли разом пішохід і вершник після виходу вершника? Як це зробити?

- Про що можна дізнатися, якщо відомі швидкості пішохода і вершника?

– Про що запитується в задачі?

– Які дії треба виконати, щоб відповісти на запитання задачі?

Розв'язання:

1) 5 * 4 = 20 (км) - пройшов пішохід, доки виїхав вершник;

2) 68 - 20 = 48 (км) - пройшли разом пішохід і вершник після виїзду вершника;

3) 5 + 11 = 16 (км) - пройшли разом пішохід і вершник за 1 год (швидкість віддалення);

4) 48: 16 = 3 (год) - через стільки годин після виїзду вершника відстань між ним і пішоходом становитиме 68 км.

Відповідь. Через 3 год.

Можна запропонувати школярам записати розв'язання цієї задачі у вигляді числового виразу, а також відповісти на запитання:

- Через який час після виходу пішохода відстань між ним і вершником становитиме 68 км?

Розв'язання:

1) (68 - 5 * 4): (5 + 11) = 3 (год) - через стільки годин після виходу вершника відстань між ним і пішоходом становитиме 68 км;

2) 4 + 3 = 7 (год) - через стільки годин після виходу пішохода відстань між ним і вершником становитиме 68 км.

Відповідь. Через 7 год.

Задача 9. Два літаки одночасно вилетіли з аеродрому в протилежних напрямках. Через півгодини після вильоту відстань між ними була 720 км. Перший літак летів зі швидкістю 15 км/хв. З якою швидкістю летів другий літак? Графічна схема до цієї задачі:

Запитання до учнів під час аналізу задачі:

– Що відомо про рух першого літака і про що можна дізнатися?

– Яка відстань між літаками була через півгодини після вильоту?

– Чи можна знайти відстань, яку пролетів другий літак?

– Про що запитується в задачі?

– Які дії треб виконати, щоб відповісти на запитання задачі?

Розв'язання:

1) 15 * 30 = 450 (км) - пролетів перший літак;

2) 720 - 450 = 270 (км) - пролетів другий літак;

3) 270: 30=9 (км/хв) - швидкість другого літака.

Відповідь. 9 км/хв.

Розглянемо методику роботи над задачами на рух в одному напрямку.

Задача 10 (№619).

Від однієї пристані вирушили в одному напрямі катер і буксир. Швидкість катера 27 км/год, а буксира 18 км/год. Яка відстань буде між ними через 3 год? (Розв'яжи задачу двома способами.)

Ілюстрація.

Бесіда. Хоч у задачі про це не сказано, але мається на увазі, що катер і буксир вирушили одночасно. Скільки годин був у дорозі кожен з них? (З години.) То що ми можемо взнати про рух кожного? (Відстані, які пропливли за цей час катер і буксир.) Коли будуть відомі пройдені відстані, що можна буде взнати? (Відстань між катером і буксиром.) То на скільки дій задача? (На три.) Учні записують розв'язання першим способом.

- Задача має і другий спосіб розв'язування. Уявіть собі, як рухаються катер і буксир. Лише в початковий момент руху вони перебувають поруч. А далі з першої ж хвилини катер починає випереджати буксир. Чому? (Бо його швидкість більша.) Чи можна взнати, на скільки кілометрів випередить катер буксир через 1 годину? (Можна: 27 - 18 = 9 (км).) Вчитель показує цю відстань на малюнку. Протягом другої години катер знову випередить буксир на 9 км. То яка відстань буде між катером і буксиром через 2 години? (9 + 9 = 18 (км).) А через 3 години? (18 + 9 = 27 (км).) Вчитель щоразу показує ці відстані на малюнку:

Можна підкреслити, що катер за 2 год пройшов відстань, на подолання якої буксирові знадобилося 3 год: 27 * 2 = 54 (км); 18 * 3 = 54 (км).

Тому на малюнку не випадково другий і третій прапорці на кожній прямій розміщені строго один під одним. Учні записують розв'язання другим способом:

1) 27 - 18 = 9 (км) - на стільки катер випереджає буксир за кожну годину;

2) 9 * 3 = 27 (км) - на стільки він випередить буксир через 3 години.

Відповідь. На 27 км.

Задача 10 (№693).

Від Луганська до Львова летіли літак і вертоліт. Спочатку літак був позаду вертольота на 400 км. Швидкість літака 12 км/хв, а вертольота - 2 км/хв. Яка буде між ними відстань через 20 хв? Коли літак порівняється з вертольотом? Яка відстань буде між ними через 1 год?

І спосіб.

Бесіда. Подивіться на малюнок і скажіть, який момент польоту на ньому зображено? (Початковий момент, коли між: літаком і вертольотом відстань становила 400 км.) Щоб дізнатися, яка відстань буде між літаком і вертольотом через 20 хв, давайте спочатку визначимо, де опиниться кожен з них через 20 хв. Чи можемо ми взнати, скільки кілометрів пролетить літак за 20 хв? (Так. 12 * 20 = 240 (км).)

Вчитель відмічає місцезнаходження літака прапорцем. Про що тепер можна дізнатися? (Скільки кілометрів пролетить вертоліт за 20 хвилин: 2 * 20 = 40 (км).)

Вчитель показує і цю відстань на малюнку:

Як можна тепер обчислити відстань між прапорцями? Можна дізнатися, на якій відстані від Луганська буде вертоліт. А на якій відстані від Луганська в цей момент буде літак, ми вже знаємо. То як тоді дізнаємося про відстань між літаком і вертольотом? (Від усієї відстані, яку пролетів від Луганська вертоліт, віднімемо відстань, яку пролетів літак.) При цьому вчитель усі відстані показує на малюнку. Після цього учень коментує, а решта учнів записують дії з поясненням:

1) 12 * 20 = 240 (км) - пролетів літак за 20 хв;

2) 2 * 20 = 40 (км) - пролетів вертоліт за 20 хв;

3) 400 + 40 = 440 (км) - пролетів усього вертоліт;

4) 440 - 240 = 200 (км) - буде відстань між ними через 20 хв.

Чи можна обчислити цю відстань по іншому? Подивіться на малюнок і покажіть, з яких двох частин складається відстань між прапорцями. (Один учень показує). Чи можемо ми обчислити першу частину? (Так, треба від 400 км відняти відстань, яку пролетів літак). Що зробимо після цього? (До знайденого результату додамо другу частину - 40 км.)

II спосіб.

1) 12 * 20 = 240 (км) - пролетів літак за 20 хв;

2) 400 - 240 = 160 (км) - не долетів літак до місця, в якому перебував вертоліт у початковий момент;

3) 2 * 20 = 40 (км) - пролетів вертоліт за 20 хв;

4) 160 + 40 = 200 (км) - буде відстань між ними через 20 хв.

Ви бачите, що другий спосіб не є коротшим від першого.

Але є ще один спосіб, без обчислення відстаней, які пролетіли літак і вертоліт за 20 хв. Подивіться на їхні швидкості. Як вони описують рух обох літальних апаратів? (Обидва рухаються в одному напрямі. Літак летить швидше, отже, наздоганяє вертоліт, тому відстань між ними скорочується.) Отже, найбільша відстань (400 км) була між ними у початковий момент, а далі вона почала зменшуватися, тобто літак почав наближатися до вертольота. Чи можемо ми взнати, на скільки кілометрів наблизиться літак до вертольота за 1 хв? Можемо. За 1 хв літак пролетить 12 км.

Якби вертоліт не рухався, це означало б, що літак за 1 хв наближається до вертольота на 12 км. Але вертоліт за цю ж хвилину віддаляється від літака на 2 км. Отже, в цілому, літак за хвилину наблизиться до вертольота не на 12 км, а на 12 - 2 = 10 (км). Якщо обидва рухаються в одному напрямі 20 хв, на скільки кілометрів вони зблизяться через 20 хв? (На 10 * 20 = 200 (км).) Якщо початкова відстань між ними була 400 км, а за 20 хв ця відстань зменшилась на 200 км, то про що можна дізнатися? (Яка відстань стала між літаком і вертольотом через 20 хв.)

Один учень на дошці записує третій спосіб розв'язання, коротший за попередні.

III спосіб.

1) 12 - 2 = 10 (км) - на таку відстань наближається літак до вертольота за кожну хвилину.

2) 10 * 20 = 200 (км) - на таку відстань наблизиться літак до вертольота через 20 хв;

3) 400 - 200 = 200 (км) - буде відстань між ними через 20 хв.

Ми відповіли лише на перше запитання. Тепер дізнаємося, коли літак порівняється з вертольотом. Що це означатиме? (Що обидва перебуватимуть на однаковій відстані від Луганська.) Вчитель показує на малюнку цю точку:

Літак порівняється з вертольотом, коли початкова відстань між ними 400 км скоротиться до нуля. За одну хвилину вона скорочується на 10 км. То як дізнатися, скільки хвилин триватиме це скорочення? (400: 10 = 40 (хв).) Отже, через 40 хв початкова відстань між ними зійде нанівець, тобто літак наздожене вертоліт.

Давайте перевіримо, чи дійсно через 40 хв і літак, і вертоліт перебуватимуть на однаковій відстані від Луганська. На якій відстані від Луганська буде знаходитися літак? (12 * 40 = 480 (км).) А як дізнатися, на якій відстані від Луганська перебуватиме в цей момент вертоліт? (2-40 = 80 (км) - стільки пролетить вертоліт за 40 хв; 400 + 80 = 480 (км) - на такій відстань від Луганська перебуватиме вертоліт.) Ви бачите, що відстані від Луганська однакові і у літака, і у вертольота, отже вони, у цей момент перебувають в одній точці траси. Це означає, що через 40 хв літак дійсно порівняється з вертольотом.

Залишилося дати відповідь на останнє запитання: яка відстань буде між ними через 1 год? Цю відстань можна теж обчислити довшим і коротшим шляхом. Під керівництвом учителя учні записують обидва способи.

І спосіб.

1) 2 * 60 = 120 (км) - пролетить вертоліт через 1 год;

2) 400 + 120 = 520 (км) - відлетить вертоліт від Луганська;

3) 12 * 60 = 720 (км) - пролетить літак через 1 год;

4) 720 - 520 = 200 (км) - на стільки літак випередить вертоліт. Вчитель у ході розв'язування показує ці відстані на малюнку:

ІІ спосіб.

1) 12 - 2 = 10 (км) - на стільки наблизиться літак до вертольота за 1 хв;

2) 10 * 60 = 600 (км) - на стільки може наблизитися літак до вертольота за 60 хв;

3) 600 - 400 = 200 (км) - на стільки літак випередить вертоліт через годину.

Ви бачите, що за 1 год відстань між літаком і вертольотом може скоротитися на 600 км. Якби вертоліт у початковий момент перебував від літака на достатньо великій відстані, то так і сталося б. Але початкова відстань між ними становила лише 400 км. Тому літак може наближатися до вертольота, лише скорочуючи до нуля 400 км, а решту 200 км - почне від нього віддалятися, тобто випереджувати.

Покажемо етапи формування навичок розв'язувати задачі на рух за течією і проти течії.

Задача 11. Від пристані А одночасно вирушили вниз за течією катер і пліт. Катер спустився вниз на 96 км, далі повернув назад і повернувся до пристані А через 14 год. Знайти швидкість катера у стоячій воді і швидкість течії, якщо відомо, що катер зустрів пліт на зворотному шляху на відстані 24 км від пристані А.

На основі цієї задачі складена система задач для молодших школярів. Перед розв'язуванням їх учитель може навести аналогії «руху у стоячій воді», «руху за течією», «руху проти течії» із повсякденного довкілля, відповідно такі, як рух пішохода по тротуару, рух пасажира в автобусі від задніх до передніх дверей під час руху автобуса (рух пасажира сходинками ескалатора, що рухаються, тощо), рух пасажира у напрямку задніх дверей під час руху автобуса, потягу тощо).

Задача 13. Від пристані А одночасно вирушили вниз за течією катер і пліт. Яка відстань буде між ними через 6 год, якщо швидкість катера у стоячій воді на 12 км/год більша за швидкість течії, а швидкість течії 2 км/год?

Перед розв'язуванням цієї задачі учням слід повідомити, що швидкість катера у стоячій воді називають також власною швидкістю катера.

Після ознайомлення школярів з умовою задачі учитель має роз'яснити, що швидкість катера за течією більша за його швидкість у стоячій воді на величину швидкості течії, тобто ((12 + 2) + 2) = 16 (км/год) і що пліт і течія мають однакові швидкості (2 км /год).

При подальшому розв'язуванні задачі можна базуватися на поняттях, сформованих під час розгляду задач на «рух в одному напрямку». Доцільно звернути увагу учнів на те, що катер випереджає пліт (віддаляється від плота) на 14 км за кожну годину, що дорівнює швидкості катера у стоячій воді. Тому задачу варто розв'язати двома способами, що буде і перевіркою розв'язування. Графічна ілюстрація змісту задачі:

Розв'язання: 1 спосіб:

1) 12 + 2 = 14 (км/год) - швидкість катера у стоячій воді;

2) 14 + 2 = 16 (км/год) - швидкість катера за течією;

3) 16 * 6 = 96 (км) - проплив катер за 6 год;

4) 2 * 6 = 12 (км) - проплив пліт за 6 год;

5) 96 - 12 = 84 (км) - відстань між ними через 6 год.

Відповідь. 12 км.

2 спосіб:

1) 12 + 2 = 14 (км/год) - швидкість катера у стоячій воді;

2) 14 + 2 = 16 (км/год) - швидкість катера за течією;

3) 16 - 2 = 14 (км/год) - на стільки більша швидкість катера за течією, ніж плота (швидкість віддалення);

4) 14 * 6 = 84 (км) - відстань між катером і плотом через 6 год.

Відповідь. 84 км.

Задача 14. Від пристані А спускається вниз за течією пліт зі швидкістю 2 км/год, а через 7 год від пристані А у тому ж напрямку відправляється катер, який наздоганяє пліт через 1 год. Яка швидкість катера у стоячій воді?

Графічна ілюстрація змісту задачі:

Прапорець позначає місце, де катер наздогнав пліт.

Розв'язання:

1) 7 + 1 = 8 (год) - плив пліт, доки його не наздогнав катер;

2) 2 * 8 = 16 (км) - проплив пліт за 8 год, а катер - за 1 год;

3) 16 - 2 = 14 (км/год) - власна швидкість катера (швидкість зближення катера і плота).

Відповідь. 14 км/год.

Задача 15. Від пристані А спускається вниз за течією пліт, а через 7 год від пристані А у тому ж напрямку відправляється катер зі швидкістю 16 км/год і наздоганяє пліт через 1 год. Яка швидкість течії?

Графічна ілюстрація змісту задачі:

Під час аналізу задачі необхідно підвести учнів до усвідомлення можливості розв'язування її двома способами.

1 спосіб:

1) 7 + 1 =8 (год) - плив пліт, доки його не наздогнав катер;

2) 16 * 1 = 16 (км) - відстань, яку проплив катер за 1 год, а пліт - за 8 год;

3) 16: 8 = 2 (км/год) - швидкість плота або швидкість течії.

Відповідь. 2 км/год.

2 спосіб (використовувався у позакласній роботі з математики):

Припустимо, що х - швидкість течії, така ж і швидкість плота.

В основу складання рівняння покладемо відстань, яку проплив пліт до того, як його наздогнав катер. Одержимо два рівних вирази: І - 16 * 1; II - х * (7 + 1).

Складемо рівняння: 16 * 1 = х * (7 + 1), 16 = 8 * х, х = 16: 8, х = 2.

Перевірка: 2 * 8=16 (км) - проплив пліт за 8 год, а катер - за 1 год.

Відповідь: 2 км/год - швидкість течії.

Задача 12. Від пристані А спускається вниз за течією катер зі швидкістю 16 км/год на відстань 96 км і повертається назад, витративши на шлях у обидва кінці 14 год. Яка швидкість течії?

Графічна схема умови задачі:

Виходячи з того, що дану задачу учням важко розв'язати на уроці, ми використовували її у позакласній роботі з математики. Перед розв'язуванням задачі доцільно дати учням завдання скласти числовий вираз для знаходження різниці між швидкістю катера за течією і його швидкістю проти течії, якщо швидкість катера у стоячій воді - 14 км/год, а швидкість течії - 2 км/год.

(14 + 2) - (14 - 2) = 16 - 12 = 4 = 2 * 2.

Учні побачать, що швидкість катера за течією більша за його швидкість проти течії на подвійну швидкість течії.

Це саме можна зобразити за допомогою графічної схеми:

Якщо довжина відрізка АВ зображує швидкість катера у стоячій воді, а ВД - швидкість течії, тоді довжина відрізка АД буде зображати швидкість катера за течією, а АС (ВС = ВД) - швидкість катера проти течії. АД більше за АС на подвійну швидкість течії (подвійний відрізок ВД).

Далі можна перейти до розв'язування задачі, спираючись на поняття, сформовані під час розв'язування попередніх задач.

Розв'язання:

1) 96: 16 = 6 (год) - йшов катер за течією;

2) 14 - 6 = 8 (год) - йшов катер проти течії;

3) 96: 8 = 12 (км/год) - швидкість катера проти течії;

4) 16 - 12 = 4 (км/год) - на стільки більша швидкість катера за течією, ніж проти течії (подвійна швидкість течії);

5) 4: 2 = 2 (км/год) - швидкість течії.

Відповідь. 2 км/год.

Задача 13. Від пристані А одночасно у протилежних напрямках вирушають пліт і катер. Пліт спускається вниз за течією зі швидкістю 2 км/год, а катер йде проти течії. Через який час відстань між ними становитиме 84 км, якщо власна швидкість катера (у стоячій воді) - 14 км/год? Покажемо спочатку традиційне розв'язання цієї задачі.

Розв'язання:

1) 14 - 2 = 12 (км/год) - швидкість катера проти течії;

2) 12 + 2 = 14 (км/год) - швидкість віддалення;

3) 84: 14 = 6 (год) - час, за який відстань між плотом і катером становитиме 84 км.

Відповідь. 6 год.

Під час опрацювання цієї задачі можна поставити такі запитання:

- На якій відстані від пристані А знаходитимуться окремо катер і пліт і яка відстань буде між ними через 6 год? Щоб відповісти, треба знати швидкість течії.

Задача 14. Від пристані А спускається вниз за течією у напрямку до пристані В пліт. Одночасно з плотом від пристані В до пристані А вирушає катер. Відстань між А і В - 96 км, швидкість течії - 2 км/год; швидкість катера проти течії - 14 км/год. Через який час відбудеться зустріч катера з плотом.

Розв'язання:

1) 14 + 2 = 16 (км/год) - швидкість зближення;

2) 96: 16 = 6 (год) - час, через який катер зустрінеться з плотом.

Відповідь. 6 год.

Розглянемо методику розв'язування задач на знаходження середньої швидкості.

Поняття «середнє арифметичне кількох чисел» у підручнику вводиться індуктивно. Спочатку учням пропонуються задачі на знаходження середньої швидкості руху автомобіля. Вважається, що пояснення до розв'язання цих задач повинен дати вчитель. Далі розглядається розв'язання такої задачі.

Задача 15. Велосипедист одну годину їхав зі швидкістю 15 км/год, дві години - зі швидкістю 13 км/год і ще одну годину - зі швидкістю 11 км/год. З якою середньою швидкістю їхав велосипедист?

Розв'язання:

1) Скільки всього годин їхав велосипедист?

1 + 2+1 = 4 (год)

2) Скільки всього кілометрів проїхав велосипедист?

15 + 13 * 2 + 11 = 52 (км)

3) Яка середня швидкість руху велосипедиста?

52: 4 = 13 (км/год)

Розв'язання за допомогою числового виразу:

(15 + 13 * 2 + 11): (1 + 2 + 1) = 13 (км/год)

Після розв'язання цієї та попередніх задач дається загальне правило: «Щоб знайти середнє арифметичне кількох чисел, треба їх суму поділити на кількість цих чисел». Тепер вважається, що поняття «середнє арифметичне кількох чисел» вже введене, і пропонуються задачі на знаходження середньої маси кролів, середньої врожайності картоплі і гречки, середньої швидкості поїзда,…, середньої швидкості руху коня.

Задача 16. Турист за першу годину пройшов 5 км, за другу - 4 км і за третю - 3 км. З якою постійною швидкістю мав рухатися турист, щоб за той же час пройти таку ж відстань?

Турист пройшов усього 5 + 4 + 3 кілометрів, за час 1 + 1 + 1. Складемо числовий вираз: (5 + 4 + 3): (1 + 1 + 1). Згідно з цим виразом треба відстань поділити на час. Так знаходять швидкість руху. Якщо обчислимо вираз, то у відповіді отримаємо 4 км/год. Звертаємо увагу учнів на те, що, рухаючись зі швидкістю 4 км/год, турист за 3 год пройде відстань 12 км: 4 * 3 = 12 (км).

Таким чином маємо правильну рівність: 5 + 4 + 3 = 4 - 3.

Отриману швидкість називають середньою швидкістю. Тепер можна сформулювати означення середньої швидкості: «Середньою швидкістю називають таку постійну швидкість, рухаючись з якою за той же час буде пройдена та ж відстань, що і за дійсних умов руху». Щоб знайти середню швидкість, треба усю відстань поділити на увесь час руху.

З метою формування у молодших школярів навичок розв'язування задач на рух ми пропонували їм добірку задач та методично правильно опрацьовували їх.

2.3 Організація і зміст експериментального дослідження, аналіз його ефективності

На основі аналізу психолого-педагогічної та методичної літератури, а також власних спостережень за навчально-виховним процесом у початковій школі нами виявлено, що організація розв'язування задач на рух має значні методичні недоліки, а формування в учнів навичок розв'язування задач на рух перебуває на неналежному рівні. З метою забезпечення адекватності у цьому процесі нами розроблено і впроваджено у педагогічну практику початкової ланки загальної освіти удосконалену методику розв'язування задач на рух у 4 класі, а також перевірено її ефективність.

Дипломне дослідження мало теоретико-експериментальний характер і проводилося у два етапи. На теоретичному етапі (2006-2007 навчальний рік) була визначена сфера і проблема дослідження; вивчалася педагогічна, методична література з даної теми; аналізувалася робота вчителів початкових класів у галузі методики розв'язування задач на рух; формулювалася гіпотеза та завдання дослідження. В процесі експериментального етапу (2007-2008 навчальний рік) - на основі напрацьованої теоретичної інформації здійснювався формуючий експеримент, пов'язаний із формуванням у молодших школярів умінь і навичок розв'язування задач на рух, вивчалася його ефективність та практична значущість.

Експериментальне дослідження ми проводили у НВК «ЗОШ І-ІІІ ступенів №1 - гімназія» м. Копичинці Гусятинського району Тернопільської області. Формуючим експериментом було охоплено 26 учнів 4 класу. У процесі формуючого експерименту ми пропонували четвертокласникам добірку задач на рух різних видів. Ці задачі використовувалися як на уроках, так і на позакласних заняттях з математики для самостійної роботи учнів.

Покажемо методику опрацювання задачі на зустрічний рух, яка проводилася у процесі експериментального дослідження.

У ході підготовчої роботи ми ілюстрували зміст таких виразів, як «виїхали одночасно», «рухаються назустріч один одному». Практичні дії супроводжувалися зображенням відрізків (довжина шляху) і стрілками (напрям руху).

Задача. Два зайчики бігли назустріч один одному. Швидкість одного - 12 м/сек, а другого - 10 м/сек. На скільки метрів зайчики наблизяться один до одного за 5 сек?

– Чи можна одразу відповісти на запитання задачі? (Ні). Чому?

- Що потрібно знати, щоб відповісти на запитання задачі? (Відстані, які пробігли зайчики).

- Чи можемо ми знайти, яку відстань пробіг перший зайчик за 5 сек? Другий зайчик за 5 сек? (Так.)

- Як ми знайдемо відстані? Потім ми зможемо відповісти на запитання задачі? (Так).

- Яку дію виконаємо? (Додавання).

- Як записати розв'язання задачі у вигляді виразу? (12 * 5 + 10 * 5 = 110 (м)). - Скільки дій ми виконали? (3).

- Чи можна розв'язати задачу іншим способом? (Так).

- На скільки метрів наближаються зайчики один до одного за 1 сек?

- Як ви знайшли? (12 + 10 = 22 м/сек).

- 22 м/сек можна назвати швидкістю зближення. А за 5 сек зайчики наблизяться на більшу відстань, чи не так?

- У скільки разів більшу? (У 5 разів).

- Як записати розв'язання у вигляді виразу? (12+10) * 5 = 22 * 5 = 110 (м).

- Відповідь така сама? Тому можна розв'язувати задачу і таким способом.

– Скільки дій ви виконали?

– Який спосіб більш раціональний?

Проілюструємо методику роботи над розв'язуванням задачі на зустрічний рух двома способами.

Задача. З двох міст одночасно назустріч один одному виїхали велосипедист і мотоцикліст, які зустрілися через 3 год. Швидкість велосипедиста 12 км/год, а мотоцикліста - 50 км/год. Скільки кілометрів становить відстань між містами?

Повторюючи задачу, ми опиралися на таку ілюстрацію.

Аналіз проводили від числових даних.

- Що відомо про рух велосипедиста? (Швидкість і час руху).

- Про що звідси можна дізнатися? (Про відстань, яку проїхав велосипедист до зустрічі).

- Що відомо про рух мотоцикліста і що можна знайти? (Відомі швидкість і час, можна знайти відстань).

- Чи можна знайти відстань між містами? (Так).

Далі учні повідомляли план розв'язування задач і записували розв'язання.

Розв'язання

1) 12 * 3 = 36 (км) проїхав велосипедист;

2) 50 * 3 = 150 (км) проїхав мотоцикліст;

3) 36 + 150 = 186 (км) - відстань між містами.

Відповідь. 186 км.

Після повторення розв'язання ми повідомляли, що задачу можна розв'язати іншим способом.

- Спробуємо знайти другий спосіб розв'язування задачі. Велосипедист і мотоцикліст рухалися 3 год. Чи можна знайти, на скільки кілометрів зближувалися велосипедист і мотоцикліст за одну годину? (Можна. Для цього треба додати відстані, які подолали за годину окремо велосипедист і мотоцикліст).

- Велосипедист і мотоцикліст зближувалися 3 год. Як знайти відстань, яку вони подолали за цей час? (Треба помножити суму швидкостей велосипедиста і мотоцикліста на час їх руху).

Розв'язання

1) 12 + 50 = 62 (км) - зближувалися велосипедист і мотоцикліст за годину;

2) 62 * 3 = 186 (км) - відстань між містами.

Відповідь. 186 км.

Підсумовуючи розв'язання задачі другим способом, ми звертали увагу на те, що велосипедист і мотоцикліст проїхали 3 рази по 62 км.

Подальша експериментальна робота зводилася до підбору задач на рух різних видів та їх методично правильного розв'язування. Для формування уявлень про зустрічний рух ми пропонували таку добірку задач.

1. Відстань між двома містами 250 км. З цих міст назустріч один одному одночасно виїхали 2 автобуси. Яка відстань буде між автобусами, коли перший з них проїде 127 км, а другий - 93 км?

Складіть графічну схему умови задачі.

2. З пристані «Київ» до пристані «Кременчук» вирушив теплохід і одночасно йому назустріч з пристані «Кременчук» вирушив катер. Теплохід йшов зі швидкістю 30 км/год, а катер - 24 км/год. Через 5 год вони зустрілися. Яка відстань між пристанями?

Складіть графічну схему умови задачі і розв'яжіть її за діями двома способами.

3. З Харкова до Запоріжжя виїхав мотоцикл і одночасно назустріч йому із Запоріжжя виїхав моторолер. Швидкість мотоцикла 55 км/год, а моторолера - 30 км/год. Через 3 год вони зустрілися. Яка відстань між містами?

Розв'яжіть задачу, склавши числовий вираз.

4. З двох залізничних станцій, відстань між якими 910 км, одночасно вирушили назустріч один одному два електропоїзди і зустрілися через 5 год. Швидкість першого електропоїзда 87 км/год. Яка швидкість другого електропоїзда?

Складіть: графічну схему умови задачі, числовий вираз розв'язання; задачу, обернену до даної, у якій треба дізнатися, через скільки годин відбудеться зустріч.

5. Із села до міста, відстань між якими 48 км, виїхав велосипедист і одночасно назустріч йому з міста виїхав гусеничний трактор. Швидкість велосипедиста 14 км/год, а трактора - 10 км/год. Через скільки годин вони зустрінуться?

Розв'яжіть задачу, склавши числовий вираз.

6. Відстань між містами А і Б 900 км. З міста А в місто В вирушив вантажний автомобіль і одночасно назустріч йому з міста В вирушив легковий автомобіль. Усю відстань вантажний автомобіль пройшов за 15 год, а легковий - за 10 год. Через скільки годин після виїзду автомобілі зустрілися? Розв'яжіть задачу, склавши числовий вираз.

7. Складіть задачі, аналогічні до попередньої; за числовими вираза-ми: 1) (900: 6 - 60) * 6; 2) (900 - 90 * 6): 6.

Складіть схеми до умов цих задач.

8. З пункту А до пункту В вийшов турист зі швидкістю 4 км/год, а через 1 год 30 хв йому назустріч з пункту В вийшов другий турист зі швидкістю 3 км/год. Через 2 год вони зустрілися. Яка відстань між пунктами А і В?

Складіть графічну схему умови задачі та розв'яжіть її за діями і склавши числовий вираз.

9. Відстань між пунктами А і В 30 км. З пунктів А і В одночасно назустріч один одному вийшли два туристи. Через 2 год відстань між ними становила 12 км. Турист, що йшов з пункту В, зупинився і почав чекати першого туриста, який дістався до нього через 3 год. Які швидкості туристів?

Складіть: графічну схему умови задачі; числовий вираз для швидкості другого туриста.

10. Відстань між пунктами А і В 36 км. З пунктів А і В одночасно назустріч один одному вийшли два туристи. Через деякий час відстань між ними становила 18 км, а ще через 2 год вони зустрілися. Відомо, що швидкість одного з туристів більша, ніж швидкість другого, на 1 км/год.


Подобные документы

  • Зміст і операційний склад умінь учнів 2 класу розв‘язувати текстові задачі, засади їх формування, шляхи вдосконалення та експериментальна перевірка. Рівні та особливості навчальної діяльності учнів початкової школи під час розв’язування складених задач.

    дипломная работа [366,1 K], добавлен 29.09.2009

  • Аналіз та обґрунтування вживання добірки задач на пропорційне ділення на уроках математики у початковій школі. Зміст і оцінка операційного складу уміння учнів розв’язувати задачі, експериментальна перевірка удосконаленої методики формування таких вмінь.

    дипломная работа [1,1 M], добавлен 25.10.2009

  • Проблема формування умінь розв’язувати задачі у теорії та практиці. Математичні задачі у математиці початкової школи як педагогічний засіб. Психолого-педагогічні передумови використання задач. Методичні підходи та розробки використання складених задач.

    дипломная работа [126,0 K], добавлен 12.11.2009

  • Психолого-педагогічні основи формування вмінь розв'язувати задачі. Види простих задач. Формування вмінь розв'язувати задачі на знаходження невідомого компонента. Задачі на знаходження невідомого, доданка, зменшуваного та від'ємника за допомогою рівнянь.

    дипломная работа [3,7 M], добавлен 12.11.2009

  • Сутність диференційованого навчання математики в початковій школі. Творча робота над задачею, як вид диференціації. Методика використання диференційованого підходу при навчанні розв’язуванню складених задач. Диференціація, як засіб вдосконалення методики.

    дипломная работа [124,5 K], добавлен 20.10.2009

  • Теорія і практика, психолого-педагогічні та методологічні основи, шляхи формування комунікативних умінь і навичок молодших школярів. Організація та зміст експериментального дослідження ефективності формування умінь і навичок учнів на уроках рідної мови.

    дипломная работа [93,9 K], добавлен 27.09.2009

  • Психолого-педагогічні основи та методика використання диференційованого підходу. Враховування навчальних можливостей учнів. Характеристика основних видів диференційованого навчання. Організація, зміст, аналіз ефективності експериментального дослідження.

    дипломная работа [1,2 M], добавлен 07.11.2009

  • Поняття та основні елементи математичної задачі. Особливості сюжетних текстових задач. Усвідомлення змісту задачі, її аналіз і відшукання плану. Культура запису розв'язання. Мета використання ілюстрацій. Перевірка та розгляд інших способів розв'язання.

    реферат [20,7 K], добавлен 17.11.2009

  • Диференційовано-групова форма організації навчання у початкових класах. Методика формування умінь і навичок при розв'язанні задачі на знаходження суми і остачі. Особливість роботи над простими задачами на знаходження добутку як суми однакових доданків.

    реферат [758,9 K], добавлен 16.11.2009

  • Теореми та ознаки подільності натуральних чисел. Обґрунтування вимог до математичної підготовки учнів, розробка методики викладу теми "Подільність чисел". Приклади розв’язування вправ, а також задачі без розв’язання для самостійного розв’язування.

    курсовая работа [239,2 K], добавлен 02.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.