Реализация межпредметных связей на элективных курсах по началам математического анализа в классах гуманитарного профиля

Теоретические основы реализации межпредметных связей на элективных курсах по математике. Показательная и логарифмическая функции. Методические основы реализации межпредметных связей по началам анализа на элективных курсах в классах гуманитарного профиля.

Рубрика Педагогика
Вид дипломная работа
Язык русский
Дата добавления 24.06.2009
Размер файла 853,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Математика: Учебное пособие для учащихся 10 классов общеобразовательных учреждений / В.Ф. Бутузов, Ю.М. Колягин, Г.Л. Луканкин и др. - М.: Просвещение, 1995 г.

Математика: Учебное пособие для учащихся 11 классов общеобразовательных учреждений / В.Ф. Бутузов, Ю.М. Колягин, Г.Л. Луканкин и др. - М.: Просвещение, 1996 г.

Учебник необычен как по содержанию, так и по стилю изложения. Курс математики классов гуманитарного профиля рассчитан на 3 часа в неделю, поэтому в учебниках представлен минимум математического материала, изучаемого в обычных классах. Исключено несколько вопросов курса математики старших классов. Это тригонометрические функции, уравнения и неравенства.

Также в пособие включены разделы, знакомящие с элементами статистики, комбинаторики, теории вероятности, а также с компьютером. Теоретический материал не содержит громоздких формул. В геометрических главах нет такого обилия теорем, которое характерно для стандартных учебников геометрии. Объяснения часто проводятся с помощью только чертежей, рисунков и наглядных представлений, а строгие доказательства даны в очень малом количестве - как образцы точных рассуждений, с которыми полезно познакомиться учащимся. Предлагаемые темы раскрываются достаточно полно. Например, в главе «Числа» дается обзор всех систем чисел (натуральных, рациональных, иррациональных, действительных, комплексных) и говорится о том, что в эту цепочку можно добавить подсистему, но продолжить ее нельзя. Упражнений, задач на вычисление немного. Значительная их часть носит ознакомительный характер и не требует большой вычислительной работы.

Есть задачи с практическими заданиями (изготовить модель фигуры, составить генеалогическое дерево), задачи на сравнение и построение различных объектов.

В пособии «Математика 10» рассмотрены следующие темы под символом «дополнительно»: делимость чисел, уравнения и системы уравнений (с модулем, показательные и логарифмические), функции и графики, треугольники и четырехугольники (задачи планиметрии на доказательство неравенств и на вычисления), площади поверхностей многогранников, сечения многогранников и круглых тел. В пособии «Математика 11» даны дополнительные задачи по следующим темам: уравнения (показательные, логарифмические и даже простейшие тригонометрические), функции и графики, производная и её приложения, приложения интеграла, вычисление вероятностей событий и занимательные задачи. Эти задачи могут использоваться как дополнительные задания для учащихся, заинтересовавшихся математикой. В каждом параграфе даются примеры из жизни, реальной действительности. Есть практические приложения математики: вычисление процентной прибыли вклада в сбербанке, в теории вероятности разобрана игра в покер с указанием вероятностей появления тех или иных комбинаций карт, объяснено, по какому принципу расположены буквы на клавиатуре, рассмотрены устройства прожекторов, рефлекторов, локаторов и т.д.

К тому же в обоих пособиях есть главы, которые так и называются «Математика в повседневной жизни». Разобраны понятия подоходного налога, земельного налога и, соответственно, задачи на их вычисление. Так же рассказывается о видах страхования, получении денег с помощью кредитов, сдачи чего-либо в аренду, получение доходов от инвестиций и дивидендов. Как обязательный компонент присутствуют исторические факты. Они рассмотрены в главе 8 пособия «Математика 11», которая называется «Горизонты математики». В главе рассказывается об истории развития алгебры, геометрии, математического анализа, проведено знакомство с геометрией Лобачевского, сферической геометрией. Таким образом, в учебнике достаточно много материала, на основе которого можно реализовывать межпредметные связи, как на самих уроках, так и на занятиях элективного курса. К такому материалу можно отнести темы,

рассмотренные под символом «дополнительно», главы «Математика в повседневной жизни», исторические факты главы «Горизонты математики».

Кроме того, учебники дают представление о самых основных математических понятиях, знание которых, по мнению авторов пособий, является элементом общей культуры человека любой профессии.

Математика: Учебник для учащихся 10 классов общеобразовательных учреждений / А. Г. Мордкович, И. М. Смирнова. - М.: Мнемозина, 2004 г.

Математика: Учебник для учащихся 11 классов общеобразовательных учреждений / А. Г. Мордкович, И. М. Смирнова. - М.: Мнемозина, 2004 г.

Эти учебники написаны в соответствии с программой курса математики средней школы общеобразовательного уровня, на изучение которого отводится три урока в неделю и преподавание осуществляется в рамках единого курса. Основу учебника составили широко используемые в российских школах учебные пособия тех же авторов по алгебре и началам анализа и геометрии для 10-11 классов.

В каждом параграфе содержится подробное и обстоятельное изложение теоретического материала. Изложение теоретического материала в большей степени ориентировано на самостоятельное изучение, в связи с чем в учебниках в каждом параграфе содержится большое число примеров с подробными решениями, а также различные методические советы и рекомендации для учителя. В конце каждого параграфа приводятся разноуровневые упражнения для самостоятельного решения. Устные и частично устные упражнения не содержат никакого особого значка, номера упражнений средней трудности отмечены значком _, повышенной сложности - значком ?. В конце книг даны ответы ко всем упражнениям, кроме устных и частично устных.

Число упражнений (особенно в алгебраической части) достаточно объемно, но это только плюс учебников, так как учителю нет особой необходимости обращаться к каким-либо другим источникам.

Курс «Математика - 10» (3 часа в неделю) включает в себя два предмета: алгебра и начала анализа, геометрия. Авторы советуют строить изучение не по традиционной схеме: 2 часа в неделю на курс алгебры и 1 час геометрии, а изучать материал блоками, завершая каждый блок контрольной работой. Далее в учебнике приводиться вариант поурочного планирования по такой блочной системе.

Некоторые параграфы учебника отмечены звездочкой, это не обязательный, дополнительный материал (преобразование графиков тригонометрических функций, преобразования произведений тригонометрических функций в суммы, предел последовательности, центральное проектирование, полуправильные многогранники, звездчатые многогранники, кристаллы - природные многогранники).

Всего в учебнике восемь глав: тригонометрические функции; тригонометрические уравнения; преобразования тригонометрических выражений; производная; начала стереометрии; параллельность в пространстве; перпендикулярность в пространстве; многогранники.

Курс «Математика - 11» (3 часа в неделю) также включает в себя два предмета: алгебра и начала анализа, геометрия. Также приводится вариант поурочного планирования.

Всего в учебнике восемь глав: первообразная и интеграл; степени и корни, степенные функции; показательная и логарифмическая функции; уравнения и неравенства, системы уравнений и неравенств; круглые тела; объем и площадь поверхности; координаты векторы; элементы комбинаторики, статистики и теории вероятностей.

Необязательные параграфы: переход к новому основанию логарифмов; уравнения и неравенства с параметрами; многогранники, вписанные в сферу; многогранники, описанные около сферы; ориентация плоскости, лист Мебиуса; уравнение прямой в пространстве; аналитическое задание пространственных фигур; многогранники в задачах оптимизации.

В данном комплекте учебников есть материал, позволяющий реализовывать межпредметные связи математики и гуманитарных дисциплин, большая часть такого материала имеет геометрическое содержание (центральное проектирование, звездчатые многогранники, ориентация плоскости, лист Мебиуса и др.), также достаточно хорошо разработана система задач. Некоторые задания и примеры возможно использовать и в рамках элективного курса.

Математика: учебное пособие для 10-11 классов гуманитарного профиля / М. И. Башмаков - М.: Просвещение. - 2004 г.

Книга является учебным пособием по курсу математики для 10-11 классов общеобразовательной школы, ориентированных на гуманитарный профиль. Учебник может быть использован при 4 часах математики в неделю. Программный материал расположен по содержательным линиям и подан в форме учебных модулей - уроков, всего 44 модуля. Такая модульная структура, по-мнению авторов, облегчает работу по составлению календарного планирования. Всего в книге семь глав, все имеют интересные заглавия: «Вокруг числа», «Как это выглядит», «Глядя на график», «Учимся логике», «Движемся по кругу», «Кто быстрее», «Семь раз отмерь». В конце приведены «Беседы о математическом языке», где имеется материал по темам: «Множества», «Эквивалентность», «Упорядоченность», «Операции», «Графы», «Отображения». По всем темам предложены различные задания. Беседы также сопровождают и каждую главу, что дает возможность изучать материал на разных уровнях. Каждая глава разделена на уроки. Уроки содержат следующие разделы: текст (новый материал), примеры, приложение (дополнительные сведения), задания к уроку,

есть задания на смекалку и на выбор ответа с обоснованием. После каждой главы есть занимательная страничка и исторические сведения. Важная особенность учебника - представление урока на двух разворотах. На первом развороте помещается весь теоретический материал, на втором - практический.

При таком построении есть возможность составить представление о характеристике изучаемого материала, его объеме.

Об этом учебнике нельзя сказать, что в нем просто сокращен материал. Наоборот, в курс вошли многие понятия, сведения и целые разделы, отсутствующие в стандартном курсе (комплексные числа, статистика, вероятность, кванторы, интерполяция и др.) Все это позволяет сказать, что в учебнике есть хороший материал для осуществления межпредметных связей: беседы, занимательные странички, исторический материал. Этот учебник полезно использовать и как дополнительную литературу при подготовке к занятиям элективного курса. На мой взгляд, именно этот учебник наиболее подходит для использования в обучении математике в гуманитарном классе, благодаря достаточной простоте изложения материала и своему оформлению.

Таким образом, рассмотренные учебники и учебные пособия отличаются содержанием, уровнем обоснования, задачным материалом. Учитель математики, преподающий в гуманитарных классах, имеет возможность выбора учебника. Как было уже отмечено, в рассмотренных учебниках содержится достаточно хороший материал, на основе которого можно осуществлять связи математики и гуманитарных дисциплин, хотя для подготовки элективного курса такого материала недостаточно.

Подробнее вопрос о возможных путях реализации межпредметных связей на элективном курсе по началам анализа в гуманитарных классах будет рассмотрен в следующем параграфе на примере двух разделов начал математического анализа: «Показательная и логарифмическая функции», «Производная и ее приложения».

2.2 Реализация межпредметных связей отдельных разделов алгебры и начал математического анализа

2.2.1 Показательная и логарифмическая функции

Для начала предложим примерный план занятий элективного курса по данной теме

Тема

Краткое содержание

Часы

1

Как появилась показательная функция? (Урок-экскурсия в прошлое)

1. Интересные исторические факты, рассказы, легенды, связанные с возникновением показательной функции.

2. Показ «нематематических» истоков появления показательной функции.

3. Доклады учащихся.

1

2

Это загадочное число е

1. История появления числа е.

2. Показ связи между числом е и формулой сложных процентов.

3. Решение задач на формулу сложных процентов.

1

3

Свойства показательной функции и их применение к решению уравнений и неравенств

1. Повторение свойств показательной функции.

2. Преобразование графика показательной функции.

3. Применение свойств показательной функции к решению уравнений и неравенств.

2

4

Применение показательной функции в различных

областях знаний

1. Решение задач с историческим, практическим содержанием с применением знаний, полученных на уроках.

2

5

Как появилась логарифмическая функция? (Урок-экскурсия в прошлое)

1. Интересные исторические факты, рассказы, легенды, связанные с возникновением логарифмической функции.

2. Показ «нематематических» истоков появления логарифмической функции.

3.Доклады учащихся.

1

6

Свойства логарифмическойфункции и их применение к решению уравнений и неравенств

1. Повторить свойства логарифмической функции.

2. Преобразование графика логарифмической функции.

3. Применение свойств логарифмической функции к решению уравнений и неравенств.

2

7

Применение логарифмической функции

1. Решение задач с историческим, практическим содержанием с применением знаний, полученных на уроках о логарифмической функции, ее графике и свойствах.

2

8

Урок-диспут на тему: «Чем показательная функция похожа на логарифмическую»

Главная цель урока - обобщить и закрепить имеющиеся знания о показательной и логарифмической функции, найти их общие и различные свойства.

1

Кратко охарактеризуем этот курс. Элективный курс является предметным с практической направленностью, цель которого - повторение материала, обобщение понятия функции и свойства функций, расширение знаний о показательной и логарифмической функциях.

Но так как курс рассчитан для проведения в гуманитарных классах, то в нем достаточно большую часть занимает материал прикладного характера, то есть обращение к историческим фактам, решение практических, занимательных задач. Вернемся к главному вопросу - реализации межпредметных связей в рамках этого курса. Как было сказано выше, взаимосвязи в основном проявляются в содержании элективного курса. Возможно выделить такие способы установления межпредметных связей:

Использование дополнительной информации: интересных фактов, исторических сведений, легенд, особенно при введении новых понятий.

Показ применения изучаемого понятия в области предмета, являющегося профильным.

Использование практико-ориентированных задач, содержание которых отражает факты предмета, являющегося профильным.

Рассмотрим, как можно реализовывать эти способы в рамках данного элективного курса.

Например, перед изучением показательной функции можно привести следующую легенду.

По преданию шахматы были изобретены в пятом веке нашей эры в Индии. Богатый индусский царь Шерам был так восхищен этой игрой, что решил достойно отблагодарить изобретателя шахмат Сете. Сета попросил награду, на первый взгляд, поразившую своей «скромностью». Он попросил выдать ему за первую клетку шахматной доски одно пшеничное зерно, за вторую клетку два пшеничных зерна, за третью - 4, за четвертую - 8 зерен, за пятую - 16 и так далее до 64 клетки доски. При этом за каждую следующую клетку доски следует выдавать в два раза больше, чем за предыдущую. Царь Шерам был недоволен, так как считал, что Сета, прося столь ничтожную награду, пренебрегает царской милостью. Но оказалось, что Сета попросил такую награду, что никакой даже самый богатый царь не сможет ее выполнить. Давайте разберемся почему так? Попытаемся вместе с придворным царским математиком подсчитать, сколько же зерна пшеницы должен получить изобретатель Сета. Составим таблицу:

Номер Клетки

1

2

3

4

5

6

Количество Зерен

1

7

8

9

10

11

63

64

Из этой таблицы следует, что на клеточку номер n нужно положить зерен, например, на клеточку номер 11 нужно положить зерен, а на клеточку номер 21 - зерен и т. д. Для того, чтобы подсчитать величину награды, мы должны сложить зерна, лежащие на всех клеточках шахматной доски:

Заметим, что есть 64 числа , которые образуют геометрическую прогрессию, первый член которой равен 1 , последний - и знаменатель q = 2. Сумма членов такой последовательности вычисляется по формуле:

Применим к нашему случаю и получим:

Читается это гигантское число так: восемнадцать квинтиллионов четыреста сорок шесть квадриллионов семьсот сорок четыре триллиона семьдесят три миллиарда семьсот девять миллионов пятьсот пятьдесят одна тысяча шестьсот пятнадцать. Такую награду должен дать царь Шерам изобретателю шахмат Сете. Представим себе тот объем, который занимает такое количество зерна. Известно, что 15000000 зерен пшеницы вмещается в 1 кубический метр. Разделив S на 15000000, мы получим, что награда должна занять 12 000000000000 м3 - двенадцать триллионов кубических метров. Для того, чтобы поместить такое количество зерна, достаточно, например, построить амбар, в основании которого лежит прямоугольник со сторонами 8 м и 10 м, а высота равна 150000000000 м = 15000000 км, что совпадает с расстоянием от Земли до Солнца! Совершенно ясно, что такого количества зерен нет ни у какого царя и выполнить просьбу Сете невозможно!

После того, как была рассказана эта легенда, можно переходить непосредственно к самой показательной функции.

Вернемся к количеству зерен, который нужно положить в клетку номер n шахматной доски. Обозначим это число через .Тогда

Таким образом, мы определили на множестве натуральных чисел функцию f , значения которой находятся по формуле: .

Заметим, что если некоторая величина на каждом шагу увеличивается вдвое, то она очень быстро возрастает. Такой рост характерен и для живых существ, если у них нет естественных врагов и достаточно ресурсов(пищи, воды, территории и т. д.). Например, когда однажды в Австралии оказалось на воле пара кроликов, то они размножались настолько быстро, что превратились в угрозу всему сельскому хозяйству страны.[6]

Такие несложные примеры из различных областей знаний, которых можно привести множество, помогают учащимся осознать естественную необходимость существования и изучения понятия показательной функции.

Что касается второго способа, то есть показа применения изучаемого понятия в области предмета, являющегося профильным, то возможен такой вариант. После того, как будет введено число е, на занятии элективного курса нужно установить связь числа е с формулой сложных процентов.

Еще в Древнем мире было широко распространено ростовщичество - дача денег в долг под процент. В Древнем Вавилоне Лихва составляла до 20% в год. При этом, если должник не возвращал вовремя долг, на следующий год проценты начислялись уже не только на основную сумму долга, но и на наросшие проценты и т. д. Во многих случаях это приводило к тому, что должник оказывался несостоятельным и попадал в рабство.

Рассмотрим задачу:

Взята в долг сумма а рублей. Какую сумму надо отдать через n лет, если деньги взяты под р % в год?

Ясно, что за первый год нарастает сумма равна и общая сумма долга равна ???????????????(рублей). На второй год проценты начисляются уже на сумму и составляют сумму , а потому общая сумма долга равна: . Аналогично, к концу третьего года долг будет составлять , четвертого: . Вообще через n лет сумма долга составит: .

Полученное равенство называют формулой сложных процентов.

Эту формулу применяют для вычисления суммы и в том случае, когда число протекших лет не является целым. Именно, через х лет надо выплатить сумму рублей.

При а=1 эта формула принимает вид: и задает показательную функцию с основанием: .

При р=100 имеем .

Предположим теперь, что начисление процентов происходит не ежегодно, а ежемесячно, но зато процентная ставка в 12 раз меньше. Тогда через х лет сумма долга будет выражаться формулой .Вычисления показывают, что Если начисление процентов будет производиться ежедневно, но процентная ставка будет в 365 раз меньше (29 февраля начисления не производятся), то через х лет сумма долга будет выражаться формулой: . Вычисления показывают, что: .

Это значение весьма близко к значению числа е. Можно показать, что по увеличению n значение числа приближается к е.

Другие примеры применения показательной и логарифмической функции в различных областях знаний представлены в приложении 1 .

Использование таких примеров полезно при введении понятия показательной и логарифмической функции и их свойств.

Учащиеся отвлекаются от сухого изложения материала, формул, которые просто заучивают наизусть, не понимая зачем. Такие примеры позволяют осмысленно применять знания и, пожалуй, самое главное, делают изучение математики интереснее и легче.

Третий способ осуществления межпредметных связей может быть реализован с помощью задач, содержание которых связано профилирующим предметом. Отбирать задачный материал для данного элективного курса необходимо, учитывая принципы, выделенные в I главе.

После того как была установлена связь числа е с формулой сложных процентов можно предложить учащимся следующие задачи:

В романе М. Е. Салтыкова-Щедрина «Господа Головлевы» есть такой эпизод. Порфирий Владимирович сидит в кабинете, исписывая цифирными выкладками листы. На этот раз его занимает вопрос: сколько было бы теперь денег, если бы маменька подаренные ему при рождении дедушкой на зубок сто рублей не присвоила себе, а положила их в ломбард на имя малолетнего Порфирия? Выходит, однако, немного: всего 800 рублей. Предполагается, что Порфирию в момент счета было 53 года. Попробуйте установить, по скольку процентов платил в год ломбард.

На покупку новой техники фермер взял в банке 20000 рублей. Вычислите сумму долга, если деньги были взяты 6,5 лет тому назад и процентная ставка равна 4%.

В новелле О. Бальзака «Гобсек» один из героев, господин Дервиль, взял у ростовщика Гобсека сумму в 150000 сроком на 5 лет по 15% годовых. Какую сумму вернул Дервиль Гобсеку по прошествии этого срока?

В магазине «Обувь для Вас» цену на весь товар сначала повысили на 10 %, а через месяц снизили на 10 %. Дороже или дешевле стал товар по сравнению с начальной ценой?

За 3 года работы количество читателей в библиотеке увеличилось со 100 человек до 1080. Найдите средний годовой процент увеличения количества читателей.

Участник лотереи выиграл 5000 рублей и положил их на хранение в банк. За хранение денег Сбербанк начисляет 8% годовых. В течении 5лет вкладчик не снимал деньги со счета. Сколько денег будет на счете вкладчика через год, через два года, через пять лет? Запишите формулу для вычисления количества денег на счете через n лет.

В автоинспекции города подсчитали, что число легковых автомобилей увеличивается на 15 % ежегодно. Во сколько раз увеличилось число автомобилей за 5 лет?

Соответствие предложенных задач с выделенными в I главе принципами достигается за счет:

· связи задач с материалом, изученным на уроке: формула сложных процентов уже известна учащимся;

· сюжета задач;

· используемых методов работы с задачей. Главным образом применяются эвристические приемы: беседа, поиск сходной задачи среди ранее решеных, переформулировка задачи и др.

· формулирования вопросов задачи, то есть использования задач просто на нахождение какой-то величины, на оценку величины, на вывод закономерности.

Рассмотрим, какие методы работы с учащимися лучше использовать во время проведения элективного курса. Учитывая особенности учащихся гуманитарных классов, лучше использовать активные методы, некоторые из которых были выделены в I главе: метод проектов, метод реферативно-исследовательской деятельности, метод использования информационных и коммуникационных технологий. Так, например, учащимся можно предложить проекты, касающиеся свойств показательной и логарифмической функции:

· Свойства показательной и логарифмической функций.

· Преобразование графиков показательной и логарифмической функций.

Такие проекты будут иметь своей целью систематизацию знаний и полное исследование данных функций, особенное внимание должно быть обращено исследованию методами математического анализа и вопросам преобразования графиков функций.

· Использование свойств показательной и логарифмической функции при решении уравнении и неравенств.

Цель такого проекта - выделить, какие типы уравнений и неравенств можно легко решить с помощью свойств функций.

Все проекты требуют серьезной подготовки, но привлечь внимание учащихся можно, используя для реализации таких проектов информационные технологии. С проектами учащиеся выступают на занятии.

Другие вопросы элективного курса будут с интересом восприниматься учащимися, если предложить им различные доклады, то есть использовать метод реферативно-исследовательской деятельности. Например:

· Применение логарифмов в природе.

· Применение логарифмов в технике.

· Применение логарифмов в музыке.

· Применение логарифмов в живописи.

· Логарифмы и звезды.

Такие доклады наилучшим образом способствуют установлению межпредметных связей.

Не стоит забывать о таких творческих заданиях, как составление кроссвордов и чайнвордов, которые можно предложить для решения учащимся на заключительных занятиях.

Метод использования информационных технологий может применяться во всех вышеперечисленных видах работ при выборе соответствующего материала, что позволит повысить интерес к предмету, освоить некоторые компьютерные технологии (создание публикаций, презентаций), сделать свои проекты и доклады наглядными и интересными.

Мы рассмотрели, как можно реализовывать межпредметные связи за счет содержания излагаемого материала. Выше было отмечено, что также возможно осуществление связей и через частичное использование на занятиях по математике методов профилирующей науки.

У каждой науки есть свои специфические методы. В математике, например, это векторный метод, метод геометрических преобразований, метод уравнений и неравенств и другие. Рассмотрим, как методы, специфические для других наук, могут быть использованы в обучении математики.

Специфическими методами изучения экономики являются методы анализа и математического моделирования. Построение математических моделей можно широко использовать и на элективных курсах по алгебре и началам анализа, например, построение моделей работы предприятия, спроса и предложения на товары. Построение всех этих моделей нуждается в хорошем знании показательной и логарифмической функций.

В исторических науках часто применяются сравнительные методы. При изучении математики эти методы также имеют место. Особенно полезны эти методы при сравнении показательной и логарифмической функций, их графиков и свойств.

В литературе часто применяется метод художественного перевода. На уроках иностранных языков также широко используется перевод с одного языка на другой. На уроках математики можно реализовывать этот метод, предлагая учащимся задания, где необходимо перевести задание с естественного языка на язык математики, то есть записать некоторое математическое предложение с помощью формул, и наоборот.

Например: 1) Имеется график функции , требуется описать все свойства этой функции; 2) Имеется словесное описание показательной функции:

· Область определения - множество действительных чисел - R;

· Множество значений - множество всех положительных действительных чисел - ;

· Функция возрастает на всей числовой прямой;

· Известно, что .

Требуется записать функцию формулой и схематично построить ее график.

Конечно, при проведении элективных курсов в гуманитарных классах желательно использовать разнообразные, нестандартные формы, приемы и средства проведения занятий. В качестве формы проведения занятия можно использовать урок-путешествие (особенно при рассмотрении некоторых исторических фактов), урок-диспут (можно использовать такую форму на обобщающем занятии при сравнении показательной и логарифмической функции), различные лабораторные работы. На каждом таком уроке межпредметные связи будут в большей части осуществляться за счет содержания.

Выбирая формы работы с учащимися, не стоит говорить о том, какие из них предпочтительнее для реализации межпредметных связей, так как на различных уроках используются различные формы: индивидуальная, групповая и фронтальная. Выбор формы будет существенно зависеть от особенностей класса и излагаемого материала.

Таким образом, мы кратко охарактеризовали элективный курс по теме «Показательная и логарифмическая функции» с точки зрения реализации межпредметных связей. Было показано, как осуществить эти связи на основе содержания материала и методов профилирующих наук, приведены примеры задач, которые могут быть использованы на элективном курсе, даны некоторые методические рекомендации.

2.2.2 Производная и ее приложения

Для начала предложим примерный план занятий элективного курса по данной теме

Тема

Краткое содержание

Часы

1

Понятие производной, ее геометрический смысл. Уравнение касательной и нормали.

1. Повторить основные понятия, связанные с производной.

2. Геометрический смысл производной.

3. Механический смысл производной.

4. Показать, как решаются задачи с использованием уравнения касательной.

2

2

Вычисление производной. Правила дифференцирования.

1. Показать несколько способов вычисления производной (по определению через предел, с помощью таблицы производных).

2. Решение заданий с применением правил дифференцирования.

2

3

Как появилась производная? (Урок-экскурсия в прошлое)

1. Интересные исторические факты, связанные с возникновением и развитием понятия производная.

2. Доклады учащихся.

1

4

Исследование функций

1. Показать, как применять производную для исследования функций (исследование на максимум и минимум; нахождение второй производной и исследование функции на выпуклость, построение схематических графиков функций)

2

5

Применение производной

1. Показать учащимся возможность применения производной в других науках и повседневной жизни

2

6

Метод математического моделирования

1. Дать понятие математического моделирования

2. Привести простейшие примеры использования математического моделирования

2

7

Задачи на оптимизацию

1. Определить класс задач на оптимизацию и показать преимущества решение таких задач с помощью производной

2

Производная - одно из фундаментальных понятий математики. Основной целью проведения занятий элективного курса является показать широкое применение производной в различных науках (математике, физике и технике, естествознании и химии, сельском хозяйстве и военном деле, экономике).

В математике производная применяется для вычисления производной, исследования функций, в практических задачах оптимизации.·В физике с помощью производной находится сила, мощность, масса тонкого стержня, сила тока, скорость и ускорение, теплоёмкость.·В химии и естествознании - для нахождения дозы лекарства, при которой побочный эффект будет минимальным, а реакция максимальной.·В экономике - для анализа производственных функций, широко используемых в современных экономических исследованиях.

Кратко охарактеризуем этот курс. Элективный курс является предметным с практической направленностью, цель которого - повторение, углубление и обобщение материала, расширение кругозора учащихся, более подробное рассмотрение вопросов, связанных с применением производной в других науках, использования производной для исследования функций и решения задач на оптимизацию. Но так как курс рассчитан для проведения в гуманитарных классах, то в нем достаточно большую часть занимает материал прикладного характера, то есть, обращение к историческим фактам, решение практических, занимательных задач. Вернемся к главному вопросу - реализации межпредметных связей в рамках этого курса.

Рассмотрим применение выделенных в Главе II §2, п. 2.1 трех способов.

На занятии об истории возникновения понятия производной можно привести следующий материал. Одной из важных предпосылок появления дифференциального исчисления стали практические задачи нахождения кратчайшего пути. Первые задачи на максимум и минимум были поставлены в V веке до н.э. Эти задачи решали Евклид, Архимед, Кеплер, Герон, Ферма. Общие методы не были разработаны, каждая задача решалась индивидуально. Ферма установил, что свет в неоднородной среде движется вдоль такой траектории, чтобы время прохождения пути было наименьшим. В XVII веке были разработаны общие методы решения задач на экстремум Ньютоном и Лейбницем.

Подробный материал об этих открытиях могут подготовить и сами учащиеся.

Важным моментом является показ практического применения производной.

Подробнее можно рассмотреть следующие примеры.

Бумажный змей

Бумажному змею, имеющему форму кругового сектора, желают придать такую форму, чтобы он вмещал в данном периметре р = 80 см наибольшую площадь. Каковы должны быть размеры бумажного змея?

Рис.3

Решение.

Введем обозначения (рис.3):

Пусть радиус сектора - х, дугу обозначим за у, тогда периметр можно выразить так: и площадь равна: . Выразим и подставим в формулу площади: . Найдем производную функции S:

Исследуем функцию на интервале (0 ; 80). Получаем, что в точке функция принимает наибольшее значение, что нам и требовалось по условию задачи. Таким образом, мы нашли такие размеры кругового сектора и , при которых площадь бумажного змея наибольшая.

Ответ: 20, 40.

Примеров таких задач множество, особенно применительно к задачам экономического содержания. Приведем пример. Функция прибыли фирмы имеет вид: П(Q)=R(Q) - C(Q)=2/5 Q2 - 4Q + 20, где R(Q) - выручка, C(Q) - издержки. Сколько следует фирме производить продукции, если ее производственные мощности ограничены объемом производства Q = 3.

Решение.

Задача сводиться к исследованию функции на наибольшее значение на промежутке [0;3].

П?(Q) = 4/5 Q - 4

П?(Q) = 0

Q = 5

Таким образом, Q = 5 - критическая точка. Проанализируем характер изменения производной (Рис. 4)

Рис.4

При Q < 5 П?(Q) < 0 и прибыль убывает; при Q > 5 П?(Q) > 0 и прибыль возрастает. Следовательно, в точке экстремума прибыль принимает минимальное значение, и таким образом этот объем производства не является оптимальным. Точка Q = 5 не принадлежит промежутку [0;3], и функция на нем убывает, следовательно, она принимает наибольшее значение при Q = 0. В этом случае при Q = 3, фирме выгодно ничего не производить (например, сдавать помещение в аренду) [7].

Рассмотрим, как возможно реализовать межпредметные связи на основе задачного материала. Здесь при составлении системы задач нужно учитывать принципы, выделенные в I главе. Особое значение имеют принципы преемственности, связи теории с практикой и принцип полноты. На отработку данной темы в классах гуманитарного профиля можно предложить различные прикладные задачи, в том числе социально-экономического содержания. Содержательная сторона задач должна соответствовать реальной действительности, отвечать интересам учеников, можно использовать историко-научный материал. Например:

· Легенда об основании Карфагена гласит, что когда финикийский корабль пристал к берегу, местные жители согласились продать прибывшим столько земли, сколько можно оградить бычьей шкурой. Но хитрая финикийская царица Дидона разрезала эту шкуру на ремешки, связала их и оградила ремнем большой участок земли, примыкавший к морю. Считая берег моря прямолинейным, а огражденный участок прямоугольным, перед Дидоной встала задача: как оградить прямоугольный участок имеющимися ремешками длиной l, чтобы площадь была наибольшей? [9]

· База находится в лесу в 5 км от дороги, а в 13 км от базы на этой дороге есть железнодорожная станция. Пешеход по дороге идет со скоростью 5 км/ч, а по лесу - 3 км/ч. За какое минимальное время пешеход может добраться от базы до станции? [18]

· Командиру межгалактического космического корабля, движущемуся по закону x(t)=1+9t+3t2-t3 , сообщили о том, что приборы зафиксировали неопознанный летающий объект, стремительно приближающийся к кораблю. Чтобы избежать столкновения, необходимо максимально увеличить скорость. Каким должно быть ускорение корабля в момент, когда скорость станет максимальной? [29]

· Задача из истории математики, которую Евклид решал чисто геометрическим методом: доказать, что из всех параллелограммов, вписанных в данный треугольник, наибольшую площадь имеет тот, основание которого равно половине основания треугольника [9].

Для решения задач на оптимизацию желательно вместе с учащимися составить алгоритм, который совмещал бы в себе схему решения задач методом математического моделирования и алгоритм нахождения наибольшего (наименьшего) значения непрерывной функции. Действовать по алгоритму учащимся-гуманитариям проще, к тому же алгоритмы помогают свертывать рассуждения, избегать многословности.

Здесь важно подчеркнуть, что многие задачи на нахождение максимума или минимума можно решить и другими способами, но их, порой, очень сложно найти. А использование производной является универсальным способом для всех задач такого типа [37].

Перейдем к рассмотрению реализации межпредметных связей темы «Производная и ее приложения» с гуманитарными дисциплинами, учитывая методы самой науки, являющейся профильной.

Что касается реализации межпредметных связей на основе методов наук, то здесь нужно отметить, что особенно приложения производной используются при математическом моделировании, которое широко применяется во многих науках с целью прогнозирования и последующего принятия решений, поэтому при изучении приложений производной можно использовать и этот метод.

Также возможно использование метода наблюдения, сравнения, например, при исследовании функций.

Рассмотрим, какие методы обучения могут быть использованы в ходе данного элективного курса. Как уже отмечалось выше, лучше использовать активные методы работы с учащимися. Возможно предложить такой проект: «Производная и ее применение». Цель такого проекта - ответить на вопрос: «Мы изучаем производную. А так ли это важно в жизни?» Можно выдвинуть гипотезу: «Дифференциальное исчисление - это описание окружающего нас мира, выполненное на математическом языке. Производная помогает нам успешно решать не только математические задачи, но и задачи практического характера в разных областях науки и техники». Результатом исследования могут быть презентация или буклет.

Что касается использования реферативно-исследовательской деятельности, то можно предложить такие темы докладов:

· Исследования Ньютона и Лейбница, их роль в развитии понятия производная.

· Производная в технике.

· Производная и сельское хозяйство.

Метод использования информационных технологий может быть использован во всех вышеперечисленных работах.

Таким образом, мы охарактеризовали элективный курс по теме «Производная и ее приложения» с точки зрения реализации межпредметных связей. Было показано, как осуществить эти связи на основе содержания материала и методов наук, приведены примеры задач, которые могут быть использованы на элективном курсе, даны некоторые методические рекомендации.

Не смотря на то, что на первый взгляд сложно говорить о связи математики и гуманитарных дисциплин, возможны достаточно разнообразные способы реализации таких взаимосвязей. Самый доступный из них и простой - использование в содержании занятий объектов, изучаемых гуманитарными дисциплинами.

2.3 Опытное преподавание

Я проходила педагогическую практику в МОУСОШ № 27 г. Кирова и провела два факультативных занятия в гуманитарном 10 классе по теме «Приложения производной» (разработка одного урока представлена в приложении). Перед тем, как проводить опытное преподавание, я изучила соответствующую математическую и методическую литературу. Среди учителей математики, проводящих элективные курсы в старших классах, я провела небольшое анкетирование с целью выяснить, каким образом лучше организовать занятия. В анкетировании принимали участие двое учителей, преподающих элективные курсы по математике в старших классах. Учителям были предложены следующие вопросы:

1. Каково Ваше отношение к элективным курсам?

2. Нужны ли элективные курсы по математике в классах гуманитарного профиля? Почему?

3. Какие элективные курсы по математике, кроме тех, которые уже проводятся, Вы считаете полезным провести (тематика)?

4. Как, на Ваш взгляд, учащиеся относятся к элективным курсам, с интересом ли посещают их, как этот интерес проявляется?

5. Требуется ли Вам какая-то особая подготовка к организации и проведению элективного курса?

Анализируя анкеты, можно сделать несколько выводов.

По мнению учителей, элективные курсы необходимы в школах в силу того, что они помогают учащимся и реализовать свои интересы и способности, и целенаправленно подготовиться к дальнейшему обучению, и просто расширить свой кругозор. Что касается гуманитарных классов, то учителя отмечают необходимость элективных курсов по математике, хотя проводить занятия в таких классах сложнее и готовиться нужно более тщательно, подбирать интересный материал из истории математики, применять игровые приемы проведения занятий, предлагать интересные задания. Среди тем, которые учителям хотелось бы видеть в качестве элективных курсов в старших классах гуманитарного профиля были следующие: «Элементы теории множеств», «Элементы комбинаторики», «Старинные математические задачи», «Текстовые задачи», «Замечательные кривые в природе», «Симметрия в природе».

Учителя отмечают, что те учащиеся, которые приходят на занятие, проявляют порой даже больший интерес к материалу, чем учащиеся физических или математических классов, так как они выбрали элективный курс не по той причине, что математика необходима для дальнейшей учебы, а потому, что им действительно интересно.

С той же целью мною был проведен письменный опрос 15 учащихся гуманитарного класса, где были предложены следующие вопросы:

1. Посещаете ли Вы элективный курс по математике. Если да, то какой?

2. Нравится ли Вам данный элективный курс?

3. Интересно ли Вам на занятиях элективного курса, что интересно?

4. Вы ходите на занятия с желанием или нет?

5. Что больше всего нравится: решать задачи (какие задачи), выступать перед классом с докладами, выполнять индивидуальные задания?

6. Что считаете самым сложным в содержании данного элективного курса?

7. Что бы хотелось еще узнать на этом элективном курсе?

8. Какой другой элективный курс по математике хотелось бы посещать?

На основе этих анкет мною были сделаны следующие выводы. Что касается ответа на первый вопрос, то достаточно многие учащиеся посещают элективный курс по математике. Так как опрос проводился в 10 классах, то они посещают элективный курс «Производная и ее приложения». Во втором полугодии запланирован элективный курс «Уравнения, неравенства и их системы». Большинству учащихся нравится посещать этот курс, хотя есть и такие ответы, как «хожу, потому что просто заставляют родители».

Учащимся больше нравиться решать задачи практического содержания, готовить доклады, выполнять творческие задания.

Многие учащиеся на последний вопрос ответили, что им бы хотелось узнать больше об исторических сведениях, последних открытиях в математике, биографии ученых.

После проведения анкетирования были разработаны и проведены факультативные занятия в 10 классе по темам:

1. Как появилась производная.

2. Применение производной для исследования функций.

Цель проведения занятий - проследить возможность реализации межпредметных связей математики, в частности, начал анализа, с гуманитарными дисциплинами, расширить и углубить знания учащихся по теме «Производная и ее приложения».

Данные занятия элективного курса составлены для проведения в 10 классе гуманитарного профиля после изучения темы «Производная».

Первый факультатив это урок - экскурс в историю, на котором учащиеся узнали, как появилась производная, с именами каких ученых связано это понятие. Такой исторический материал занятия позволил реализовать связи математики с гуманитарными науками.

Второй факультатив является завершающим и обобщающим занятием по теме «Применение производной к исследованию функций». Построен он в форме игры, что позволяет привлечь интерес к изучению данной темы, а значит и улучшить ее усвоение.

Первое факультативное занятие прошло успешно, учащиеся активно участвовали в его организации и проведении, готовили доклады, участвовали в беседе. Что касается второго занятия, то, несмотря на то, что тема «Применение производной к исследованию функций» уже была рассмотрена учащимися на уроках, предложенные задания вызвали интерес, позволяющий преодолеть затруднения.

Таким образом, при проведении данных факультативных занятий были реализованы межпредметные связи, с помощью выделенных выше способов, то есть: была использована нестандартная форма проведения занятия - игра, использованы задания с интересным практическим и литературным содержанием.

Заключение

В настоящей работе рассмотрена важная и актуальная тема, поскольку в современных условиях профилизации школ все большее значение приобретают межпредметные связи между различными дисциплинами, а в связи с внедрением в школы элективных курсов требует рассмотрения и вопрос о реализации межпредметных связей в рамках этих курсов. Осуществление межпредметных связей способствует систематизации, а, следовательно, глубине и прочности знаний, помогает дать учащимся целостную картину мира.

В результате анализа математической и методической литературы мы пришли к выводу, что межпредметные связи математики и гуманитарных предметов осуществляются за счет иллюстрации математических понятий на основе основных объектов того или иного предмета гуманитарного цикла.

Цель работы достигнута: были рассмотрены особенности содержания и методики преподавания начал математического анализа на элективных курсах в гуманитарных классах, разработаны методические рекомендации по проведению элективного курса с точки зрения реализации межпредметных связей.

В результате были решены следующие задачи:

1. Рассмотрено понятие элективного курса, типы элективных курсов, принципы построения системы задач на элективном курсе.

2. Рассмотрено понятие межпредметных связей, теоретические предпосылки их установления между математикой и гуманитарными дисциплинами.

3. Изучены и проанализированы учебники по математике для старших классов гуманитарного профиля, выделен материал этих учебников, на основе которого возможна реализация межпредметных связей.

4. Выявлены психолого-педагогические особенности учащихся гуманитарных классов.

5. Выделены методические рекомендации по проведению занятий в гуманитарных классах.

6. Выделены способы реализации межпредметных связей:

· Использование дополнительной информации: интересных фактов, исторических сведений, легенд, особенно при введении новых понятий.

· Показ применения изучаемого понятия в области предмета, являющегося профильным.

· Использование практико-ориентированных задач, содержание которых отражает факты предмета, являющегося профильным.

7. Разработаны некоторые методические рекомендации по двум элективным курсам: «Производная и ее приложения» и «Показательная и логарифмическая функции»

8. Было проведено опытное преподавание с целью применения разработанной методики.

Таким образом, проведенное теоретическое исследование и опытное преподавание подтвердило гипотезу работы.

Среди дальнейших перспектив работы над темой исследования может быть разработка на основе выделенных способов реализации межпредметных связей, методики проведения элективных курсов по математике в классах гуманитарного профиля на темы, не затронутые в данной работе;

Список библиографии

1. Бакиева, Ф. Г. Интегрированный урок по математике с информатикой по теме: «Правила дифференцирования. Применение производной» [Текст]: Ф. Г. Бакиева // 1 сентября: Математика. - 2003. - №4. - С. 23-31.

2. Башмаков, И. М. Математика 10-11 [Текст]: учебное пособие для 10-11 классов гуманитарного профиля / М. И. Башмаков - М.: Просвещение. - 2004 г. - 336 с.

3. Бутузов, В. Ф. Математика 10 [Текст]: учебное пособие для учащихся 10 классов общеобразовательных учреждений / В.Ф. Бутузов, Ю.М. Колягин, Г.Л. Луканкин. - М.: Просвещение. - 1995 г. - 236 с.

4. Бутузов, В. Ф. Математика 11 [Текст]: учебное пособие для учащихся 10 классов общеобразовательных учреждений / В.Ф. Бутузов, Ю.М. Колягин, Г.Л. Луканкин. - М.: Просвещение. - 1995 г. - 254 с.

5. Вергелес, Г. И. Возможности межпредметных связей в формировании учебной деятельности современного школьника. [Текст]: Г. И. Вергелес / межвузовский сборник научных трудов. - Л: Ленинградский пед. Университет имени А. И. Герцена. - 1987. - С. 51-58.

6. Виленкин, Н. Я. Алгебра - 10: для классов с углубленным изучением гуманитарных дисциплин. Часть 2 [Текст] / Н. Я. Виленкин. - Абакан.: Редакционно-издательский отдел АГПИ имени Н.Ф.Катанова, 1993. - 165с.

7. Винокуров, Е. Ф. Экономика в задачах [Текст]: Е. Ф. Винокуров, Н. А. Винокурова. - М.: Начала-Пресс, 1995. - 202 с.

8. Гладкий, А. В. Математика в гуманитарной школе [Текст]: А. В. Гладкий // Математика в школе. - 1991. - № 6. - С. 6-9.

9. Глейзер, Г. И. История математики в школе. 9 - 10 кл. [Текст]: пособие для учителя / Г. И. Глейзер. - М.: Просвещение, 1983. - 351 с.

10. Голуб, Г.Б. Метод проектов - технология компетентностно-ориентированного образования. Методическое пособие для педагогов - руководителей проектов учащихся основной школы [ Текст]: / Г. Б. Голуб, Е. А. Перелыгина, О. В. Чуракова. - Самара: Учебная литература, 2006. - 224 с.

11. Груденов, Я, И. Совершенствование методики работы учителя математики [Текст]: книга для учителя / Я. И. Груденов. - М.: Просвещение. - 1990. - 224 с.

12. Далингер, В. А. Курсы по выбору и элективные курсы по математике в системе предпрофильного и профильного обучения [Текст]: В. А. Далингер // Актуальные проблемы профилизации математического образования в школе и в вузе: сборник научных трудов и методических работ. - Арзамас, АГПИ, 2004.-С. 214-222.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.