Повышение вычислительной культуры школьников на уроках и внеклассных занятиях по математике

Проблема и особенности математических и вычислительных навыков школьников. Разработка и оценка эффективности приемов быстрого счета как способа решения изучаемой проблемы, возможности применения их на уроках и внеклассных занятиях по математике.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 24.06.2009
Размер файла 173,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Чтобы из числа вычесть разность, достаточно вычесть уменьшаемое и затем прибавить вычитаемое.

2) (вычитание из числа разности) (переместительность членов ряда сложений и вычитаний) (сочетательность суммы) (выполняем сложение и вычитание полученных чисел).

Таким образом, чтобы из числа вычесть разность, достаточно прибавить к нему вычитаемое и затем отнять уменьшаемое. Так как в математике нельзя из меньшего числа вычитать большее, то в случае, когда уменьшаемое больше числа, из которого вычитается разность, применить можно лишь второе из этих правил. Во всех остальных случаях выбираем то правило вычитания из числа разности, которое дает более быстрые и простые вычисления.

5. Вычитание из суммы числа.

(порядок действий) (переместительность ряда сложений и вычитаний) (сочетательность ряда сложений и вычитаний) = 100 + 476 = 576. Итак, .

Чтобы из суммы чисел вычесть какое-нибудь число, достаточно вычесть его из одного слагаемого.

6. Вычитание из разности числа.

(порядок действий) (переместительность) (сочетательность) . Чтобы из разности вычесть число, достаточно вычесть его из уменьшаемого и из полученного числа вычесть вычитаемое.

Здесь применено следующее правило: чтобы из разности вычесть число, достаточно прибавить его к вычитаемому и полученное число вычесть из уменьшаемого.

7. Вычитание из суммы другой суммы.

(вычитание суммы из числа) (порядок действий) (переместительность) (сочетательность) =
= 100 + 350 (порядок действий) = 450.

Чтобы из суммы чисел вычесть другую сумму, можно из отдельных слагаемых первой суммы вычитать меньшие или равные им слагаемые второй суммы.

8. Вычитание из разности другой разности.

(вычитание разности из числа) (порядок действий) переместительность) (сочетательность) = 100 + 200 = 300. Итак, .

Чтобы из разности чисел вычесть другую разность, достаточно из уменьшаемого первой разности вычесть уменьшаемое второй, а из вычитаемого второй вычесть вычитаемое первой и результаты этих вычитаний сложить.

Замечание 1. В рассмотренных примерах на действия с положительными числами (и нулем) и сформулированных к ним правилах всюду подразумевалась выполнимость вычитания, т.е. предполагалось наличие разности, выражаемой неотрицательным числом.

Замечание 2. Обоснование всех описанных выше приемов вытекает из свойств алгебраической суммы.

2.2.3 Умножение

1. Замена нескольких сомножителей их произведением (сочетательный закон умножения).

1) (сочетательность умножения) = = 1700.

Чтобы перемножить несколько чисел, достаточно отдельные сомножители соединить в группы, произвести умножение по группам, а затем перемножить полученные произведения.

2) .

2. Перестановка сомножителей (переместительный и сочетательный законы умножения).

(переместительность умножения) = (сочетательность умножения) = 300 000.

Чтобы перемножить несколько чисел, можно поменять местами отдельные сомножители, соединить их в группы, затем произвести умножение по группам и перемножить полученные произведения.

3. Умножение произведения на число.

(порядок действий) = (переместительность умножения) = (сочетательность умножения) =.

Чтобы умножить произведение нескольких чисел на какое-либо число, достаточно один из сомножителей умножить на это число и полученное произведение последовательно умножить на другие сомножители.

4. Умножение числа на произведение.

1) (следствие сочетательного закона) = (сочетательность умножения) = 168000.

Чтобы умножить число на произведение нескольких чисел, достаточно умножить это число на первый сомножитель, полученное произведение - на второй, затем новое произведение - на третий и т.д. до конца.

К указанному способу близок прием умножения посредством замены множителя соответствующим произведением (иногда это называют последовательным умножением).

2).

5. Умножение произведения на произведение.

(умножение числа на произведение) = (порядок действий) = (переместительность) (сочетательность) = .

Здесь применено следующее правило: чтобы умножить произведение нескольких чисел на другое произведение, достаточно последовательно перемножить все сомножители обоих произведений.

2.2.4. Умножение, сложение и вычитание

1. Распределительный закон умножения по отношению к сложению (умножение суммы чисел на число).

.

Чтобы умножить сумму нескольких чисел на данное число, достаточно умножить каждое слагаемое на это число и полученные произведения сложить.

К указанному способу по обоснованию приема близок способ вынесения за скобки общего множителя или множимого.

1);

2).

2. Распределительный закон умножения по отношению к вычитанию (умножение разности чисел на число).

1).

Чтобы умножить разность чисел на какое-нибудь число, достаточно умножить на это число отдельно уменьшаемое и вычитаемое и из первого произведения вычесть второе.

2) .

К указанному способу по обоснованию приема близок способ вынесения за скобки общего множителя.

3. Умножение суммы на сумму.

(умножение числа на сумму) = .

Чтобы умножить сумму нескольких чисел на другую сумму, можно каждое слагаемое первой суммы умножить на каждое слагаемое второй суммы и полученные произведения сложить.

2.2.5 Умножение и деление

1. Перестановка членов ряда умножений и делений (переместительность ряда умножений и делений).

1) (если данное число разделить на какое-нибудь число и затем полученное частное умножить на это же число, то данное число останется без изменения) = (переместительность умножения) = (если данное число умножить на какое-нибудь число, отличное от 0, и затем полученное произведение разделить на это же число, то данное число останется без изменения) =512 (правило порядка действий: действия одной и той же ступени (при отсутствии скобок) выполняются в том порядке, в каком они записаны).

2) 486: 9: 2 = 486: : 9: 2 (если данное число разделить на какое-нибудь число и затем полученное частное умножить на это же число, то данное число останется без изменения) = 486: 2: : 2 (переместительность членов ряда умножений и делений) = 486: 2: 9 (если данное число умножить на какое-нибудь число (не равное нулю) и затем полученное произведение разделить на это число, то данное число останется без изменения) = 243: 9 = 27.

Результат ряда умножений и делений не меняется от перемены порядка членов данного ряда (разумеется, что каждый член ряда остается в своей прежней роли, иначе говоря, переносится на другое место вместе с написанным перед ним знаком действия).

2. Умножение числа на частное.

1) (если данное число умножить на какое-нибудь число (не равное нулю) и затем полученное произведение разделить на это же число, то данное число остаются без изменения) = (сочетательность умножения) = (если данное число разделить, на какое-нибудь число и затем полученное частное умножить на это же число, то данное число останется без изменения) = 800: 8 = 100 (порядок действий). Итак,.

Чтобы умножить число на частное, можно умножить его на делимое, и полученное произведение разделить на делитель.

2).

3. Деление числа на произведение.

1) (если данное число разделить на какое-нибудь число и полученное частное умножить на то же самое число, то данное число останется без изменения) = (объяснение то же) = (переместительность умножения) = (сочетательность умножения) = 1890: 9: 7 (если данное число умножить на какое-нибудь число (не равное нулю) и затем полученное произведение разделить на это же число, то данное число останется без изменения) = 210: 7 = 30 (порядок действий).

Чтобы разделить число на произведение нескольких чисел, достаточно разделить его на первый сомножитель, полученное частное - на второй, новое частное - на третий и т.д. до конца.

2) 8,16: ( = 8,16: 0,8: 0,03 = 10,2: 0,03=340.

К указанным способам близки по обоснованию приема следующие: разложение делителя на множители и замена нескольких делителей их произведением.

3) 1890: 54 = 1890: (= (1890: 9): 3: 2 = (210: 3): 2 = 70: 2 = 35.

4) 2800: 25: 8 = 2800: (= 2800: 200 = 14.

4. Деление произведения на число.

(так как 3200 = ) = : 8 (порядок действий) = (переместительность умножения) = (сочетательность умножения) = (если данное число умножить на какое-нибудь число (не равное нулю) и затем полученное произведение разделить на это же число, то данное число останется без изменения) = (порядок действий).

Чтобы разделить произведение нескольких чисел на какое-нибудь число, достаточно разделить на это число один из сомножителей, оставив другие без изменения.

5. Деление произведения нескольких чисел на другое произведение.

(следствие сочетательного закона) = (переместительность умножения (сочетательность умножения) = (переместительность) = (деление произведения на число) = 1680 (умножаем полученные числа).

Чтобы разделить произведение нескольких чисел на другое произведение, все сомножители которого входят в состав первого произведения, достаточно разделить, каждый из сомножителей первого произведения на соответствующий сомножитель второго произведения, а затем полученные частные и оставшиеся сомножители перемножить.

6. Деление числа на частное.

3200: (800: 32) = 3200: 800: (800: 32) (если данное число разделить на какое-нибудь число, а затем полученное частное умножить на это же число, то данное число останется без изменения)
= 3200: 32: 32 : (800: 32) (если данное число умножить на какое-либо число (не равное нулю), а затем полученное произведение разделить на это же число, то данное число останется без изменения)
= 3200: : 32: (800: 32) (переместительность ряда умножений и делений) = 3200: (800: 32): (800: 32) (сочетательность ряда умножения и деления) = 3200: 32 (если данное число умножить на какое-нибудь число (не равное нулю), а затем полученное произведение разделить на это же число, то данное число останется без изменения) = 4 = 128 (делим и умножаем полученные числа).

Чтобы разделить число на частное, достаточно разделить его на делимое, а затем полученное частное умножить на делитель.

2.2.6 Деление, сложение и вычитание

1. Деление суммы на число.

(63028 + 14049): 7 = (63028 + 14049) (чтобы разделить одно число на другое, достаточно делимое умножить на число, обратное делителю) = (распределительность умножения) = 63028: 7 + 14049: 7 (замена умножения делением) = 9004 + 2007 (порядок действий) =11011.

Чтобы разделить сумму чисел на число, достаточно разделить на него каждое слагаемое и полученные результаты сложить.

2. Деление разности на число.

1) (36042): 6 = (36042) (чтобы разделить одно число на другое, достаточно делимое умножить на число, обратное делителю) = (умножение разности на число) = 36042: 6: 6 (замена умножения делением) = 6007 (порядок действии) = 3003.

Чтобы разделить разность чисел на число, достаточно разделить на него уменьшаемое, затем вычитаемое и из первого частного вычесть второе частное.

К указанному способу по обоснованию близок способ вынесения общего делителя за скобки.

2) 675: 45 + 225: 45 = (675 + 225): 45 = 900: 45 = 20.

2.3 Приемы устных вычислений, основанные на изучении результата действий в зависимости от изменения компонентов

2.3.1 Сложение и вычитание

1. Округление одного или нескольких слагаемых.

Этот прием основан на изменении суммы при изменении слагаемых.

а) Если одно из слагаемых увеличить (или уменьшить) на несколько единиц (или долей), а другое слагаемое оставить без изменения, то сумма увеличится (или уменьшится) на столько же единиц (или долей). Округляя слагаемое, мы увеличиваем (или уменьшаем) его, а следовательно, и сумму на несколько единиц (или долей). Чтобы сумма не изменилась, надо уменьшить (или увеличить) ее на столько же единиц (или долей).

1199 + 406 = (1200 + 406) = 1605.

б) Если одно из слагаемых увеличить (или уменьшить) на несколько единиц (или долей), другое слагаемое уменьшить (или увеличить) на столько же единиц (или долей), а остальные слагаемые оставить без изменения, то сумма не изменится. Перемещаем несколько единиц (долей) из одного слагаемого в другое, сумма не изменяется.

994 + 196 = 994 + 190 + 6 = (994 + 6) + 190 = 1000 + 190 = 1190.

В том случае, когда одно из слагаемых близко к разрядной единице (на несколько единиц больше или меньше) или близко к целому числу (на несколько долей больше или меньше его), удобнее заменить его разрядной единицей или целым числом, а в полученный от сложения результат внести необходимую поправку.

2. Округление уменьшаемого или вычитаемого.

Этот прием основан на изменении разности от изменения уменьшаемого или вычитаемого.

а) Если уменьшаемое увеличить или уменьшить на несколько единиц (или долей), то разность соответственно увеличится или уменьшится на столько же единиц (или долей). Округляя уменьшаемое, мы увеличиваем или уменьшаем его на несколько единиц (или долей), следовательно, и разность увеличивается или уменьшается настолько же единиц (или долей). Чтобы разность не изменилась, надо ее уменьшить или увеличить настолько же единиц (или долей).

1) .

Уменьшаемое увеличено на несколько единиц, разность, записанная в скобках, должна быть уменьшена на столько же единиц.

2) .

Уменьшаемое уменьшено на несколько единиц; записанная в скобках разность должна быть увеличена на столько же единиц.

б) Если вычитаемое увеличить или уменьшить на несколько единиц (или долей), то разность соответственно уменьшится или увеличится на столько же единиц (или долей). Округляя вычитаемое, мы увеличиваем или уменьшаем его, а следовательно, разность уменьшается или увеличивается на несколько единиц (или долей). Чтобы разность не изменилась, надо ее увеличить или уменьшить на столько же единиц (или долей).

1) .

Вычитаемое увеличено на несколько единиц, записанная в скобках разность должна быть увеличена на столько же единиц.

2) 7,83 = (7,83 ) + 0,02 = 1,83 + 0,02 = 1,85.

Вычитаемое увеличено на несколько долей; разность, записанная и скобках, должна быть увеличена на столько же долей.

3) 910 = (910) = 396.

Вычитаемое уменьшено на несколько единиц, записанная в скобках разность должна быть уменьшена на столько же единиц.

Итак:

1) При округлении уменьшаемого:

а) если уменьшаемое увеличено, разность надо уменьшить;

б) если уменьшаемое уменьшено, разность надо увеличить.

2) При округлении вычитаемого:

а) если вычитаемое увеличено, то и разность надо увеличить;

б) если вычитаемое уменьшено, то и разность надо уменьшить.

Выгоднее округлять вычитаемое, так как разрядное или целое число легко вычитается из любого числа.

Если уменьшаемое и вычитаемое увеличить или уменьшить на одинаковое число единиц (долей), то разность не изменится.

.

В данных примерах уменьшаемое и вычитаемое увеличены на одно и то же число, разность не изменилась.

.

В данных примерах уменьшаемое и вычитаемое уменьшены на одно и то же число, разность не изменилась.

.

В данных примерах, округляя уменьшаемое, мы уменьшали разность на несколько единиц (долей); округляя вычитаемое, мы также уменьшали разность на несколько единиц (долей). Следовательно, «округленная» разность должна быть увеличена на такую сумму единиц (долей), на какую мы уменьшили уменьшаемое и увеличили вычитаемое.

3. Арифметическое дополнение. Замена сложения вычитанием и вычитания сложением.

а) Арифметическим дополнением числа называется число, которое нужно прибавить к данному числу, чтобы получить единицу непосредственно высшего разряда. Дополнением числа 9247 будет число, которое надо прибавить к 9247, чтобы получить 10000. Поэтому, чтобы найти дополнение какого-либо числа, надо вычесть это число из единицы со столькими нулями, сколько в числе цифр: 10000 = 753. Таким образом, для получения дополнений надо все цифры данного числа вычитать из 9, за исключением последней справа значащей цифры, которую вычитать из 10. Если находят дополнение числа с нулями на конце, то приписывают столько нулей, сколько их было за последней значащей цифрой.

В замене сложения вычитанием первое слагаемое вычитаем из ближайшего разрядного числа (ищем его дополнение до разрядного числа), полученная разность вычитается из второго слагаемого и результат складывается с разрядным числом.

89 + 47:

1) 100; 2) ; 3) 100 + 36= 136.

Способ замены сложения вычитанием удобен в том случае, когда дополнение первого слагаемого до разрядного числа легко вычитается из второго слагаемого.

б) В замене вычитания сложением находим дополнение вычитаемого до ближайшего разрядного числа и к нему прибавляем разность между уменьшаемым и этим разрядным числом.

112 - 67:

1) ; 2); 3) 12 + 33 = 45.

Этот способ удобен, когда единицы, десятки и т.д. вычитаемого больше единиц, десятков и т.д. уменьшаемого.

а) Для одновременного производства сложения и вычитания можно вместо вычитаемых взять их дополнения до одного и того же числа, изображенного единицей с нулями, найти сумму новых слагаемых, а затем ее исправить, вычтя числа, до которых взяты дополнения. . Заменим все три вычитаемых дополнением каждого до 1000 и вычтем столько тысяч, сколько взято дополнений, т.е. 3000: 923 + 804 + 711 + 602 = 40.

Этот способ удобен в том случае, когда цифры вычитаемых больше пяти.

б) Когда же цифры вычитаемых меньше пяти, то можно не заменять вычитаемые их дополнениями. В таком случае следует подписать числа с их знаками одно под другим.

2.3.2 Умножение и деление

Мы знаем, что если один из сомножителей увеличить в несколько раз, а другой уменьшить во столько же раз, то произведение не изменится. На этом свойстве основывается применение сокращенных способов умножения на 5, 25, 125 и на другие числа, представляющие собой делители числа, изображаемого единицей с нулями.

1. Умножение на 5, 50, 500 и т.д.

Умножение числа на 5, 50, 500 и т.д. заменяется умножением на 10, 100, 1000 и т.д. с последующим делением на 2 полученного произведения. Или: сначала множимое делится на 2, а потом полученное частное умножается на 10, 100, 1000 и т.д.

1) ; ;

2) ;

3) .

2. Умножение на 25, 250, 2500 и т.д.

При умножении числа на 25, 250, 2500 и т.д. достаточно данное число умножить на 100, 1000, 10000 и т.д. и полученный результат разделить на 4. Или: сначала данное число разделить на 1, затем полученное частное умножить на 100, 1000, 10000 и т.д.

1) ;

2) ;

3) .

3. Умножение на 125, 1250 и т.д.

При умножении числа на 125, 1250 и т.д. данное число умножают на 1000, 10000 и т.д., полученное произведение делят на 8. Или: данное число делят на 8 и полученное частное умножают на 1000, 10000 и т.д.

1) 72 = (72: 8) = 9 = 9000, или

72 = (100 + 25) = 100 + 72: 4 = 7200 + 1800 = 9000

4. Умножение на 37.

При умножении числа на 37, если данное число кратно 3, его делят на 3 и умножают на 111.

1) .

Если же данное число не кратно 3, то из произведения вычитают 37 или к произведению прибавляют 37.

2) ;

3) .

Известно, что если делимое и делитель увеличить или уменьшить в одинаковое число раз, то частное не изменится. На этом свойстве основывается применение сокращенных способов деления на 5, 25, 125 и на другие числа, представляющие какую-либо часть числа, изображенного единицей с нулями.

5. Деление на 5, 50, 500 и т.д.

Деление числа на 5, 50, 500 и т.д. заменяется делением на 10, 100, 1000 и т.д. с последующим умножением на 2. Или: делимое умножается на 2 и полученное произведение делится на 10, 100, 1000 и т.д.

1) 8740: 5 = (8740: 10) = 874 = 1748;

2) 197500: 50 = (197500: 100) = 3950;

3) 3,7: 500 = (3,7): (500) = 7,4: 1000 = 0,0074.

6. Деление на 25, 250 и т.д.

При делении числа на 25, 250 и т.д. достаточно разделить его на 100, 1000 и т.д. и полученное частное умножить на 4. Или: сначала делимое умножить на 4, а потом полученное произведение разделить на 100, 1000 и т.д.

1) 14200: 25 = (14200: 100) = 142 = 568;

2) 14, 4: 25 = (14,4: 100) = 0,144 = 0,576, или

14,4: 25 = (14,4): (25) = 57,6: 100 = 0,576.

7. Деление на 125, 1250 и т.д.

При делении числа на 125, 1250 и т.д. достаточно разделить его на 1000, 10000 и т.д. и полученное частное умножить на 8. Или: сначала делимое умножить на 8, а потом полученное произведение разделить на 1000, 10000 и т.д.

1) 35000: 125 = (35000: 1000) = 35 = 280;

2) 32250: 125 = (32250): (125) = 258000: 1000 = 258.

2.3.3 Умножение, сложение и вычитание

1. Округление одного из сомножителей.

Если один из двух сомножителей увеличить или уменьшить на несколько единиц (долей), то произведение соответственно увеличится или уменьшится на число, равное произведению другого сомножителя на прибавляемое или вычитаемое число единиц.

Рассмотрим четыре случая сокращенного умножения, основанных на этом свойстве.

а) Округляем множимое до разрядного (целого) числа, отнимая от него несколько единиц (долей), затем умножаем отдельно разрядное (целое) число и отнятые единицы (доли) на множитель и полученные произведения складываем.

.

б) Округляем множимое до разрядного (целого) числа, прибавляя несколько единиц (долей), умножаем отдельно разрядное (целое) число и прибавленные единицы (доли) на множитель и из первого произведения вычитаем второе произведение.

.

в) Округляем множитель до разрядного (целого) числа, уменьшая его на несколько единиц (долей), затем отдельно умножаем множимое на разрядное (целое) число и на отнятые единицы (доли) и полученные произведения складываем.

.

К этому способу сокращенного умножения относится умножение на 15; 150; 1,5; 0,15; 11; 111; 1,1; 0,11; 11,1; 35; 45; 65; 75; 80; 9,5; 4,5 и т.п.

При умножении на 15 умножают на 10 и прибавляют половину полученного произведения:

.

При умножении на 150 умножают на 100 и прибавляют половину полученного произведения:

.

При умножении на 11 данное число умножают на 10 и к полученному произведению прибавляют данное число:

.

г) Округляем множитель до разрядного (целого) числа, увеличивая его на несколько единиц (долей), затем умножаем множимое отдельно на разрядное (целое) число и на прибавленные единицы (доли) множителя и из первого произведения вычитаем второе произведение.

.

К этому способу сокращенного умножение подходит умножение на 9; 99; 999; 0,9; 9,9; 0,99; 19; 29; 39; 49; 69; 79; 89; 1,9; 2,9; 3,9; 4,9; 5,9; 6,9; 7,9; 8,9 и т.п. При умножении на 9; 99; 999 и т.п. умножают данное число на 10; 100; 1000 и т.п. и из полученного произведения вычитают данное число.

1) ;

2) .

При умножении на 19; 29; 39; 49; 59; 69; 79; 89 данное число умножают на 20; 30; 40; 50; 60; 70; 80 и 90 и из полученного произведения вычитают данное число.

1) ;

2) ;

3) ;

4) .

2. Округление слагаемых и замена сложения умножением.

На основании определения умножения и свойств изменения суммы при изменении слагаемых можно округлить слагаемые до одного и того же разрядного числа, разрядное слагаемое число умножить на число слагаемых и к произведению прибавить или из произведения вычесть разницу, которая получается в результате замены каждого слагаемого разрядным числом (целым числом).

3. Округление уменьшаемого в случае, когда вычитаемое записано в виде произведения.

Если уменьшаемое можно разложить на два слагаемых, одно из которых равно множимому вычитаемого, причем его легко отнять от уменьшаемого, то вычитание производят следующим образом:

.

2.3.4 Деление, сложение и вычитание

1. Округление делимого.

Округление делимого основано на изменении частного при изменении делимого на несколько единиц.

От увеличения или уменьшения делимого на какое-нибудь число частное соответственно увеличивается или уменьшается: увеличивается на частное, полученное от деления прибавленного числа на делитель, а уменьшается на частное, полученное от деления отнятого числа на делитель

630045: 9 = (630000 + 45): 9 = 630000: 9 + 45: 9 = 70000 + 5 = 70005.

Можно обосновать округление делимого: 1) свойствами десятичной системы счисления и 2) распределительным законом ряда умножений и делений.

Чтобы разделить число, близкое к разрядному, можно сначала разложить его на такие слагаемые, которые бы легко делились на данное число, затем каждое слагаемое разделить отдельно и полученные частные сложить.

36492: 12 = (36480 + 12): 12 = 36480: 12 + 12: 12 = 3040+ 1 =3041.

2.4 Систематизация приемов повышения вычислительной культуры для практической работы учителя

Предлагаемое в качестве приложения к выпускной квалификационной работе пособие рассчитано в основном на школьников 5-6 классов, однако многие его упражнения полезно предлагать учащимся средних и старших классов. Это пособие предназначено как для работы в классе на уроке, так и для самостоятельной работы ученика дома.

Основное назначение данного пособия - формировать у учеников прочные навыки вычислений с целыми числами, эффективно развивая внимание и оперативную память детей - необходимые компоненты успешного овладения школьным курсом математики.

Учителю на уроке оно поможет организовать, сделать более продуктивной и насыщенной устную работу, каждодневную тренировку детей в устных и письменных вычислениях.

Задания пособия позволяют предложить ученику выполнить большой объем вычислений за небольшое время. Таким образом, оттачиваются вычислительные навыки, формируется числовая зоркость, тренируется внимание, развивается память ребенка. В результате выполнения таких заданий каждый ученик приучается быстро и правильно считать, овладевает приемами самопроверки.

Все виды заданий разбиты на отдельные части. Каждая такая часть - одна порция при проведении устного счета.

Задания можно предлагать как для индивидуальной, так и для коллективной работы в классе.

В ходе устной работы на уроке с использованием заданий можно проводить математические эстафеты: ученики по очереди называют ответы отдельных примеров. В хорошо подготовленном классе каждому отвечающему можно предлагать не одно, а нескольких заданий (для такой организации эстафеты в группах заданий выделены блоки заданий).

Полезна работа в парах, когда один ученик называет ответы серии заданий соседу по парте, а тот проверяет их правильность; при выполнении следующей серии заданий ответы называет второй, а первый - проверяет. В этом случае каждому ученику предлагается для решения целая группа заданий или несколько отдельных блоков из одной или разных групп.

Цепочные вычисления предназначены в основном для самостоятельной работы учеников: даются две-три цепочки, и учащиеся записывают окончательные ответы к ним.

2.5 Содержание и анализ опытно-экспериментальной работы

Опытно-экспериментальная работа по повышению вычислительной культуры школьников была проведена в 6-а классе средней школы №51 г. Кирова.

Для эксперимента был взят общеобразовательный класс со средней успеваемостью.

В начале каждого урока ученикам предлагались карточки с заданиями на отработку одного из приемов быстрого счета (см. прилагаемое пособие). Было представлено четыре блока заданий. В первом блоке были примеры, основанные на способе группировки слагаемых, во втором - округление одного из компонентов арифметического действия, в третьем - умножение и деление на 5, 15, 25, в четвертом - применение распределительного закона. Блоки представляли собой карточки, состоящие из пяти заданий. Учащимся необходимо было не только написать ответ, но и ход решения.

Задания в карточке составлены следующим образом:

· первое задание представляло собой разобранный пример с пояснением решения;

· последующие задания были подобраны на отработку этого приема.

За каждый правильно решенный пример, мы начисляли учащимся по одному баллу, если задача вовсе не была решена, то учащийся получал 0 баллов. За все правильно решенные задания учащийся мог получить пять баллов. Таким образом, мы формировали у учащихся математические навыки по применению приемов быстрого счета.

По окончанию уроков был проведен контрольный тест в игровой форме. Каждый участник проходит пять барьеров, на которых каждому участнику разложены по одной индивидуальной задаче, при решении которой школьник использует один из приемов быстрого счета. На карточках написаны имена, и участники сначала находят свой вариант, решают его, затем подходят к судье данного барьера, называют ответ. Если ответ правильный, то судья дает жетон в знак того, что задача решена верно, а если ответ неверный, то этот этап участник проходит без жетона, возвращаться к своей задаче ему не разрешается. Тому, кто первым подойдет к финишу, дается дополнительный жетон.

По итогам «Математической эстафеты» большинство участников набрало максимальное число жетонов. Школьники продемонстрировали свои умения применять приемы быстрого счета при решении математических задач.

Таким образом, мы нашли эффективные пути повышения вычислительной культуры учащихся посредством приемов быстрого счета, поставив пред собой определенные задачи и решив их, с помощью предложенных методов.

Заключение

Приемы быстрого счета позволят без увеличения числа учебных часов повысить качество обучения и уровень математических знаний учащихся. Они служат одним из средств предупреждения формализма в преподавании математических дисциплин, делают знания более действенными, гибкими и эффективными. Изучаемые понятия рассматриваются с различных сторон, что способствует выявлению их сущности.

В данной работе рассмотрены понятия математических навыков, устные упражнения, выделены требования, предъявляемые к вычислительным умениям учащихся.

Во второй части работы даны методические рекомендации по организации устных вычислений, разобраны различные приемы быстрого счета, а так же систематизированы приемы повышения вычислительной культуры для практической работы учителя.

Считаем, что поставленные цель и задачи выпускной квалификационной работы достигнуты, гипотеза подтверждена в ходе опытного преподавания.

Работа может быть полезна учителям-практикам для систематизации и применения на уроках приемов быстрого счета.

Библиографический список

1. Методика преподавания математики [Текст]: учебник для вузов / Е.С. Канин, А.Я. Блох [и др.]; под ред. Р.С. Черкасова. - М.: Просвещение, 1985. - 268 с.

2. Хэндли, Б. Считайте в уме как компьютер [Текст] / Б. Хэндли; пер. с англ. Е.А. Самсонов. - Мн.: Попурри, 2006. - 352 с.

3. Ройтман, П.Б. Повышение вычислительной культуры учащихся [Текст]: пособие для учителей / П.Б. Ройтман, С.С. Минаев, Н.С. Прокофьева [и др.]. - М.: Просвещение, 1985. - 48 с.

4. Чекмарев, Я.Ф. Методика преподавания арифметики в 5-6 классах [Текст] / Я.Ф. Чекмарев. - М.: Учпедгиз, 1962. - 410 с.

5. Крутецкий, В.А. Психология математических способностей школьников [Текст] / В.А. Крутецкий. - М.: Просвещение, 1968. - 432 с.

6. Чекмарев, Я.Ф. Методика устных вычислений [Текст] / Я.Ф. Чекмарев - М.: Просвещение, 1970. - 238 с.

7. Глебов, И.И. Упражнения по привитию вычислительных навыков учащихся 5-9 классов средней школы [Текст] / И.И. Глебов. - М.: Просвещение, 1959. - 66 с.

8. Автайкина, А.К. Некоторые формы организации устного счёта / Математика в школе, №3, 1991 г.

9. Борткевич Л.К. Повышение вычислительной культуры учащихся» / Математика в школе, №5, 1995 г.

10. М.С. Якунина. Устные упражнения в курсе алгебры / Математика в школе, №1, 1991 г.

11. Минаева, С.С. Вычисления на уроках и внеклассных занятиях по математике [Текст] / С.С. Минаев. - М.: Просвещение, 1983. - с.

12. Гельфан Е.М. Арифметические игры и упражнения [Текст] / Е.М. Гельфан. - М.: Просвещение, 1968. - 112 с.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.