Обучение учащихся VII-VIII классов при освоении технологических операций на токарно-винторезном станке

Теоретические основы обучения учащихся работе на токарно-винторезном станке в образовательной области "Технология". Опытно-экспериментальная проверка модели процесса обучения учащихся при освоении технологических операций на токарно-винторезном станке.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 16.06.2011
Размер файла 467,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3

Основы изобретательской деятельности

6

Выбор темы проекта и проведение экспериментов

8

Итого

20

Введение в художественное конструирование

Последовательность выполнения проекта

2

Техника выполнения проектной графики

2

Практическая работа

4

Объемное проектирование (макетирование)

2

Практическая работа

10

Итого

20

Проект

16

Анализ данных таблицы №1 показал, что на протяжении V-VII классов ученики изучают 5 разделов работ: «Технология работ в крестьянском хозяйстве», «Техника в крестьянском хозяйстве», «Электротехнические устройства в быту», «Технология обработки конструкционных материалов с элементами машиноведения», «Творческий проект».

При этом бюджет времени для освоения раздела «Техники в крестьянском хозяйстве» увеличился на 2 часа по сравнению V-го класса с последующими классами, тогда как на изучение раздела «Электротехнические устройства в быту» в VI и VII классах отводится на 2 часа меньше, чем в V классе. В остальных разделах бюджет времени остается неизменным на протяжении всех трех классов.

Анализ данных таблицы также показал, что содержание обучения на этапе профильного трудового обучения является переходным этапом от обще трудового к углубленному трудовому или профессиональному обучению. В его основе лежит идея введения учащихся в один из профилей современного производства, нормы и правила трудовой деятельности по основным профессиям такого профиля.

Внутри этапную преемственность имеют только два раздела программы («Графика» и «Творческий проект»), третий раздел «домашняя экономика» имеет внутри этапную преемственность только за счет отдельных тем программы, которые продолжают свое развитие и углубление в IX классе.

Исходя из задач исследования, представляется необходимым проведение более подробного анализа содержания программы на предмет обучения токарно-винторезных станков.

Представление о машинах учащиеся получают главным образом на примере деревообрабатывающего и металлорежущего оборудования, в частности токарного станка. Объясняется это несколькими причинами.

Работой на указанном оборудовании завершается изучение обработки древесины и металлов, которое проходит на протяжении всего обучения в мастерских; таким образом, достигается ознакомление с технологией и техникой производства. Кроме того, как показал специальный анализ, в токарном станке более полно, чем в какой-либо другой машине, представлены часто встречающиеся в практике детали и механизмы, что позволяет формировать у учащихся такие важные понятия машиноведения, как «деталь», «механизм». На примере токарного станка очень удобно сформировать представление о том, что в конструкции различных по своему назначению и устройству машин может содержаться много общих узлов и деталей. Благодаря этому возможно сравнение токарного станка с другими машинами и выявление общих элементов в их конструкции.

Токарный станок вполне приемлем для изучения школьниками с точки зрения санитарно-гигиенических условий. Существующие типоразмеры станков позволяют подобрать такие из них, которые требуют затрат мускульной энергии, соответствующих физическому развитию учащихся. Токарный станок сравнительно недорог и весьма распространен, что дает основание рассчитывать на помощь в оснащении школьных мастерских шефствующими предприятиями.

Программа предусматривает ознакомление учащихся с типовыми деталями на примере токарного станка (валы, подшипники, шкивы, шестерни, крепежные детали и др.) и видами их соединений (подвижными и неподвижными, разъемными и неразъемными). Кроме того, рассматриваются некоторые наиболее распространенные механизмы передачи вращательного движения (ременные, фрикционные, цепные, зубчатые, червячные) и механизмы преобразования движения (винтовые, реечные, кривошипно-шатунные). Знания о деталях и механизмах закрепляются в процессе практических работ по разборке и сборке частей станка.

На базе металлорежущих станков учащимся рассказывают о сложной машине, состоящей из двигателя, передаточных механизмов и рабочих органов. Вместе с тем учащиеся получают представление о том, что современные машины появились в результате эволюции простых орудий труда. Процесс развития прослеживают, начиная с ручных орудий. Однако программа нацеливает не только на ознакомление с прошлым машин, но и с их будущим. Будущее металлорежущих станков - в комплексной автоматизации технологических процессов. С элементами автоматизации и надо познакомить учащихся.

Большое значение для изучения основ техники имеет ознакомление учащихся с элементами электротехники - устройством бытовых электронагревательных приборов, трехфазного асинхронного двигателя, электропривода и др.

С технологией производства учащиеся знакомятся на примере обработки древесины и металлов, а также на примере электромонтажных работ. При этом они получают представление, как о ручной, так и о машинной обработке материалов. Ручная работа занимает в программе больший удельный вес, чем машинная. Объясняется это рядом причин. Во-первых, работа на станках связана с большей опасностью травматизма, чем работа с ручными инструментами. Во-вторых, ручной труд имеет еще довольно широкое применение, с чем нельзя не считаться. В-третьих, не следует забывать, что часть приемов, составляющих содержание трудовых операций при обработке материалов вручную, используется и при работе на станках (измерение, закрепление заготовок, координация движений и др.). Таким образом, между ручной и машинной обработкой материалов существует преемственность. От мастерства учителя зависит эффективность использования этой преемственности.

Изучение обработки металлов и древесины предусмотрено программой не случайно. Указанные материалы широко распространены в народном хозяйстве. Поэтому, знакомясь с технологией обработки древесины и металлов, учащиеся получают некоторое представление о многих отраслях промышленности и строительства. Кроме того, технология обработки древесины и металлов типична для механической обработки материалов. Технологические процессы включают в себя такие операции, которые в несколько измененном виде можно встретить при механической обработке любого материала (выбор заготовки, измерение размеров, разметка, резание и др.). Благодаря этому создается возможность для показа учащимся общих принципов механической технологии, что имеет большое значение для расширения их политехнического кругозора.

Одновременно программа предусматривает ознакомление учащихся с некоторыми общими сведениями о пластмассах. Ознакомление это носит в основном теоретический характер, однако можно с уверенностью сказать, что по мере развития химической промышленности знания учащихся в этой области будут постепенно расширяться и в программу будут включены обязательные практические работы.

Ознакомление учащихся с механической технологией включает изучение определенного объема теоретических сведений и овладение соответствующими практическими умениями и навыками. Так учащиеся получают краткие сведения о фанере, о физических и механических свойствах древесины. Знакомятся они с механическими свойствами черных и цветных металлов, основными сортами и свойствами стали. Большое внимание уделено программой ознакомлению с технической документацией и порядком ее составления и применения. По каждой трудовой операции, которой обучаются учащиеся, сообщаются необходимые теоретические сведения: значение операции и ее место в технологическом процессе, конструкция режущих инструментов, правила выполнения трудовых приемов, техника безопасности и др.

Значительное место занимает в программе обучение чтению чертежей. Учащиеся знакомятся также с выполнением эскизов тех предметов, которые они изготовляют.

Трудовые операции, которым обучают учащихся, подобраны в программе так, чтобы создавалось достаточно полное представление о профессии, к которой они относятся. Например, при изучении слесарного дела ребята осваивают разметку, правку, гибку, резание ножовкой и ножницами, рубку, работу с проволокой, соединение деталей из листового металла и проволоки, опиливание, сверление, нарезание резьбы, паяние, сборку, окончательную отделку изделий. Вместе с тем такие операции, которые могут выполнить лишь рабочие высокой квалификации, не отрабатываются. Так, среди слесарных операций не изучаются шабрение и притирка.

Таким образом, анализ программного содержания образовательной области «Технология» показа, что учащиеся VII классов знакомятся с простейшими токарными станками. Работая на станках, учащиеся выполняют наиболее характерные, часто встречающиеся операции. Для токарного станка - это обтачивание наружных цилиндрических поверхностей, подрезание торцов и уступов, прорезание канавок, отрезание.

1.3 Построение оптимальной модели процесса обучения учащихся VII-VIII классов при освоении технологических операций на токарно-винторезном станке

Уроки технологии имеют свою оправданную специфику, выражаемую рядом особенностей по сравнению с уроками других учебных предметов.

Во-первых, на занятиях по технологии сложилась оправдавшая себя практика сдвоенных уроков. Это объясняется тем, что центральное место на уроках технологии отводится именно практической работе учащихся. При сдвоенном занятии школьники успевают решить поставленные задачи.

Во-вторых, занятия по технологии требуют специальной их подготовки с точки зрения создания безопасных условий для работы учащихся. Это непременное условие, вне зависимости от темы урока, так как применяемые инструменты и оборудование могут стать источниками травматизма из-за неумелости их использования школьниками.

В-третьих, само построение занятий по технологии, предполагая значительную долю самостоятельности со стороны учащихся, требует от преподавателя усиления контроля за всеми аспектами ситуации в классе: от предотвращения возможной травмы до предупреждения типичных ошибок в действиях школьников.

Таким образом, рассмотрим методические приемы выработки технологических операций на токарно-винторезных станках у учащихся VII-VIII классов. Выявленные в процессе анализа программного содержания знания учащихся об устройстве и действии токарно-винторезного станка становятся более прочными благодаря закреплению и некоторому расширению их в процессе практических работ по разборке и сборке машин и их узлов.

Знакомство учащихся с машинной обработкой древесины и металлов на занятиях в мастерских ограничивается главным образом изучением сверлильного, токарного и фрезерного станков. На производстве же применяется много других станков. Поэтому учебный процесс должен строиться таким образом, чтобы учащиеся на примере сверлильного, токарного и фрезерного станков получили общее представление о станках и обработке материалов на них. Для этого нужно рассматривать каждый станок и вид обработки не сам по себе, а в связи с другими станками и другими видами обработки.

Сравнивая между собой различные группы станков, нетрудно увидеть в них много общего. Объясняется это тем, что обработка материалов на различных металлорежущих станках основана на одних и тех же законах физики, химии и других наук. Поэтому, усвоив общие закономерности, использованные при обработке материалов на металлорежущих станках, можно разобраться в принципе действия и устройства незнакомого станка.

При показе учащимся того-общего, что есть во всех металлорежущих станках, целесообразно остановиться на следующих трех узловых вопросах:

1. Образование заданной формы детали. Конечная цель обработки материалов на станках состоит в получении детали заданной формы и размеров.

По своей внешней форме детали весьма разнообразны, и это создает впечатление, что для обработки деталей, для придания им разнообразных форм должны существовать и разнообразные методы обработки.

Такое неправильное представление исчезает, если рассмотреть детали с точки зрения их геометрической формы. Оказывается, что даже наиболее сложные детали представляют собой сочетание нескольких простых геометрических тел. Так, детали, обрабатываемые на токарных станках, по своей форме чаще всего представляют собой сочетание цилиндров разных размеров, реже -- конус и еще реже -- шар.

Поэтому, несмотря на огромное разнообразие деталей, все они обрабатываются на станках всего лишь девяти групп. На станках каждой группы можно придавать детали только определенную геометрическую форму. Зная это, легко установить, на каком станке следует обрабатывать данную деталь в зависимости от ее формы.

Таким образом, чтобы учащиеся могли разобраться в том, как на металлорежущих станках достигается обработка детали любой формы, им необходимо рассмотреть детали машин как геометрические тела.

2. Основные движения станка. Решающее значение при образовании формы детали имеют основные движения. В этом легко убедиться на примере токарного станка. Главное движение токарного станка -- вращательное, поэтому детали, обработанные на нем, представляют собой круглые тела. Однако форма их в осевом сечении зависит от траектории движения резца. В зависимости от траектории движения резца детали можно придать форму цилиндра, конуса или шара.

Таким образом, для придания детали заданной формы и размеров станок должен иметь основные движения. Однако по своему характеру, как сами движения, так и их сочетания отличаются у станков различных групп. Так, на кругло шлифовальных станках оба основных движения -- вращательные, на поперечно-строгальном -- прямолинейные, на токарном станке деталь имеет вращательное движение, а резец -- поступательное, на фрезерном -- наоборот, на сверлильном станке оба основных движения совершает инструмент. Образование заданной формы детали объясняется во всех случаях использованием одного и того же правила сложения движений.

3. Классификация частей станка по назначению. По своему внешнему виду металлорежущие станки весьма разнообразны. Объясняется это тем, что на них приходится обрабатывать детали разной формы и размеров. Однако каждый станок, независимо от его конструкции, выполняет одно и то же назначение. Поэтому части каждого металлорежущего станка можно разделить в зависимости от их назначения на следующие четыре группы: для закрепления детали и инструмента; для обеспечения основного (главного) движения; для обеспечения движения подачи; для соединения в одно целое всех частей станка.

Знакомя учащихся с устройством и работой токарно-винторезного станка, следует обратить их внимание, прежде всего на основные части и типовые механизмы станка и не загружать память учащихся второстепенными вопросами.

Объяснение устройства токарного станка целесообразно проводить по такому плану:

а) рассказ о назначении и применении токарных станков;

б) показ и объяснение устройства основных частей станка: станины, стола, хобота, электродвигателя, пускового устройства;

в) демонстрация и объяснение устройства и работы передаточного механизма и его деталей: ведущий вал электродвигателя; ведущий шкив ременной передачи; ремень; ведомый шкив ременной передачи; шпиндель (ведомый вал); патрон;

г) обобщение сведений об устройстве и работе токарного станка: закрепление детали; передача движения резания; передача движения подачи.

На примере токарного станка можно интересно и убедительно проиллюстрировать развитие орудий труда. Для этого следует познакомить учащихся с простейшими приспособлениями, применявшимися с незапамятных времен для обработки отверстий в камне, в которых приводом служил охотничий лук. На базе этого приспособления возник токарный станок с ручным лучковым приводом. Указанные конструкции описываются в литературе по истории техники.

Учитель обращает внимание учащихся на то, что токарный станок с лучковым приводом был весьма неудобен, так как половина времени уходила на обратный (холостой) ход лука, причем перемещением лука была занята одна рука работающего. Дальнейшее развитие токарного станка выразилось в появлении сначала ножного привода, а затем и люнета. Ножной привод, в свою очередь, был заменен приводом, вынесенным за пределы станка: маховик передачи вращал вспомогательный рабочий, а движение на шпиндель передавалось через канатную передачу, благодаря чему токарь мог сосредоточить свое внимание на инструменте.

Во второй половине XVIII столетия изобрели паровую машину, которую стали использовать как источник энергии для приведения в движение машин на заводах и фабриках. Один двигатель обслуживал группу станков. При этом движение с двигателя передавалось на трансмиссионный вал, а с последнего -- на станки с помощью ременных передач. В цехах возникали «леса» ремней, создавая для рабочих неудобства и опасность травмирования.

В 1712г. русский изобретатель А.К. Нартов создал механизированный суппорт («держалку»). Во второй половине XIX столетия паровая машина стала уступать место электродвигателю, что открыло путь к созданию индивидуального привода станка.

Превращение простых орудий труда в машины-орудия может быть показано учащимся и на других примерах. Замена пробойника сверлом привела вместе с тем к присоединению простого орудия труда к механизму (ручная дрель), а затем и к сверлильному станку. То же самое можно показать учащимся и на других примерах: рубка зубилом -- резание на рычажных ножницах -- резание на механических ножницах; гибка вручную -- гибка в приспособлении -- гибка на прессе; резание ручной ножовкой -- резание на приводной ножовке; опиливание вручную -- опиливание на станке и др.

Обзор развития орудий труда завершается формированием у учащихся представления об автоматизации технологических процессов. С механизацией труда учащиеся встречаются на занятиях в мастерских неоднократно. С автоматизацией учащиеся мало знакомы; чаще всего их знания в этой области ограничиваются общими представлениями об автоматах по продаже газированной воды, почтовых открыток и т. п. Опираясь на эти представления, целесообразно показать, в чем заключается автоматизация работы на токарном станке. Для этого можно рассмотреть технологию изготовления болта и наметить вместе с учащимися, какие элементы работы станочника могут быть автоматизированы, а затем в общих чертах объяснить по схеме устройство простейшего токарного станка-автомата. На экскурсии или с помощью кинофильма желательно показать учащимся станок-автомат в действии.

Под методами обучения технологии понимаются способы совместной деятельности учителя и учащихся, при помощи которых: достигается усвоение каждым учащимся технологических знаний, умений и навыков, осуществляется разностороннее развитие его личности.

В определении понятия метода обучения технологии выделяются четыре характерных признака: деятельность учителя, деятельность учащихся, усвоение учащимися технологических знаний, умений и навыков и развитие личности ученика.

Действительно, любой момент процесса обучения, так или иначе, протекает под влиянием учителя. Более того, учитель в процессе обучения играет руководящую роль. Даже самостоятельная учебная работа учащихся осуществляется по заданию учителя. Вместе с тем, в конечном итоге результат обучения непосредственно зависит от деятельности ученика, от его усилий, проявления настойчивости и т.д.

Выбор методов обучения в преподавании технологии зависит от целого ряда факторов. Прежде всего, он зависит от целей и задач обучения. Если преследуется цель ознакомления учащихся с устройством того или иного рабочего инструмента, то обычно проводится объяснение устройства этого инструмента, его показ, показ модели или наглядного изображения данного инструмента. Если ставится цель формирования у учащихся умений и навыков в выполнении тех или иных рабочих приемов, то в этом случае не обойтись без упражнений или практической работы учащихся.

Большое влияние на выбор методов обучения оказывает содержание учебного материала. Простой описательный фактический материал можно изложить с помощью рассказа. Изучение технических явлений, требующих раскрытия их сущности, выполняется с помощью объяснения и, возможно, применения средств наглядности.

На выбор практических методов обучения технологии значительное влияние оказывает учебно-материальная база. Она является одним из главных условий применения этих методов обучений. При выборе методов обучения технологии учитывается также уровень предшествующей технологической подготовки учащихся, их личный опыт.

В общеобразовательной школе действующая программа трудового обучения была разработана на основе конструкторско-технологической системы обучения, ведущей идеей которой является органическое сочетание исполнительской и творческой деятельности учащихся. Учащиеся ставятся в такие условия, когда непосредственному изготовлению объекта труда должны предшествовать разработка его конструкции и технологии обработки. Таким образом, учащиеся вначале решают ряд технических вопросов и только после этого переходят к обработке деталей, их сборке и т.д.

Нетрудно заметить, что конструкторско-технологическая система предопределяет содержание лишь интеллектуальной деятельности учащихся, а формирование трудовых практических умений и навыков может проходить по-разному. Так, в большинстве случаев обучение в мастерских проходит по предметно - операционной системе.

Это обусловлено рядом причин. Во-первых, программой не предусматривается изолированное изучение отдельных операций, более того, вообще не сказано, сколько времени надо потратить на изучение той или иной операции. Это значит, что трудовые практические умения и навыки не будут формироваться пооперационной или операционно-комплексной системе. Во-вторых, стержнем, вокруг которого строится процесс обучения школьников, является перечень объектов труда, подлежащих изготовлению, а он - типовой, т. е. одни изделия могут заменяться другими, исходя из местных условий, проще говоря - из материальных возможностей.

Усвоение знаний, умений и навыков в обучении технологии имеет характерные особенности. Дело в том, что технические знания, которые осваивают ученики при изучении технологии, обслуживают предметно-практическую деятельность людей и поэтому носят во многом практический характер. Следовательно, и овладение этими знаниями носит практическую направленность.

Развитие личности ученика при изучении технологии также имеет свои особенности. Технологическая деятельность имеет универсальный характер. В ней проявляются практически все качества личности. Поэтому, в процессе обучения технологии осуществляется и физическое развитие (укрепление здоровья в физическом труде), и интеллектуальное (развитие технического мышления), и нравственное (формирование правильного отношения к труду).

Методы обучения технологии включают в себя отдельные элементы, называемые приемами обучения. Например, метод показа рабочего действия состоит из следующих приемов: показ действия в рабочем темпе, показ действия в замедленном темпе и показ действия с расчленением на отдельные трудовые движения.

Один и тот же прием обучения может входить в различные методы обучения технологии. Примером может служить запись учениками определений новых понятий и при объяснении нового материала учителем, и при выполнении учениками лабораторной или практической работы, и в ходе беседы и т. д.

В общей теории обучения, или дидактике, раскрываются различные подходы к классификации методов обучени, по источнику знаний учащихся, по характеру их познавательной деятельности и т. д.

В обучении технологии, в теории и на практике, распространена классификация методов обучения по источнику знаний учащихся. Учащиеся овладевают технологическими знаниями, умениями и навыками через словесное восприятие, непосредственное чувственное восприятие и практическую деятельность. Словесное восприятие технологических знаний учащимися осуществляется через слово учителя или письменное слово учебной книги. В основе чувственного восприятия лежит образ технического объекта, явления или процесса. Овладение знаниями, умениями и навыками через практическую деятельность особенно характерно для технологического обучения, так как сами технические знания, как уже отмечалось, носят во многом практическую направленность и поддаются усвоению главным образом через практику.

В соответствии с классификацией методов обучения технологии по источнику знаний, они делятся на три группы.

В первую группу входят методы преподавания технологии, в которых источником знаний для учащихся является слово учителя или письменное слово учебной книги. Это методы словесного сообщения и закрепления технико-технологических знаний.

Вторую группу методов обучения технологии составляют методы, где источником знаний для учащихся является образ технического объекта, процесса или явления. Это - метод демонстрации.

Третью группу методов обучения технологии составляют методы, в которых источником знаний, умений и навыков для учащихся являются их практические действия. Эти методы так и называются - методы практической работы учащихся.

Именно они и являются наиболее эффективными при обучении учащихся работе на токарно-винторезных станках.

На основании проведенной работы мы можем выдвинуть следующие методические приемы овладения технологическими операциями работы на токарно-винторезных станках:

- включать учащихся, как в коллективную, так и в индивидуальную деятельность, заключающую в себе возможность самостоятельного решения различных вопросов и задач;

- использовать практические методы обучения;

- применение разнообразных типов урока;

- создавать условия для эстетического воспитания учащихся;

- стимулировать творческую деятельность учащихся;

- воспитывать бережное отношение к оборудованию;

- воспитывать потребность, интерес к деятельности;

- точность и аккуратность выполнения задания.

Такая методика проведения работ позволяет развивать у школьников не только самостоятельность, но и активность, вырабатывает инициативу и творческое отношение к изучаемому материалу. Проведенная нами работа позволила спроектировать оптимальную модель процесса обучения учащихся VII-VIII классов при овладении технологических операций на токарно-винторезных станках (Приложение №1).

Глава 2. Опытно-экспериментальная проверка модели процесса обучения учащихся VII-VIII классов при освоении технологических операций на токарно-винторезном станке

2.1 Содержание, формы и методы обучения учащихся VII-VIII классов при освоении технологических операций на токарно-винторезном станке

В первой главе квалификационной работы нами были раскрыты теоретические основы обучения учащихся VII-VIII классов при освоении технологических операций на токарно-винторезных станках, выявлены исходные предпосылки формирования у учащихся необходимых знаний, умений и навыков в программном содержании обучения учащихся в образовательной области «Технология», что позволило нам спроектировать и обосновать экспериментальную модель процесса обучения учащихся в указанном направлении.

Основываясь на указанные в первой главе методические рекомендации, в том числе разработанные педагогической наукой, мы построили опытно-экспериментальную работу. Применение данной методики рассмотрим на примере разработанных уроков. Однако в рамках квалификационной работы не представляется возможным раскрытие всех проводимых нами занятий в процессе экспериментальной работы, которая нами была организована в VII классах СОШ №5 поселка Октябрьского Красноармейского района Краснодарского края, поэтому ограничимся раскрытием методики проведения отдельных занятий.

План-конспект урока.

Тема: «Основные токарные операции».

Цели: обеспечить усвоение учащимися приемов работы на токарно-винторезном станке ТВ-6; способствовать воспитанию трудовой дисциплины учащихся; развивать умение организовывать свою практическую деятельность.

Тип урока: комбинированный (освоение новых знаний, обобщение и систематизация изученного).

Методы обучения: устный опрос, рассказ, показ приемов учителем, демонстрация наглядных пособий, практическая работа.

Наглядные пособия: приложения 2 рис. 741-748.

Ход урока:

I. Организационно - подготовительная часть.

Приветствие учителя, контроль посещаемости, проверка готовности учащихся к уроку, сообщение темы и целей урока.

II. Теоретическая часть.

1. Повторение пройденного материала.

Вопросы:

Из каких частей состоит токарно-винторезный станок?

Какие операции по обработке металлов можно выполнять на токарно-винторезном станке?

Какие инструменты используются при токарной обработке металла?

Из каких элементов состоит токарный резец?

Какие виды резцов вам известны?

Как осуществляются пуск и остановка станка?

Как закрепляют заготовку на токарном станке?

Как установить необходимую частоту вращения шпинделя?

Как вручную перемещают суппорт в продольном и поперечном направлении?

Как можно перемещать резцедержатель с резцом при неподвижном суппорте?

Как осуществляется механическая подача резца?

Каковы правила техники безопасности при работе на токарно-винторезном станке?

2. Изложение нового материала.

План рассказа учителя:

Режимы резания при точении.

Обтачивание цилиндрических поверхностей.

Подрезание уступов и торцов.

Отрезание заготовок.

5) Сверление.

1. Режимы резания при точении.

Для выполнения операций по обработке металлов на токарном станке необходимо, чтобы заготовка совершала вращательное движение, а резец, касаясь заготовки режущей кромкой, перемещался вдоль заготовки и срезал слой металла. При обработке разных заготовок и различными инструментами скорости вращения заготовок и перемещение резца также будут различными. Изменяется и толщина снимаемого с заготовки слоя металла. Все это отражается на режимах обработки.

Режимы обработки на токарно-винторезном станке определяются скоростью резания, подачей и глубиной резания при точении.

Скоростью резания при точении называется длина пути, который проходит в одну минуту точка обрабатываемой поверхности. Обозначается скорость резания буквой и измеряется в метрах в минуту (м/мин). Скорость резания тесно связана с частотой вращения заготовки (и), которая измеряется в оборотах в минуту (мин 1)-Зная частоту вращения и диаметр заготовки, можно подсчитать скорость резания. За один оборот заготовки точка обрабатываемой поверхности пройдет путь, равный длине окружности, диаметр которой равен диаметру заготовки. За несколько оборотов заготовки эта точка пройдет путь, равный нескольким длинам таких окружностей. Следовательно, Х> м/мин, где v - скорость резания, 1000м/мин; к - постоянное число 3,14; D - диаметр обрабатываемой заготовки, мм; п - частота вращения шпинделя (заготовки), мин 1; 1000 - коэффициент перевода миллиметров в метры.

Подача - это величина перемещения резца за один оборот обрабатываемой заготовки. Она обозначается буквой s и измеряется в миллиметрах на один оборот заготовки (мм/об).

Глубиной резания называется толщина снимаемого слоя металла, измеренная по перпендикуляру к обработанной поверхности заготовки. Обозначается буквой t и измеряется в миллиметрах (мм).

2. Обтачивание цилиндрических поверхностей.

Обтачивание цилиндрических поверхностей осуществляют проходными прямыми или отогнутыми резцами из быстрорежущей стали. Используют также резцы с пластинками из твердого сплава.

Выбор того или иного резца зависит от свойств обрабатываемого материала.

Обтачивание цилиндрических поверхностей обычно производится в два приема: сначала снимают большую часть припуска (черновое обтачивание), а затем оставшуюся часть (чистовое точение). Для чернового обтачивания используют более массивные резцы, так как они должны выдерживать большие нагрузки при снятии значительного слоя металла. Заготовку закрепляют в патроне и проверяют, нет ли биения. При необходимости пере закрепляют ее. В резцедержателе закрепляют резец, предварительно выверив его положение по линии центров и выдвижению головки резца из резцедержателя (вылету резца). Линией центров называют условную линию, которую можно провести по оси отверстия шпинделя и пиноли задней бабки, установленной в исходном положении. Свое название линия центров получила от того, что на этой линии находятся острия упорных центров, вставленных в отверстия шпинделя и пиноли задней бабки. Затем определяют необходимую частоту вращения шпинделя и, пользуясь рукоятками коробки скоростей, по таблице режимов работы станка устанавливают ее.

Для получения заданного диаметра детали (при черновом обтачивании с учетом припуска на чистовое точение) необходимо установить резец на соответствующую глубину резания. При этом следует иметь в виду, что после одного прохода резца заготовка уменьшится по радиусу на величину глубины резания, а по диаметру на удвоенную величину этой глубины.

Установка глубины резания может производиться способом пробных стружек или с помощью лимба поперечной подачи.

Способ пробных стружек заключается в следующем. Включается шпиндель станка. Вращением маховичка продольной подачи и рукоятки винта поперечной подачи вручную подводится резец к заготовке так, чтобы его вершина коснулась поверхности около самого торца. Установив момент касания, вращением маховичка продольной подачи резец отводят вправо от заготовки и с помощью рукоятки поперечной подачи устанавливают требуемую глубину резания. Затем ручной продольной подачей обтачивают заготовку на длине 3-5мм (пробная стружка), возвращают резец вправо, останавливают станок и измеряют диаметр обработанной поверхности. Если диаметр больше требуемого, резец устанавливают на несколько большую глубину, снова снимают пробную стружку и повторяют измерение. Эти операции повторяют до тех пор, пока не получат заданный размер, после чего начинают обработку заготовки. По окончании обработки отводят резец назад и останавливают станок. В таком же порядке производится и чистовое точение.

Для ускорения установки резца на требуемую глубину на современных токарных станках предусмотрено специальное приспособление - лимб поперечной подачи. Он представляет собой втулку или кольцо, по окружности которого нанесены деления, и располагается около рукоятки винта поперечной подачи. Деления отсчитываются по риске, находящейся на неподвижной втулке.

Принцип устройства лимба заключается в следующем. При полном обороте рукоятки винта поперечные салазки перемещаются на величину шага этого винта. Предположим, что лимб разделен на 80 равных частей, а винт поперечной подачи имеет резьбу с шагом 2мм. За один оборот рукоятки винта, то есть на 80 делений лимба, резец переместится в поперечном направлении на 2мм. Если рукоятку повернуть только на одно деление, то перемещение резца составит 2мм:80=0,025мм. Эту величину называют ценой деления лимба.

Устанавливается резец на определенную глубину резания с помощью лимба поперечной подачи, нужно учитывать зазор между винтом и гайкой (так называемый люфт винта). Если данное обстоятельство упустить из виду, то величина перемещения резца может не соответствовать заданной по лимбу. Чтобы этого не произошло, необходимо соблюдать следующее правило. Всегда подводить требуемое деление лимба к риске правым вращением рукоятки винта. Ошибочный поворот рукоятки винта поперечной подачи больше требуемого нельзя исправить поворотом рукоятки назад только на величину ошибки. Нужно сделать полный оборот рукоятки в обратную сторону и снова вращать ее вправо до совпадения расчетного деления лимба с риской.

При установке глубины резания с помощью лимба также следует делать пробные замеры, но в данном случае установка резца производится значительно быстрее и точнее.

3. Подрезание уступов и торцов.

Обработка уступов - поверхностей заготовки, образованных достаточно быстрым переходом от одного размера диаметра к другому (от меньшего к большему или, наоборот), - во многих случаях специально не производится. Уступ образуется во время обтачивания цилиндрических поверхностей, и его наклон соответствует па-клону главной режущей кромки резца к оси заготовки. Если потребуется, чтобы уступ был расположен под прямым углом к оси заготовки, то обычный проходной резец устанавливают так, чтобы главная режущая кромка располагалась тоже под прямым углом к оси заготовки. При установке и закреплении резца это проверяется угольником. Производится и специальная обработка уступов, когда требуется их расположение под прямым углом к оси заготовки. Эта операция - подрезание уступов - выполняется подрезными резцами, у которых главная режущая кромка параллельна оси резца.

После обтачивания заготовки обычно возникает необходимость обработать и ее торец - плоскую поверхность, ограничивающую длину заготовки цилиндрической, конической и другой формы, - так, чтобы его поверхность была ровной и располагалась точно под прямым углом к оси заготовки. Эту операцию называют подрезанием торца.

Для того чтобы подрезать торец заготовки, ее закрепляют в патроне. Проверяют, чтобы не было биения заготовки, при необходимости пере закрепляют. В резцедержателе устанавливают подрезной резец. Вершина головки резца должна быть точно по центру заготовки. Это устанавливают и контролируют по центру задней бабки. Операцию подрезания торца осуществляют в следующем порядке. Включают станок, подводят резец к заготовке так, чтобы вершина его головки слегка коснулась торца. Далее рукояткой поперечной подачи немного отводят резец назад, а маховичком продольной подачи смещают его влево, к передней бабке, на величину снимаемого с торца слоя металла. Величину перемещения резца можно установить по лимбу продольной подачи. Непосредственное подрезание торца осуществляется ручной поперечной подачей резца к центру заготовки. Каретка суппорта при этом должна быть закреплена. При подходе вершины головки резца к центру заготовки подачу уменьшают. Правильность подрезки торца проверяют с помощью измерительной линейки.

4. Отрезание заготовок.

Эта операция производится с помощью отрезных резцов, которые обычно выполняются составными: державка - из углеродистой стали, а режущая часть (пластинка) - из быстрорежущей стали или твердого сплава. Длина головки резца должна быть несколько больше радиуса обрабатываемой заготовки.

При отрезании закрепляют заготовку в патроне и по возможности поджимают задним центром. Устанавливают отрезные резцы перпендикулярно оси заготовки точно по линии центров.

Отрезание заготовки следует производить как можно ближе к кулачкам патрона. Не нужно перемещать резец до самого центра заготовки, так как в месте отреза может образоваться очень тонкий стержень, который под давлением резца и веса отрезаемой части заготовки согнется, резец окажется защемленным и произойдет его поломка. Как только между частями заготовки, закрепленной в патроне и отрезаемой, останется перемычка, которая может быть легко переломлена, следует вывести резец, остановить станок и отломить отрезаемую часть. После чего снова включить станок и зачистить торец оставшейся в патроне части заготовки.

Чтобы производить отрезание сразу до конца, применяют резец, у которого правый угол режущей кромки идет впереди левого. Бобышка, оставшаяся у закрепленной части заготовки, срезается при последующей обработке.

При отрезании заготовок достаточно большого диаметра, чтобы не зажимать отрезной резец в месте разрезания, применяется специальный прием, называемый «отрезание в разгонку». Суть этого приема заключается в том, что отрезание производят широкой полосой разреза, и поперечная подача резца перемежается с продольной: переместив резец в поперечном направлении, затем перемещают его несколько в продольном направлении, допустим, вправо. Далее снова в поперечном, потом в продольном влево и т. д.

5. Сверление.

Одна из самых распространенных технологических операций - сверление - может выполняться не только на сверлильном, но и на токарном станке. При этом сущность операции не меняется. Применяется тот же режущий инструмент - сверло. Изменяются только приемы выполнения этой операции. Если при работе на сверлильном станке вращательное и поступательное движение относительно заготовки совершает сверло, то на токарном станке вращательное движение совершает заготовка, а поступательное - сверло.

Заготовку для сверления на токарном станке закрепляют в трех кулачковом само центрирующем патроне так же, как и при точении или подрезании торцов. Способ закрепления сверл на токарном станке зависит от формы их хвостовиков.

Сверла с цилиндрическим хвостовиком закрепляют в сверлильном патроне, а затем сам патрон устанавливают и закрепляют в отверстии пиноли задней бабки. Сверла с коническим хвостовиком помещают в отверстие пиноли задней бабки. В случае, если размер хвостовика сверла меньше размера конического отверстия в пиноли, применяют переходную втулку. Сверло должно быть установлено строго по линии центров. Это можно проверить, подвинув заднюю бабку со сверлом ближе к переднему центру, закрепленному в патроне: вершины центра и сверла должны совпадать.

Перед сверлением у закрепленной в патрон заготовки слегка подрезают торец. При этом делают небольшое углубление в центре заготовки, которое направит сверло по центру в начале сверления.

Для выполнения сверления заднюю бабку с закрепленным в пиноли сверлом придвигают ближе к заготовке и закрепляют ее в нужном положении. Включают станок и вращением маховичка пиноли задней бабки подводят сверло к заготовке. Убедившись, что вершина сверла совпадает с центром заготовки, начинают осторожно сверлить, подавая сверло маховичком пиноли. Если отверстие достаточно глубокое, то необходимо периодически выводить сверло из отверстия и очищать его от стружки. При сильном нагреве сверло охлаждают специальной эмульсией или водой.

Отверстие диаметром свыше 10мм рекомендуется сверлить вначале сверлом малого диаметра, а затем рассверливать сверлом нужного диаметра.

III. Практическая часть.

Практическая работа «Изготовление втулки на токарно-винторезном станке».

1. Организация рабочего места.

Для выполнения работы понадобятся: станок ТВ-6, токарные резцы, ключи для крепления патрона, отвертки, напильники, молоток, крючок для удаления стружки, щетка для чистки станка, обтирочный материал, контрольно-измерительные инструменты, заготовки.

2. Вводный инструктаж.

Задания:

1) закрепите заготовку в трехкулачковом самоцентрирующем патроне;

2) установите проходной и подрезной резцы в резцедержателе;

3) настройте станок на заданные режимы резания;

4) подведите проходной резец к заготовке на расстояние 8-10мм от ее края;

5) включите станок и обточите наружную цилиндрическую поверхность заготовки до диаметра 18мм на длину 30-32мм;

6) выключите станок и проверьте качество и точность обработки;

7) смените позицию резцедержателя, установив подрезной резец;

8) включите станок и подрежьте правый торец заготовки и проточите углубление в центре ее торца;

9) выключите станок и проверьте качество торца с помощью измерительной линейки;

установите в пиноли задней бабки сверло диаметром 10мм;

включите станок и просверлите отверстие глубиной 32-35мм, периодически выводя сверло из отверстия для облегчения выхода стружки;

выключите станок и проверьте глубину отверстия штангенциркулем с глубиномером;

установите отрезной резец и включите станок;

отрежьте заготовку длиной 30-32мм;

выключите станок и проверьте качество обработанной детали.

Правила техники безопасности: те же, что и для предыдущей практической работы.

3. Текущий инструктаж:

Задания учащиеся выполняют вместе с учителем. Текущие наблюдения учителя, контроль за соблюдением правил техники безопасности, ответы на возникающие вопросы в процессе работы, проверка правильности выполнения заданий

Возможные ошибки:

1) при обтачивании цилиндрических поверхностей:

- часть поверхности детали осталась необработанной; причины: недостаточные размеры заготовки (мало припуска на обработку), кривизна заготовки, неправильная ее установка и неточная выверка;

- неправильные размеры обточенной поверхности; причины: неточная установка резца на глубину резания или неправильное измерение детали при снятии пробной стружки;

- неровность обработанной поверхности; причины: большая подача резца, дрожание резца из-за большого вылета или недостаточно прочного закрепления его в резцедержателе, дрожание детали вследствие непрочного закрепления ее или биения шпинделя.

2) при подрезании уступов и торцов:

- неточность размеров длины детали при подрезании торцов и неправильное расположение уступа по длине заготовки; причины: ошибки в измерении заготовки, недостаточно прочное закрепление заготовки в патроне и резца в резцедержателе, слабое закрепление заготовки и резца, их смещение в результате нажима резца на заготовку во время резания;

- неперпендикулярное расположение торца или уступа к оси детали; причины: неточность направляющих суппорта при работе с поперечной подачей, отжим резца из-за непрочного его закрепления в резцедержателе, отход плохо застопоренной каретки суппорта при работе поперечной подачей.

3) при отрезании заготовок:

- поломка резца; причины: установка резца ниже линии центров (повышение давления на переднюю грань); установка резца выше линии центров (увеличение трения задней поверхности резца обрабатываемую поверхность).

4) при сверлении:

- диаметр отверстия больше требуемого; причина - неправильный подбор сверла (сверло большего диаметра) или неправильная заточка сверла (режущие кромки неодинаковой длины);

- несовпадение оси отверстия с осью заготовки; причина - увод сверла в начале врезания из-за отсутствия центрального углубления в заготовках;

- диаметр отверстия по краям больше, чем посередине; причина - положение сверла не на линии центра вследствие смещения задней бабки или биения заготовки.

4. Заключительный инструктаж.

Разбор допущенных ошибок и анализ причин, их вызвавших; разъяснение возможностей применения полученных знаний, умений и навыков в дальнейшем изучении технологии обработки металлов.

IV. Итоговая часть.

1. Установка на следующий урок.

На следующем уроке продолжится знакомство с технологией токарной обработки металла. Учащиеся получат представление о нарезании наружной и внутренней крепежной резьбы.

2. Домашнее задание:

повторить изученный на данном уроке материал;

доработать и исправить ошибки в операционной карте, разрабатываемой ранее;

прочитать параграф 24 (3, с.112-118).

3. Уборка рабочих мест.

2.2 Дидактическое обеспечение занятий по обучению учащихся VII-VIII классов работе на токарно-винторезных станках

В предыдущем параграфе мы рассмотрели методические приемы овладения технологическими операциями работы на токарно-винторезных станках в представленных уроках технологии. Применение дидактических средств обучения коренным образом изменяет структуру урока, помогает с большей пользой использовать каждую минуту учебного времени, максимально четко и доходчиво изложить сложный материал и обеспечить быстрое и прочное его усвоение, сократить время на передачу информации и контроль за ее усвоением, увеличив одновременно продолжительность самостоятельной работы учащихся на уроке. Средства обучения расширяют границы опыта и наблюдений учащихся, открывают возможности для более глубокого понимания основных законов развития природы и общества, активизации процесса обучения и его тесной связи с жизнью, для организации разнообразной самостоятельной работы на уроке. Они лучше доносят до учащихся сущность изучаемых явлений, помогают выделить основные понятий и показать взаимосвязь между ними.

Обладая высокой степенью наглядности, средства обучения дают возможность организовать передачу информации на таком уровне, который был бы доступен для данной категории учащихся, а постоянный оперативный контроль в процессе изложения позволяет более объективно судить о ее доступности.

В их перечень также входят различные средства наглядности (наглядные пособия), которые можно подразделить на ряд групп (классификация В.Д. Симоненко, Е.М. Муравьева).

Средства натурального показа предназначены для демонстрации технических объектов и процессов в натуре. К ним относятся:

натуральные объекты: образцы материалов конструкций, рабочие и контрольно - измерительные инструменты, различные приборы, аппараты и другие технические устройства, а также их механизмы, детали и узлы. К натуральным объектам в полной мере относятся все технические объекты учебно-трудового процесса;

натуральные процессы - технологические процессы, наблюдаемые на уроках учащимися;

реальные трудовые действия - взаимодействия работающего с инструментом и обрабатываемым материалом.

Технические модели и макеты как подобия изучаемых объектов для показа внешнего вида изучаемых объектов и явлений, их детали и конструкции.

Учебная техническая модель - аналог изучаемого объекта или его части. Они позволяют показать не только внешний вид изучаемого объекта, но и на примере действующих моделей демонстрировать работу объекта, динамику движения и взаимодействия его деталей.

Учебные макеты дают объемное изображение внешнего вида изучаемых объектов с точным соблюдением их пропорций.

Реальное изображение вида изучаемых объектов, процессов и трудовых действий.

Самый распространенный вид - плакаты, размеры которых подбираются таким образом, чтобы их можно было прочесть с последних рядов класса. Плакаты меньшего размера сшиваются в альбомы для индивидуального просмотра. Изображения на плакатах могут отражать как внешний вид изделий, форму, устройство изделий, так и технологические процессы, требования техники безопасности.

Условные изображения изучаемых объектов, процессов и действий - чертежи, эскизы, кинематические и электрические схемы. Они используются для раскрытия устройства, принципа действия, конструкции изучаемых объектов, действий и процессов.

Для повышения эффективности применения средств наглядности их необходимо привести в систему. Это выражается в создании методических шкафов, в которых для каждой темы сделаны отделения.

Отдельные средства наглядности могут располагаться на демонстрационных щитах (стендах).

В процессе проводимых нами занятий использовались письменные инструкции. Применение письменных инструкций дает возможность повысить активность и самостоятельность учащихся, приблизить занятия в учебных мастерских к условиям производства.

Инструкция должна быть лаконичной и вместе с тем содержать все необходимые сведения для выполнения практической работы. Приводим в качестве примера две инструкции.

Инструкция к работе: «Разборка и сборка задней бабки токарного станка».

I. Правила безопасной работы.

Пользоваться можно только исправным инструментом соответствующих размеров Пользование прокладками, если ключ имеет большие размеры, чем требуется, а также наращивание ручки ключей трубками или другими предметами запрещается, так как это может привести к соскальзыванию инструмента и ранению.

Не разрешается приступать к работе, не ознакомившись с устройством задней бабки по чертежу.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.