Развитие функциональной линии в курсе алгебры 7-9 классов (на примере учебников по алгебре под ред. Г.В. Дорофеева)
Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Подходы к изучению понятия "функция". Функциональная пропедевтика. Методические рекомендации по изучению функциональной линии по учебникам.
Рубрика | Педагогика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.08.2007 |
Размер файла | 3,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Система упражнений.
Здесь содержаться упражнения, в которых по графику функции необходимо ответить на вопросы, касающиеся свойств функции, на сопоставление графиков и функциональных зависимостей; упражнения, в которых по известным свойствам функции необходимо задать формулу этой функции; упражнения на нахождение нулей функции (в ходе выполнения которых естественным образом повторяется материал, связанный с решением уравнений - линейных, квадратных, уравнений высших степеней, уравнений, решаемых на основе равенства нулю произведения). Кроме того, есть упражнения на построение графиков функций по известным её нулям (при решении таких упражнений повторяются графики зависимостей, изучавшихся в 7 классе).
Комментарии к некоторым упражнениям:
№ 740. На рисунке 6 изображён график функции , областью определения которой является отрезок [-2; 2]. Используя график, ответьте на вопросы:
1) Есть ли у функции наибольшее или наименьшее значение, и если есть, то чему оно равно? При каком значении аргумента функция принимает это значение?
2) Укажите нули функции.
3) Укажите промежутки, на которых функция принимает положительные значения; отрицательные значения.
Укажите промежутки, на которых функция возрастает; убывает. Рис. 6
№ 741. На рисунке 7 изображены графики функций, определённых на множестве всех чисел. Какие свойства каждой из функций можно выяснить с помощью её графика?
Рис. 7
Учащиеся могут ошибочно подумать, что функция, график которой изображен на рис. 7 а), имеет наибольшее и наименьшее значения. В этом случае можно предложить им найти по графику какое-нибудь значение функции, большее 4 и меньшее -2. В отличие от функции на рис. 7 а), функция, график которой изображен на рис. 7 б), имеет наименьшее значение, оно равно -3.
При выполнении этого упражнения можно предложить учащимся посоревноваться: кто из них сможет указать больше свойств.
№ 743. Числа -3; 5; 0,5 являются нулями функции . Убедитесь в справедливости этого утверждения. Сформулируйте этот факт другими способами, используя слова «график», «значение функции», «уравнение».
Цель упражнения - в обучении переводу с одного языка на другой, умению выразить одно и то же утверждение разными способами. Убедиться в справедливости утверждения можно, подставив данные числа в формулу. Эквивалентные формулировки могут быть, например, такими: «график функции f(x) пересекает ось х в точках (-3; 0), (5; 0), (0,5; 0)», или «функция принимает значение, равное 0, при х, равном -3; 5; 0,5», или «числа -3; 5; 0,5 являются корнями уравнения ».
№ 746. Начертите график какой-нибудь функции, нулями которой являются числа:
а) -3,5; 0; 4;
б) -5; -1; 2,5; 4,5.
Можно выполнять это задание парами - соседи по парте обменяются своими графиками, и каждый из них проконтролирует, правильно ли ответил на вопрос его напарник. Дополнить упражнение можно заданием: перечислить все свойства функции, которые можно выяснить по предложенному графику.
№ 752. График какой функции изображён на рисунке 8?
,
,
, Рис. 8
.
Если использовать нули функций, то можно только отбросить функцию . Для остальных трёх нужно найти точку пересечения их графиков с осью у.
Работа сократится, если заранее заметить, что при подстановке нуля вместо х во вторую формулу получается отрицательное число и, значит, ордината точки пересечения соответствующего графика с осью у меньше нуля, а на предложенном графике она больше нуля. Остается выбрать из двух оставшихся функций h(x) и р(х).
График функции h(x) пересекает ось у в точке (0; 14), а р(х) - в точке (0; 7). Значит, на рисунке изображен график функции h(х).
В пятом пункте «Линейная функция» дано понятие линейной функции (функция, которую можно задать формулой вида y = kx + l, где k и l - некоторые числа, называется линейной) и её графика (графиком линейной функции является прямая).
Линейная функция - это первая конкретная функция, с которой знакомятся учащиеся. Так как учащиеся уже умеют строить график зависимости, заданной формулой у = kx + l (глава 4, пункты 4.1 и 4.2), то этот график служит опорой при введении всех понятий и свойств.
В ходе изучения данного пункта рассматривается большое число примеров реальных процессов и ситуаций, описываемых линейной функцией (в том числе и прямой пропорциональностью), поэтому учащиеся должны прийти к пониманию того, что величины разной природы могут быть связаны между собой зависимостью одного и того же вида. Это важно при формировании представлений о математическом моделировании, а также о практической значимости математических знаний.
Свойства линейной функции вводятся в пункте на основе конкретных графиков (расположение графика в координатных плоскостях, промежутки возрастания и убывания линейной функции). Учащиеся знакомятся еще с одним важным свойством линейной функции - описывать процессы, протекающие с постоянной скоростью.
Новой для учащихся является идея линейной аппроксимации, которая позволяет связать функциональный материал с вопросами статистики. На конкретных примерах, с опорой на графики, учащиеся знакомятся с зависимостями, которые не являются линейными, но приближенно могут быть заданы линейными функциями, что позволяет делать определенные прогнозы, получать приближенную числовую информацию.
Этот материал не является обязательным для усвоения всеми учащимися (не входит в обязательные результаты обучения) и в классах с невысокой математической подготовкой может быть опущен.
Система упражнений.
Через систему упражнений учащиеся строят график линейной функции, определяют её свойства и продолжают вырабатывать навык построения графиков кусочно-заданных функций. При этом они знакомятся с новой для них ситуацией, когда график имеет разрывы.
Комментарии к некоторым упражнениям:
№ 763. Андрей планирует поработать во время летних каникул, и у него есть две возможности. На работе А он будет получать 20 р. в день. На работе В он в первый день получит 10 р., а затем ежедневно будет получать 20 р. Какой вариант выгоднее? Составьте формулу зависимости полученной суммы денег у от числа рабочих дней х для вариантов А и В. В одной системе координат постройте прямые, которым принадлежат точки графика каждой из функций, и отметьте эти точки для . Существует ли значения х, при которых значения у равны?
Для варианта А формула очевидна. При составлении формулы для варианта В учащиеся могут ошибиться и предложить формулу . В этом случае, чтобы увидеть характер зависимости между у и х, можно составить таблицу, в которой будут записаны суммы, получаемые за каждый из нескольких первых дней работы.
День |
1 |
2 |
3 |
4 |
… |
х |
|
Заработок (руб.) |
10 |
10+20 |
… |
10+20(х-1) |
В результате получаем формулу у = 20х - 10.
Прежде чем строить прямые, целесообразно обсудить, какой масштаб следует выбрать, чтобы рисунок был понятным и аккуратным. По оси х удобно принять две клетки за единицу (один день), а по оси у - две клетки за 20 единиц (20 руб.).
Ответ на последний вопрос задачи отрицательный. Полезно обратить внимание учащихся на то, что его можно получить и, не прибегая к построению графиков. Уже из полученных формул видно, что прямые параллельны, так как имеют одинаковые угловые коэффициенты, поэтому ни при каком значении х, значения функций не будут равны.
№ 776. Самолёт начал снижение на высоте 8500 м. На графике (рис.
9) показано изменение его высоты над землёй в первые 20 мин снижения. Перечертите рисунок в тетрадь и подберите прямую, вокруг которой укладываются эти точки. Определите, сколько примерно минут длилось снижение самолёта и какова его средняя скорость снижения (в м/мин). Рис. 9
Перечерчивание графиков в тетрадь чрезвычайно полезно для совершенствования навыков работы с координатной плоскостью. Прямые, которые проведут учащиеся, будут разными, поэтому и ответы могут несколько различаться, однако вряд ли расхождение будет существенным. Время снижения самолета будет колебаться от 28 мин до 30 мин. Для нахождения средней скорости снижения нужно 8500 м разделить на полученное время снижения. Сильным учащимся можно предложить в качестве индивидуального задания записать уравнение построенной ими прямой.
В результате изучения материала учащиеся должны уметь строить график линейной функции, определять, возрастающей или убывающей она является, находить с помощью графика промежутки знакопостоянства. В несложных случаях они должны уметь моделировать реальную ситуацию, описываемую линейной функцией (записывать соответствующую формулу, строить график этой зависимости, учитывая особенности области ее определения), интерпретировать графики реальных процессов, состоящие из отрезков, в том числе определять, на каком участке процесс протекал быстрее или медленнее.
В последнем пункте «Функция », как и во всех предыдущих пунктах главы, изложение материала начинается с анализа примеров реальных зависимостей. Учащиеся рассматривают зависимость времени движения пешехода от его скорости, длины стороны прямоугольника заданной площади от длины другой его стороны, количества товара, которое можно купить на определенную сумму денег, от цены этого товара. Обобщая эти примеры, приходят к определению функции (называемой обратной пропорциональностью).
Все свойства и график функции в учебнике рассматриваются на примере конкретных функций (). По точкам строится график данной функции и вводится его название (гипербола). Из свойств выделяют только область определения, промежутки убывания и возрастания функции и делается замечание, что график данной функции не пересекает координатные оси.
Исследование проводится подробно для первого случая, когда k > 0, а для второго случая (k < 0) приведены только конечные выводы и результаты.
Традиционно построение графика обратной пропорциональности вызывает у учащихся трудности. Многие строят его небрежно, не соблюдая симметрии ветвей, ветви бывают очень короткие, очень часто в работах учащихся одна из ветвей гиперболы сначала приближается, например, к оси х, а затем удаляется от нее. Для предупреждения подобных ошибок очень важно проанализировать особенности графика, обратив внимание учащихся на то, что график состоит из двух ветвей, симметричных друг другу относительно начала координат. Каждая ветвь гиперболы по мере удаления от начала координат становится все ближе и ближе к осям, но не пересекает их. Бесконечное приближение ветвей к осям координат можно проиллюстрировать в ходе небольшого числового опыта: например, подставить в формулу вместо х несколько достаточно больших чисел в порядке их возрастания и понаблюдать, как изменяется при этом значение у. Такое мини-исследование проводится и в тексте учебника.
Система упражнений.
При выполнении упражнений повторяется весь материал, изученный в главе, - свойства функций, функциональная символика, график линейной функции.
Комментарии к некоторым упражнениям:
№ 785. Графиком какой из функций , , является гипербола? Постройте эту гиперболу.
Учащиеся должны объяснить свой ответ, например, так: функции и являются линейными (можно попросить обосновать это утверждение), их графики - прямые. Функция - это функция вида при k = 3, графиком такой функции является гипербола.
№ 792. Найдите координаты какой-нибудь точки, принадлежащей графику функции и находящийся от оси х на расстоянии, меньшем, чем 0,1; 0,01.
Это задание необходимо проверить на следующем уроке.
Решение. Точки, находящиеся от оси х на расстоянии, равном 0,1, лежат на прямых .у = 0,1 и у = -0,1. Изобразив схематически график функции и прямые у = 0,1 и у = -0,1, получим, что первая прямая пересечет правую ветвь гиперболы в некоторой точке А, а вторая пересечет левую ветвь в точке В. Они будут находиться на расстоянии 0,1 от оси х. Все точки, лежащие на гиперболе правее точки А, будут ближе к оси х, чем точка А, и, значит, на расстоянии, меньшем, чем 0,1. То же самое можно сказать обо всех точках гиперболы, находящихся левее точки В.
Ордината точки А равна 0,1. Найдем ее абсциссу, подставив это значение вместо переменной у в формулу. Она равна 50. Выбрав какое-нибудь значение абсциссы, большее 50, например 55, найдем точку с этой абсциссой, принадлежащую графику функции и удовлетворяющую нашему условию: , это точка с координатами .
Поскольку в задаче требуется указать координаты какой-нибудь одной точки гиперболы, находящейся на расстоянии, меньшем, чем 0,1 от оси х, то ответ на вопрос уже получен. Однако, полезно заметить, что точка левой ветви гиперболы, симметричная найденной, - точка также находится от оси х на расстоянии, меньшем 0,1. Число 55 было взято в качестве примера, очевидно, что ответы учащихся будут различаться. Для самопроверки полезно предложить учащимся указать расстояние от найденной ими точки до оси х и убедиться в том, что оно меньше 0,1. Так, в данном случае . Аналогичные рассуждения можно провести для расстояния, равного 0,01. Вполне возможно, что некоторые учащиеся будут решать эту задачу методом проб, подбирая требуемое значение х. Такое решение вполне допустимо, но все же полезно показать им и приведенное здесь рассуждение.
№ 793. Постройте график функции:
а) ;
б) .
Эта задача является достаточно трудной для восьмиклассников. За образец можно принять рассуждение, проведенное при построении графика в 7 классе (учебник [1], глава 5, пункт 5.4).
Приведем эти рассуждения:
При х = 0 функция не определена. Проанализируем формулу отдельно для положительных и отрицательных чисел.
Модуль положительного числа равен самому числу. Значит, при х > 0 выполняется равенство . Модуль отрицательного числа равен противоположному ему числу. Значит, при х < 0 формула принимает вид . Поэтому условие можно записать следующим образом:
Таким образом, требуется построить график кусочно-заданной функции.
В результате изучения этого пункта учащиеся должны уметь строить и читать график функции .
2.4. Методические рекомендации по изучению функциональной линии в 9 классе.
В учебнике 9 класса содержится одна глава, посвящённая функциям: «Квадратичная функция».
Эта глава разделена на пять пунктов, четыре из которых посвящены функциональной линии:
1. Какую функцию называют квадратичной.
2. График и свойства функции .
3. Сдвиг графика функции вдоль осей координат.
4. График функции .
5. Квадратные неравенства.
Основные цели этой главы - познакомить учащихся с квадратичной функцией как с математической моделью, описывающей многие зависимости между реальными величинами, научить строить её график и читать по нему свойства этой функции, сформировать умение использовать данные графика для решения квадратных неравенств.
Изучение темы начинается с общего знакомства с функцией у = ах2 + bх + с. На готовом чертеже выявляются основные особенности её графика. В небольшом историческом экскурсе «раскрывается» геометрическое «происхождение» параболы и приводятся примеры использования её свойств в технике. Этот вводный фрагмент, сопровождаемый серией разнообразных заданий, делает дальнейшее изучение темы осознанным и целенаправленным.
Далее изложение материала осуществляется следующим образом: сначала рассматриваются свойства и график функции у = ах2. Затем изучается вопрос о графиках функций у = ах2 + q, у = а(х + р)2, у = а(х + р)2 + q, которые получаются с помощью сдвига вдоль осей координат «стандартной» параболы у = ах2. Наконец, доказывается теорема о том, что график любой функции вида у = ах2 + bх + с может быть получен путем сдвигов вдоль координатных осей параболы у = ах2.
Теперь учащиеся по коэффициентам квадратного трехчлена ах2 + bх + с могут представить общий вид соответствующей параболы и вычислить координаты её вершины.
В системе упражнений значительное место отводится задачам прикладного характера. Завершается тема рассмотрением вопроса о решении квадратных неравенств, используемый при этом прием основан на использовании графиков.
Примерное распределение учебного материала
(Всего на тему отводится 20 ч)
Название пунктов в учебнике |
Число уроков |
|
2.1. Какую функцию называют квадратичной |
3 |
|
2.2. График и свойства функции у = ах2 |
3 |
|
2.3. Сдвиг графика функции у = ах2 вдоль осей координат |
4 |
|
2.4. График функции у = ах2 + bх + с |
5 |
|
2.5. Квадратные неравенства |
4 |
|
Зачет |
1 |
Изучение первого пункта «Какую функцию называют квадратичной» преследует две цели:
1) создание первоначальных представлений о графике квадратичной функции, знакомство с параболой как с геометрической фигурой;
2) повторение некоторых общих сведений о функциях, известных учащимся из курса 8 класса.
Этот пункт очень важен для осознанного изучения дальнейшего материала. При работе с теоретической частью и выполнении заданий учащиеся должны будут проводить наблюдение, выдвигать гипотезы, рассуждать, доказывать, переходить от одной системы терминов к другой.
Вначале приводится определение квадратичной функции (квадратичной функцией называют функцию, которую можно задать формулой вида , где a, b и c - некоторые числа, причём a?0), которое иллюстрируется примерами зависимостей из геометрии и физики. Авторы делают замечание, что данная функция необязательно должна состоять из трёх слагаемых, главное, чтобы было слагаемое, содержащее квадрат независимой переменной.
Затем отмечается, что график любой квадратичной функции - это парабола и приведены различные виды парабол (из жизни).
После этого рассматривается построение графика функции . Здесь же вводится понятие области значений функции.
При этом сначала рассуждения проводятся с использованием геометрической терминологии и с опорой на график, а затем те же самые факты формулируются на алгебраическом языке. Таким образом, формирование таких понятий, как наименьшее (или наибольшее) значение квадратичной функции, неограниченность сверху (или снизу) происходит с опорой на наглядные представления. Авторы учебника замечают, что рассуждения, проведенные для конкретной функции у = х2 -2х - 3, носят общий характер.
Далее рассматривается график квадратичной функции, описывающей реальный процесс, а в упражнениях дана серия вопросов, на которые в подобных случаях должны отвечать учащиеся.
После этого рассматривается параболоид (фигура, полученная вращением параболы вокруг оси симметрии) и приводятся примеры параболоидов (например, фары автомобиля). Теоретическая часть пункта завершается рассказом об особенностях параболических зеркал.
Система упражнений:
Ш упражнения на восстановление навыка использования функциональной символики, а также приёмов нахождения значения у по заданному значению х (и наоборот) с использованием формулы и графика;
Ш упражнения на овладение одним из алгоритмов построения графика квадратичной функции (вершины, оси параболы и с помощью симметричных точек).
Комментарии к некоторым упражнениям:
№ 184. Найдите на рисунке 10 график функции , где . Запишите на символическом языке утверждение и проверьте, верно, ли оно:
а) Верно ли, что g(2) > 0, g(-1) < 0, g(3,5) > 0;
б) укажите несколько значений х, при которых g(х) > 0, g(х) < 0.
Рис. 10
Указание. Учащиеся должны сформулировать общее утверждение: если точка графика расположена выше оси х, то g(x) > 0; если точка лежит ниже оси х, то g(x) < 0.
№ 186. Найдите нули функции или покажите, что их нет:
а) ;
б) ;
в) ;
г) .
В каждом случае опишите полученный результат на геометрическом языке. Попробуйте схематически изобразить соответствующую параболу в координатной плоскости.
Указание. Учащимся ещё неизвестно о зависимости направления ветвей параболы от знака первого коэффициента квадратного трехчлена, поэтому и ответ о расположении графика по идее должен быть неоднозначным. Таким решением можно ограничиться на данном этапе изучения темы. В то же время с сильными учениками обсуждение вопроса целесообразно продолжить. Быть может, кто-то из них, рассматривая рис. 10 и строя графики по точкам, обратит внимание на то, что при а > 0 ветви параболы направлены вверх. Нужно сказать, что это верное умозаключение, но оно нуждается в доказательстве. Однако выяснить положение параболы не сложно.
№ 187. Докажите, что:
а) числа -4 и 3 являются нулями функции ;
б) функция не имеет корней.
В каждом случае сформулируйте задачу иначе, используя слова: «уравнение» и «корень уравнения», «трёхчлен» и «корень трёхчлена», «график функции» и «точка пересечения».
Решение.
а) Можно убедиться подстановкой, что при и х = 3 значение трехчлена равно нулю, а можно решить уравнение .
б) Достаточно показать, что дискриминант трехчлена отрицателен.
Во втором пункте «График и свойства функции », как и в предыдущем, ставятся две цели: знакомство с частным случаем квадратичной функции у=ах2 и развитие представлений об общих свойствах функций.
Сначала рассматривается случай . Отдельно выделен случай и делается замечание, что с этой функцией учащиеся уже встречались (). Далее строятся два графика функций и . Затем делается замечание, что у этих парабол ветви направлены вверх, вершиной служит начало координат, а ось симметрии - ось ординат и оговаривается, что такими свойствами обладает график любой квадратичной функции при а > 0.
После чего учащимся предлагается рассмотреть рисунок, на котором изображены три графика функций , , и оценивается «крутизна» этих графиков. Затем рассматривается функция при а < 0 и строится график функции . Сравнивая графики функций и делается вывод о том, что график второй функции можно получить из графика первой функции симметрией относительно оси абсцисс. Далее снова в одной системе координат построены графики , , и обращается внимание, что ветви любой параболы при а < 0 направлены вниз. Затем делается вывод: графиком функции , где а ? 0, является парабола с вершиной в начале координат; её осью симметрии служит ось ординат; при а > 0 ветви параболы направлены вверх, при а < 0 ветви направлены вниз.
Теоретическая часть пункта завершается рассмотрением свойств функции у = ах2 для случая а > 0. Свойства «считываются» с графика, фактически они получаются в результате перевода геометрических фактов на «язык функций». Это хорошо видно из таблицы, помещенной на с.92 учебника [34]:
Особенности графика |
Свойства функции |
|
1. График касается оси абсцисс в начале координат: точка О(0;0) - нижняя точка графика |
1. При х = 0 функция принимает наименьшее значение, равное 0 |
|
2. Ветви параболы неограниченно уходят вверх; они пересекают любую горизонтальную прямую, расположенную выше оси х |
2. Любое неотрицательное число является значением функции. Область значений функции - промежуток |
|
3. График симметричен относительно оси у |
3. Противоположным значениям аргумента соответствуют равные значения функции |
|
4. На промежутке график идет вниз; на промежутке график идёт вверх |
4. На промежутке функция убывает; на промежутке функция возрастает |
Хотелось бы отметить, что схема для чтения свойств функции (предложенная в методике изучения функций) реализована в данной таблице.
Для квадратичной функции при а < 0 учащимся предлагается самостоятельно сформулировать свойства.
Система упражнений.
Большая часть упражнений - это задания на построение графиков функций вида . Каждое из упражнений сопровождается серией вопросов, среди которых есть задания на определение принадлежности точки графику, наибольшего и наименьшего значений функции на заданном промежутке, на вычисление координат точек пересечения графика с некоторой горизонтальной прямой, на определение промежутков возрастания и убывания функции и др. Полезным с точки зрения усвоения теоретических вопросов является упражнение на соотнесение формул и графиков. Кроме того, есть упражнения на построение графиков кусочно-заданных функций, в которых участвуют функции вида . Строить графики функций, заданных на разных промежутках разными формулами, учащимся приходилось и в 7, и в 8 классе.
Комментарии к некоторым упражнениям:
№ 202. Постройте график функции:
а)
б)
в)
Для каждой функции укажите промежуток возрастания и промежуток убывания.
Указание. Учащиеся допускают меньше ошибок, если действуют следующим образом: сначала строят график первой функции на всей области определения, вычерчивая его тонкой линией, и затем обводят жирно ту часть, которая соответствует указанному промежутку. Затем точно так же тонкой линией вычерчивают график второй функции и жирно обводят нужную его часть.
№ 203. Известно, что график квадратичной функции, заданной формулой вида , проходит через точку С (-6; -9).
а) Укажите ординаты точки графика, которая симметрична точке С.
б) Найдите коэффициент а.
в) Укажите координаты каких-нибудь двух точек, одна из которых принадлежит графику, а другая - нет.
Указание. Можно схематически изобразить параболу , проходящую через точку С(-6; -9), показать точку параболы, симметричную точке С, проведя соответствующую горизонталь.
№ 205. Укажите координаты какой-либо точки графика функции , расположенной:
а) выше прямой у = 1000;
в) выше прямой у = 1200 и ниже прямой у = 1500.
Указание. Требование задачи нужно перевести на алгебраический язык. Так, если точка должна быть расположена выше прямой у = 1000, то это означает, что должно выполняться неравенство у > 1000. Далее задачу можно решить простым подбором.
№ 209. В одной системе координат постройте графики функций:
а) и ;
б) и ;
в) и ;
г) и .
Указание. Идея упражнения состоит в том, чтобы учащиеся самостоятельно обобщили знания о симметрии графиков таких функций как, например, у = 2х2 и у = -2х2, и применили их в новой ситуации. В каждом случае следует строить график первой функции и с помощью симметрии относительно оси х получать график второй функции. Можно сформулировать и записать общее утверждение: графики функций у = f(x) и у = -f(x) симметричны относительно оси х. В самом деле, при любом х из области определения функций их значения - противоположные числа. Значит, каждой точке графика функции y = f(x) соответствует симметричная ей относительно оси х точка графика , и наоборот.
№ 211. (Задача-исследование.)
1) Постройте параболу .
2) В этой же системе координат проведите прямую d, уравнение которой у = -1, и отметьте точку F(0; 1).
3) Отметьте на параболе несколько точек с целыми координатами и для каждой из них вычислите расстояние до точки F и до прямой d.
4) Сделайте вывод из полученных результатов.
5) Докажите, что все точки параболы равноудалены от точки F и прямой d.
Указание. Нужно взять произвольную точку параболы (х; ) и составить выражения для нахождения расстояний от этой точки до точки F и прямой d.
В основу этой задачи положено определение параболы как геометрического места точек, находящихся на одинаковом расстоянии от данной точки и от данной прямой, не проходящей через эту точку. Это определение эквивалентно тому, которое (в неявном виде) используется в школьном курсе: парабола - это линия, которая является графиком уравнения у = ах2.
Обязательным результатом изучения данного пункта следует считать умение формулировать утверждение о том, что представляет собой график функций у = ах2, изображать этот график схематически для а > 0 и а < 0 и строить его по точкам для конкретного значения а. Свободное владение этими опорными знаниями необходимо для усвоения дальнейшего материала. Школьники должны знать еще и о симметрии графиков функций у = ах2 относительно оси х при противоположных значениях а, и об изменении «крутизны» параболы при изменении а.
В следующем пункте «Сдвиг графика функции вдоль осей координат» рассматривается сдвиг функции . Сначала строится график функции , а затем этот график сдвигается (вверх, вниз, вправо, влево) и определяется, какую функции задаёт этот график. Затем делаются выводы:
1. Чтобы построить график функции , нужно перенести параболу вдоль оси у на q единиц вверх, если q > 0, или на единиц, если q < 0. При этом вершина параболы окажется в точке
2. Чтобы построить график функции , нужно перенести параболу вдоль оси х на р единиц влево, если р > 0, или на единиц вправо, если р<0, при этом вершина параболы окажется в точке .
Эти формулировки учащиеся запоминать не обязаны. Понимание сути вопроса лучше проверить при выполнении конкретных заданий.
После этого рассматривается несколько примеров, а затем делается вывод о том, как построить график функции (из графика функции с помощью параллельных переносов вдоль осей абсцисс и ординат в зависимости от знака чисел q и р).
Система упражнений.
Большая часть упражнений нацелена не только на отработку навыков построения графиков функций вида у = ах2 + q и у = а(х + р)2, но и на умение распознавать тип формулы, а также использовать графические соображения для исследования свойств функций. Кроме того, есть упражнения на построение графиков функций вида у = а(х + р)2 + q и у = ах2 + bх + с. Увеличивать число упражнений такого типа нецелесообразно, отработка соответствующих умений здесь не предполагается (более того, с основной массой учащихся это вряд ли возможно). Также в этом пункте содержаться задачи с параметром (в некоторых заданиях параметр присутствует неявно); задачи, предполагающие перенос приемов построения графиков с помощью сдвигов вдоль осей на функции других видов; построение графиков кусочно-заданных функций.
Комментарии к некоторым упражнениям:
№ 215. Постройте график функции:
а) ;
б) ;
в) ;
г) .
Для каждой функции укажите промежуток возрастания и промежуток убывания, а также наибольшее (или наименьшее) значение.
Указание. Полезно вначале изобразить график схематически. (В дальнейшем учащиеся будут делать это мысленно, что является очень важным умением, «организующим» деятельность по построению графика и предупреждающим ошибки.)
№ 219. Из приведенного списка функций
;
;
;
;
;
.
выберите те, которые:
а) принимают только положительные значения (укажите наименьшее значение функции);
б) принимают только отрицательные значения (укажите наибольшее значение функции).
Указание. Упражнение следует выполнять, опираясь на схематический график.
№ 233. Параболу у = х2 сдвинули на несколько единиц вдоль оси х так, что она прошла через точку М. Запишите формулу, соответствующую новой параболе, если точка М имеет координаты:
а) х = 0, у = 4;
б) , у = 4.
Сколько решений имеет задача в каждом случае?
Указание. Так как новая парабола получена в результате сдвига вдоль оси х параболы у = х2, то она может быть задана формулой вида у =(х + р)2. Подставив в эту формулу координаты точки М и решив получившееся уравнение, найдем значение р. В каждом случае задача имеет два решения. Результат полезно проиллюстрировать, построив соответствующие графики.
№ 238. В одной системе координат постройте графики функций:
а) , , ;
б) , , ;
в) , , .
Указание. Предполагается, что учащиеся увидят возможность построения графиков путем сдвига исходного графика вдоль осей координат.
В результате изучения этого пункта учащиеся должны знать, с помощью каких сдвигов вдоль координатных осей из графика функции у = ах2 можно получить параболу, задаваемую уравнениями , , , уметь в конкретных случаях строить эти параболы или изображать их схематически (отметив вершину, проведя ось симметрии, показав направление ветвей).
В четвёртом пункте «График функции » завершается знакомство с квадратичной функцией.
Здесь рассматривается алгоритм построения графика функции . Утверждается, что график данной функции можно получить из графика функции с помощью параллельных переносов вдоль координатных осей. Что доказывается с помощью представления функции в виде (на основе конкретного примера).
Далее делаются выводы о том, что график функции - это такая же парабола, что и парабола , у неё то же направление ветвей, вершиной параболы служит точка с координатами и , а осью симметрии - вертикальная прямая .
В заключение этого пункта разобраны два примера, в которых даны образцы рассуждений. В первом рассматривается новый прием построения параболы, и с опорой на график описываются свойства данной квадратичной функции. Во втором примере рассматривается задача физического содержания.
Система упражнений.
Упражнения направлены, прежде всего, на формирование умения строить график функции и читать по графику ее свойства. Есть упражнение, в котором содержится план построения графика. Собственно это тот же план, которым учащиеся пользовались раньше, но теперь они по-новому будут выполнять первый его пункт - нахождение координат вершины параболы. Нужно также добиваться аккуратного вычерчивания параболы (они часто получаются у учащихся «угловатыми»). Надо заметить, что нахождение точек пересечения параболы с осью х не является обязательным требованием при её построении. В то же время желательно отмечать точку пересечения с осью у (а также симметричную ей точку). Большое место отводится задачам прикладного характера, которые чрезвычайно важны с точки зрения демонстрации применимости свойств квадратичной функции. Кроме того, как и в предыдущих пунктах, здесь есть задачи с параметром.
Комментарии к некоторым упражнениям:
№ 247. График функции y = f(x) пересекает оси координат в точках А, В и С. Найдите неизвестную координату каждой из этих точек, если:
а) ; А(0; ...), В(...; 0), С(...; 0);
б) ; А(0; ...), В(...; 0), С(...; 0);
в) ; А(0; ...), В(...; 0), С(...; 0);
г) ; А(0; ...), В(...; 0), С(...; 0);
Указание. Не следует ограничиваться формальными вычислениями; полезна будет геометрическая интерпретация. Учащиеся должны понять, что буквой А обозначена точка пересечения графика с осью у, а буквами В и С - точки пересечения с осью х. В качестве дополнительного задания можно предложить показать положение этих точек в координатной плоскости и схематически изобразить параболу (в случаях а), в) и г)).
№ 254. Постройте график функции:
а) ;
б) ;
в);
г).
Указание. В правой части каждого уравнения записано произведение двух линейных множителей; иными словами, правая часть - это квадратный трехчлен, разложенный на множители. Поэтому графиком каждой из заданных функций является парабола.
Очевидно, что для построения графиков нецелесообразно переходить к уравнению вида и вычислять координаты вершины по формулам. Проще отметить точки пресечения параболы с осью х и найти абсциссу вершины как середину отрезка с концами в этих точках. Направление ветвей параболы легко уточнить, определив (устно) знак коэффициента при х2.
№ 267. (Задача-исследование.) Исследуйте, как влияет на график изменение одного из коэффициентов a, b и с в уравнении параболы. Для этого:
1) в одной системе координат начертите параболы для с = 0; 1; 2; 4 и с = -1; -2; -4;
2) в одной системе координат начертите параболы для b = 0; 1; 4; 5 и b = -1; -4; -5;
3) в одной системе координат начертите параболы для а = ; 1; 2; 3.
Указание: Задача интересна, но достаточно трудоёмка. Её можно разбить на три самостоятельные задачи и предложить их разным учащимся. Результаты можно будет обсудить в группах, в которые войдут ученики, выполнявшие одно и то же задание, а затем, после уточнения выводов, познакомить с ними остальных.
В результате изучения этого материала учащиеся получают удобный способ нахождения координат вершины параболы: их можно вычислять по формулам. Эту формулу учащиеся должны выучить наизусть. В то же время, формулу для вычисления ординаты вершины помнить не обязательно, ее можно найти, подставив значение известной абсциссы в уравнение параболы.
На этом рассмотрение функциональной линии в основной школе по учебникам математики [36], [35], [34] заканчивается.
В этих учебниках функциональная линия не является ведущей. Понятие функции вводится лишь в 8 классе. Для определения понятия «функция» используется генетический подход, и его введение осуществляется конкретно-индуктивным путём. Исследование конкретных функций происходит графически.
Но надо заметить, что в конце каждой главы этих учебников содержится пункты «Для тех, кому интересно», в некоторых из них содержится материал, касающийся функциональной линии. Здесь рассмотрены такие темы:
Ш Геометрическая интерпретация неравенств с двумя переменными.
Ш Целая и дробная части числа.
Ш Применение свойств квадратичной функции при решении задач.
Ш Графики уравнений, содержащих модули.
Ш График дробно-линейной функции.
2.5. Опытное преподавание.
Перед тем, как проводить опытное преподавание, я изучила соответствующую математическую и методическую литературу. После чего были разработаны и проведены факультативные занятия по теме «Графики функций, аналитическое выражение которых содержит знак абсолютной величины».
Опытное преподавание осуществлялось в 2003 году в школе № 2 п. Красная Поляна Вятско-Полянского района.
Мною было проведено три факультативных занятия в 9 классе:
1) График функции .
2) График функции .
3) График функции .
Подробное описание этих факультативов содержится в приложении 2.
Цель данного факультативного курса - подготовка учащихся к конкурсным экзаменам по математике в учебные заведения, продолжение образования, повышение уровня математической культуры.
Факультатив строится как углублённое изучение вопросов, предусмотренных программой основного курса. Углубление реализуется на базе обучения методам и приёмам решения математических задач, требующих применения логической и операционной культуры, развивающих научно-теоретическое и алгоритмическое мышление учащихся.
Тематика задач не выходит за рамки основного курса, но уровень их повышенный, существенно превышающий обязательный.
Данные факультативы составлены для, проведения 1 час в неделю, в 9 классе, после того, как изучены линейная функция, обратная пропорциональность квадратичная функция, функция, содержащая знак абсолютной величины. Эти факультативы можно проводить и в 8 классе, после изучения линейной функции (убрать из примеров обратную пропорциональность и квадратичную функцию), затем вернутся к этой теме после изучения обратной пропорциональности и в 9 классе после изучения квадратичной функции, то есть осуществлять концентрическое изучение данной темы.
Занятия проводились для учащихся, интересующихся математикой, желающих получить новые знания по математике. Хотелось бы заметить, что было нелегко организовать учеников на посещение факультативов, поскольку факультативные занятия в школе не проводились. Кроме того, учащиеся сильно загружены учебой, что тоже сыграло отрицательную роль.
Данная тема давалась учащимся непросто, возникала путаница с построение функций вида и . Но, несмотря на это данный факультативный курс вызвал интерес у учащихся.
Заключение
Место изучения функциональной линии в учебниках по алгебре 7-9 классов различно. В рассмотренных в данной работе учебниках функциональная линия не является ведущей, за исключением учебного комплекта А.Г. Мордковича. В нём этой линии отводится ведущее место. Введение понятия «функция» во всех учебниках осуществляется конкретно-индуктивным путем, при использовании генетического подхода. Для исследования конкретных функций в большинстве учебников применяется комбинированный метод.
В учебном комплекте [36], [35], [34] теоретический материал изложен достаточно интересно, содержится много фактов из истории математики. Но в этих учебниках содержится много сведений, которые приведены без доказательств, хотя есть и много задач на доказательство.
Хотелось бы отметить, что в этих учебниках формулировки задач интересны, разнообразны и в них прослеживается практическая направленность и связь с другими науками (например, физикой и геометрией). Много внимания уделено вычислительной культуре учащихся, обеспечена уровневая дифференциация в обучении.
В учебниках [36], [35], [34] функциональная линия не является ведущей. Понятие функции вводится лишь в 8 классе. Для определения понятия «функция» используется генетический подход, и его введение осуществляется конкретно-индуктивным путём. Исследование конкретных функций происходит графически.
Цель, с которой проводилось исследование, достигнута: была проанализирована функциональная линия в курсе алгебры 7- 9 классов и разработаны методические рекомендации по изучению данной темы по учебному комплекту под редакцией Г.В. Дорофеева.
В ходе исследования были решены следующие задачи:
1) Проанализирована математическая, учебно-методическая и психолого-педагогическая литература, выполнен анализ школьной программы по математике.
2) Разработана методика изучения функциональной линии в курсе алгебры 7-9 классов.
3) Выявлена роль и место функциональной линии в различных учебных комплектах по математике для 7-9 классов.
4) Выявлены особенности учебников [36], [35], [34].
5) Составлены уроки по теме «Линейная функция, её свойства и график».
6) Показана возможность развития функциональной линии на внеклассной работе (было составлено 3 факультативных занятия).
7) Было проведено опытное преподавание с целью апробации разработанной методики.
Список литературы
1. Алгебра. 7 класс: Учеб. для общеобразовательных учеб. заведений / К.С. Муравин, Г.К. Муравин, Г.В. Дорофеев. - М.: Дрофа, 1999.
2. Алгебра. 7 класс: В двух частях. Ч. 1: Учебник для общеобразоват. учреждений / А.Г. Мордкович. - М.: Мнемозина, 2000.
3. Алгебра. 7 класс: Учебник для общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. - М.: Просвещение, 2001.
4. Алгебра. 8 класс: Учеб. для общеобразовательных учеб. заведений / К.С. Муравин, Г.К. Муравин, Г.В. Дорофеев. - М.: Дрофа, 2001.
5. Алгебра. 8 класс: В двух частях. Ч. 1: Учебник для общеобразоват. учреждений / А.Г. Мордкович. - М.: Мнемозина, 2000.
6. Алгебра. 8 класс: Учебник для общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. - М.: Просвещение, 2000.
7. Алгебра. 9 класс: Учеб. для общеобразовательных учеб. заведений / К.С. Муравин, Г.К. Муравин, Г.В. Дорофеев. - М.: Дрофа, 1999.
8. Алгебра. 9 класс: В двух частях. Ч. 1: Учебник для общеобразоват. учреждений / А.Г. Мордкович. - М.: Мнемозина, 2000.
9. Алгебра. 9 класс: Учебник для общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. - М.: Просвещение, 2001.
10. Алгебра. Учеб. для 7 класса средней школы / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. Теляковского. - М.: Просвещение, 1999.
11. Алгебра. Учеб. для 7 класса средней школы /Ш.А. Алимов, Ю.М. Колягин и др. - М.: Просвещение, 2000.
12. Алгебра. Учеб. для 8 класса средней школы / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. Теляковского. - М.: Просвещение, 1999.
13. Алгебра. Учеб. для 8 класса средней школы /Ш.А. Алимов, Ю.М. Колягин и др. - М.: Просвещение, 2001.
14. Алгебра. Учеб. для 9 класса средней школы / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. Теляковского. - М.: Просвещение, 2000.
15. Алгебра. Учеб. для 9 класса средней школы /Ш.А. Алимов, Ю.М. Колягин и др. - М.: Просвещение, 2001.
16. Гайдуков И.И. «Абсолютная величина». - М.: Просвещение, 1968.
17. Гончаров В.А. Арифметические упражнения и функциональная пропедевтика в средних классах школы//Математика в школе. - 1996. - № 3. - с. 7-14.
18. Для тех, кто работает по учебникам Г.В. Дорофеева и И.Ф. Шарыгина//Математика. - 1999. - № 15. - с. 2-8.
19. Дорофеев Г.В. и др. Об учебнике «Алгебра и начала анализа» для профильного курса математики в X классе//Математика в школе. - 2003. - № 10. - с. 38-43.
20. Евстафьева Л.П., Карп А.П. Математика 8 класс: Дидактические материалы к учебнику «Математика 8. Алгебра. Функции. Анализ данных» под ред. Г.В. Дорофеева. - 2-е изд., стереотип. - М.: Дрофа, 2000.
21. Карп А.П. Евстафьева Л.П., Математика: 7 класс: Дидактические материалы к учебнику «Математика 7. Алгебра. Арифметика. Анализ данных» под ред. Г.В. Дорофеева. - М.: Дрофа, 1999.
22. Карп А.П. Евстафьева Л.П., Математика: 7 класс: Рабочая тетрадь к учебнику «Математика 7. Арифметика. Алгебра. Анализ данных» под ред. Г.В. Дорофеева. - М.: Дрофа, 1999.
23. Козлова Г.М. Из опыта преподавания по учебному комплекту «Математика 5»//Математика в школе. - 2002. - № 3. - с. 49 - 52.
24. Колганов И.Л. Применение линейной функции к решению задач оптимизации//Математика в школе. - 2000. - № 5. - с. 62 - 64.
25. Колягин Ю.Н., Луканкин Г.Л., Норкушин Е.Л. и др. Методика преподавания математики в средней школе: Частные методики. Учеб. пособие для студентов физ.-мат. фак. пед. ин-ов. - М.: Просвещение, 1977.
Подобные документы
Предпосылки развития функциональной содержательно-методической линии в курсе алгебры основной школы. Определение понятия функции. Методика изучения прямой и обратной пропорциональной зависимости, линейной, квадратной и кубической функции в VII классе.
курсовая работа [626,2 K], добавлен 08.02.2011Теоритические основы изучения процентов в курсе алгебры основной школы. Понятие процента, основные задачи на проценты. Методические основы изучения процентов по учебному комплекту под редакцией г.в. дорофеева.
дипломная работа [155,8 K], добавлен 08.08.2007Психолого-педагогические основы применения принципа наглядности в обучении. Современные средства информатизации образования, интерактивная доска. Функциональная линия в школьном курсе алгебры 7-9 классов. Сравнительный анализ изложения темы "Функции".
дипломная работа [2,9 M], добавлен 08.12.2011Понятие линии второго порядка в аналитической геометрии, содержание темы в элементарной математике. Примеры фрагментов уроков алгебры в 7-9 классах. Анализ содержания темы "Линии второго порядка" в учебниках по алгебре. Вывод уравнения окружности.
дипломная работа [770,8 K], добавлен 25.04.2012Методика изучения вероятностно-статистической (стохастической) линии в курсе математики основной школы. Анализ восприятия материала учащимися: степень заинтересованности; уровень доступности; трудности при изучении этого материала; качество усвоения.
дипломная работа [121,3 K], добавлен 28.05.2008Понятие квадратного трехчлена и квадратичной функции, их место в школьном курсе алгебры. Определение порядка раскрытия темы по решению квадратных уравнений и неравенств на уроках математики. Разработка методики по изучению квадратного трехчлена в школе.
дипломная работа [1,6 M], добавлен 18.07.2013Методические особенности контроля знаний, умений и навыков при изучении линии уравнений. Анализ изложения тем, связанных с изучением линии уравнений в школьных учебниках по алгебре для 5-9 классов. Методические рекомендации по осуществлению контроля.
дипломная работа [5,5 M], добавлен 24.06.2009Психолого-педагогические основы обучения математике в школе. Физиологические особенности подростков, особенности развития их личности и познавательной сферы. Двуполушарный подход в обучении - средство развития мышления. Работа с графиками в курсе алгебры.
дипломная работа [927,2 K], добавлен 05.11.2011Цели, содержание и методы изучения алгоритмической линии в курсе информатики в начальной школе. Ретроспективный обзор и характеристика исполнителей. Технологические карты уроков. Эффективность включения в урок информатики работы с исполнителями.
дипломная работа [5,9 M], добавлен 08.09.2017Теоретические основы развития познавательного интереса на уроках алгебры. Методические особенности преподавания элементов истории и использование исторических экскурсов на уроках алгебры в 7 классе, их влияние на развитие познавательного интереса.
дипломная работа [634,4 K], добавлен 29.01.2011