Физические модели при изучении интеграла в курсе алгебры и начал анализа в 10-11 классах
Психолого-педагогические основы изучения интеграла в школьном курсе математики. Анализ школьных учебников алгебры и начал анализа. Физические модели при изучении темы "Интеграл". Изучение свойств определенного интеграла с помощью физических моделей.
Рубрика | Педагогика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 28.05.2008 |
Размер файла | 140,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2.3. Физические модели при отработке техники интегрирования.
1. Использование свойств интеграла.
№1. Вычислите силу давления воды на вертикальный прямоугольный шлюз с основанием 18 м и высотой 6 м. [4]
Решение. Сила давления воды зависит от глубины х погружения площадки: P(x)=ax, где а - площадь площадки. Получаем
(т).
№2. Тело массой 1 движется с ускорением, меняющимся линейно по закону a(t)=2t-1. Какой путь пройдёт тело за 4 единицы времени от начала движения t=0, если в начальный момент его скорость равнялась 2?
Решение. Скорость тела в любой момент времени t вычисляется по формуле
v=v0+at.
Используя данные задачи, получаем:
.
№3. Тело брошено с поверхности Земли вертикально вверх с начальной скоростью v0. Какова наибольшая высота, достигаемая телом? [5]
Решение. Скорость тела в любой момент времени t движения равна разности начальной скорости и скорости gt, вызванной ускорением, определяемым силой тяжести: v=v0-gt. Движение вверх будет происходить при v=v0-gt>0, т. е. при . Таким образом, максимальная высота полета равна
.
2. Введение новой переменной.
№1. Задан закон изменения скорости движения материальной точки по прямой: (время t в секундах, скорость v в метрах в секунду). Какой путь пройдёт точка за 13 с от начала движения (t=0)?
Решение. В качестве новой переменной введем величину, стоящую в скобках. Назовем её z,
z=2t+1.
При этом надо также от дифференциала dt перейти к дифференциалу dz. Получим
dz=2dt, dt=dz/2.
Вычислим сначала неопределенный интеграл,
Таким образом,
м/c.
№2. Вычислить количество электричества, протекающее через цепь за промежуток времени [0,01; 1], если ток изменяется по формуле .
Решение. За элементарный промежуток времени протекает количество электричества
dq=I(t)dt.
В качестве новой переменной введем величину, стоящую в скобках.
.
Тогда dt=du.
Значит, общее количество электричества равно
.
№3. Точка движется по прямой. В начальный момент t=1 с её скорость равна 1 м/с, а затем уменьшается по закону . Найдите длину пути, пройденного точкой за 4 с от начального момента времени.
3. Интегрирование путем подстановки (внесением под знак дифференциала).
№1. Найти величину давления на полукруг, вертикально погруженный в жидкость, если его радиус равен R, а верхний диаметр лежит на свободной поверхности жидкости (рис.1); удельный вес жидкости равен г. [6]
Решение. Проведем горизонтальную полоску на глубине х. Сила давления жидкости на эту полоску равна
.
Таким образом,
.
Заметим, что 2xdx=dx2, отсюда
.
№2. Конец трубы, погруженной горизонтально в воду, может быть закрыт заслонкой. Определить давление, испытываемое этой заслонкой, если её диаметр равен 60 см, а центр находится на глубине 15 м под водой. [6]
2.4. Приложения интеграла в физике.
Рассмотрим несколько нетривиальных примеров применения интеграла в физике.
Нахождение силы.
№1. На прямой расположены материальная точка массы m и однородный стержень массы M и длины l. Точка удалена от концов стержня на расстояния c и c+l. Определить силу гравитационного притяжения между стержнем и точкой. [3]
Решение. Разобьем отрезок [c; c+l] на большое число отрезков. Если отрезки эти малы, то массу каждого из них можно считать точечной и силу гравитационного притяжения между таким отрезком и массой m вычислять по закону всемирного тяготения. Если длина отрезка равна Дх, а расстояние его от начала координат равно х, то сила гравитационного притяжения равна
Дх.
Суммируя полученные для каждого отрезка значения силы гравитационного притяжения, мы получим представление искомой силы в виде суммы тем более точное, чем мельче отрезки, на которые мы разбивали отрезок [c; c+l]. В пределе получим
.
№2. С какой силой полукольцо радиуса r и массы М действует на материальную точку массы m, находящуюся в его центре? [3]
Нахождение кинетической энергии.
№3. Вычислить кинетическую энергию диска массы М и радиуса R, вращающегося с угловой скоростью щ около оси, проходящей через его центр перпендикулярно к его плоскости. [6]
Решение. Масса кругового кольца толщины dr, находящегося на расстоянии r от центра диска, равна 2рсrdr, где - поверхностная плотность. Линейная скорость х=щr кольца. Следовательно, его кинетическая энергия будет:
.
Поэтому кинетическая энергия диска равна
.
№4. Стержень АВ вращается в горизонтальной плоскости вокруг оси ОО' с угловой скоростью щ=10р рад/с. По-перечное сечение стержня S = 4 см2, длина его l = 20 см, плотность материала, из которого он изготовлен, г= 7,8 * 103 кг/м3. Найти кинетическую энергию стержня. [3]
Решение. Кинетическая энергия тела, вращающегося вокруг непод-вижной оси, равна , где щ - угловая скорость, а J - момент инерции относительно оси вращения.
Момент инерции стержня относительно оси равен Sгl2dl , отсюда кинетическую энергию стержня можно найти по формуле:
(Дж).
№5. Треугольная пластинка, основание которой а = 40 см, а высота h = 30 см, вращается вокруг своего основания с по-стоянной угловой скоростью щ=5р рад/с. Найти кинетическую энергию пластинки, если толщина ее d = 0,2 см, а плотность материала, из которого она изготовлена, г= 2,2 * 103 кг/м3. [3]
Нахождение давления.
№6. Найти давление воды на плотину, если вода доходит до её верхнего края и если известно, что плотина имеет вид трапеции с высотой h, верхним основанием а и нижним основанием b.
Решение. Рассмотрим элементарный слой, находящийся на глубине х и имеющей высоту dx.
Легко доказать, что длина этого слоя равна
Поэтому его площадь dS равна
,
а давление dP на него равно
.
Всё давление на плотину выражается интегралом
.[4]
№7. . Вычислить силу давления воды на вертикальную плотину, имеющую форму трапеции, верхнее основание которой равно 70 м, нижнее 50 м, а высота 20 м. [4]
Нахождение работы.
№8. Найдите работу переменного тока, изменяющегося по формуле за промежуток времени , если сопротивление цепи равно R. [4]
Решение. Как известно из физики, в случае постоянного тока мощность выражается формулой . Поэтому, учитывая, что имеем:
.
№9. Два точечных электрических заряда +10-4 и -10-4 Кл находятся на расстоянии 10 см друг от друга. Найдите работу, необходимую для того, чтобы развести их на расстояние 10 км. [2]
Решение. Сила взаимодействия F между зарядами равна (a=kq1q2, где Нм2/Кл2). Тогда работа этой силы, когда заряд q1 неподвижен, а заряд q2 передвигается по отрезку [0,1; 10000] м, равна
.
№10. Какую работу требуется выполнить, чтобы с помощью ракеты тело массы m поднять с поверхности Земли, радиус которой R, на высоту h? [4]
Решение. На тело массы m по закону всемирного тяготения действует сила , где M - масса Земли, а r - расстояние тела от центра Земли. Поэтому
.
На поверхности же Земли, т. е. при r=R имеем F=mg, т. е. и . Отсюда .
№11. . Найти работу, выполняемую при переносе материальной точки, имеющей массу m, из A(a) в B(b), если притягивающая её по закону Ньютона точка имеет массу м и находится в начале координат. [4]
Решение. По закону Ньютона сила тяготения равна , где г - гравитационная постоянная, а r - расстояние между точками. Тогда получаем
.
№12. Из цистерны, имеющей форму прямого кругового конуса радиусом основания R и высотой H, выкачивают воду через вершину конуса. Найдите совершаемую при этом работу. Найдите числовое значение работы при R=3 м, H=5 м, считая плотность воды с=1 г/см3.
Заключение
В заключение подведем некоторые итоги проделанной работы.
Были проанализированы различные учебники по теме, рассмотрены различные подходы к изложению исследуемого материала, вследствие чего выделены достоинства и недостатки каждого подхода, на основании этого и в силу необходимости полноценного изучения важнейших элементов интегрального исчисления в основной школе, а также в силу недостаточной разработанности методики преподавания этого материала с помощью использования физических моделей в школьном курсе математики, была разработана своя методика, также имеющая как свои недостатки, так и достоинства.
Среди недостатков выделим отсутствие универсальности у данной методики. Данное изложение материала на уроках возможно на сегодняшний день только в классах с углубленным изучением математики или физики, либо на факультативных занятиях.
Достоинствами данной методики являются
1) прикладная значимость материала (что в некоторых случаях облегчит работу и учителю физики);
2) эффективность обучения (за счет приведения практических примеров);
3) удовлетворение познавательных интересов учащихся.
Необходимо отметить, что основные цели и задачи, поставленные нами, были достигнуты. Тема «Интеграл», изучаемая с помощью разработанной методики, наиболее выпукло и ярко демонстрирует связь математики с физикой, позволяет полноценно и осознанно усвоить материал по теме.
В данной работе представлены как теоретический материал, так и практические упражнения. Физические модели и явления, рассматриваемые во второй главе, не выходят за рамки школьной программы по физике, а, следовательно, не требуют от учащихся дополнительных знаний по предмету, что удовлетворяет принципу доступности изложения материала, который в свою очередь сочетается с принципом достаточно высокого уровня трудности. Также в данной работе реализованы принципы наглядности (чертежи, графики к задачам), систематичности и последовательности в обучении.
Использование данной методики формирует такие специальные качества, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их, а, следовательно, способствует развитию мышления, памяти, внимания и речи учащихся.
У учителя при использовании данной методики есть возможность выбора пути изложения материала в соответствии с особенностями мышления и восприятия учащихся, а также в соответствии с их подготовкой по математике и физике. Например, учитель классов курса А может взять лишь некоторые факты данной методики, учитель же классов с углубленным изучением математики и физики может использовать всю методику целиком. В любом случае, данная работа может помочь каждому учителю в преподавании темы «Интеграл».
На мой взгляд, применение физических моделей при введении понятия интеграла, рассмотрении его свойств, отработке техники интегрирования и изучении приложений способствует осознанному качественному усвоению школьниками этого материала, развитию правильного представления об изучаемом понятии, его огромной значимости в физике, формированию мировоззрения учащихся.
Библиография
1. Алимов, Ш. А. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. сред. шк./ Ш. А. Алимов, Ю. М. Колягин, Ю.В. Сидоров и др. - М.: Просвещение, 1993. - 254 c.
2. Башмаков, М. И. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. сред. шк. - М.: Просвещение, 1992. - 351 с.
3. Берман, Г. Н. Сборник задач по курсу математического анализа [Текст]: Уч. пособие. - СПб.: Изд-во «Профессия», 2001. - 432 с.
4. Виленкин, Н. Я., Куницкая, Е. С., Мордкович, А. Г. Математический анализ. Интегральное исчисление [Текст]: Уч. пособие для студентов-заочников II курса физико-математических факультетов педагогических институтов. - М.: Просвещение, 1979. - 175 с.
5. Задачи как средство обучения алгебре и началам анализа в X классе [Текст]: Уч. пособие// Сост. Е. С. Канин. - Киров: Редакционно-издательский совет Кировского ГПИ имени В. И. Ленина, 1985. - 92 c.
6. Задачник по курсу математического анализа [Текст]: Уч. пособие для студентов заочн. отделений физ.-мат. фак-тов пединститутов. Ч. I// Под ред. Н. Я. Виленкина. - М.: Просвещение, 1971. - 343 с.
7. Зельдович, Я. Б. Высшая математика для начинающих и её приложения к физике [Текст]: Уч. пособие для физико-математических средних школ и проведения факультативных занятий. - М.: Наука, 1970. - 560 с.
8. Колмогоров, А. Н. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. общеобразоват. учреждений/ А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др. - М.: Просвещение, 1998. - 365 c.
9. Модели и моделирование в методике обучения физике [Текст]: Материалы докладов республиканской научно-теоретической конференции. - Киров: Изд-во Вятского ГПУ, 2000. - 90 с.
10. Мордкович, А. Г. Алгебра и начала анализа [Текст]: Учеб. для 10-11 кл. общеобразоват. учреждений. Ч. I. - М.: Мнемозина, 2003. - 375 с.
11. Никольский, С. М. Алгебра и начала анализа [Текст]: Учеб. для 11 класса общеобразоват. учреждений/ С. М. Никольский, М. К. Потапов. - М.: Просвещение, 2003.
Приложение
Опытное преподавание
Конспект факультативного занятия
Тема: Свойства интеграла.
Класс: 11 класс.
Триединая цель:
I. Образовательный аспект:
1) изучить свойства интеграла, продемонстрировать учащимся применение физических моделей при изучении свойств интеграла (межпредметную связь математики и физики);
2) научить применять свойства при вычисления интеграла, при решении задач математики и физики.
II. Развивающий аспект:
3) создать условия для развития практического, абстрактного и логического мышления учащихся.
III. Воспитательный аспект:
4) создать условия для осмысления ценности математических и физических знаний как средства познания мира.
Ожидаемый результат факультатива:
Репродуктивный уровень: знание свойств интегралов, умение применять их для вычисления интеграла.
Конструктивный уровень: умение применять свойства интеграла для решения простейших математических и физических задач.
Творческий уровень: умение применять свойства интеграла для решения нетривиальных текстовых задач с математическим и физическим содержанием.
Методы обучения, применяемые на факультативе:
· Объяснительно-иллюстративный
· Частично-поисковый
Формы организации познавательной деятельности учащихся:
· Фронтальная
· Индивидуальная
Формы контроля:
Контроль со стороны учителя
План:
I. Организация деятельности (1-2 мин.).
II. Актуализация знаний (2-3 мин.).
III. Изучение нового материала (25 мин.).
IV. Решение задач (10-12 мин.).
Литература: [2], [8].
Содержание.
Мотивация: Рассмотрим задачу. Скорость тела задается формулой v(t)=t3-2t2-1 м/с. Найти путь, пройденный телом за первые 10 с после начала движения.
Решение. Путь пройденный телом за первые 10 с после начала движения вычисляется по формуле
Как же вычислить интеграл от такой функции?
Для этого рассмотрим вспомогательную задачу.
Пусть к материальной точке, движущейся по оси х, приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону. Под действием этих сил материальная точка переместилась из точки а в точку b, при этом работа каждой силы на этом отрезке вычисляется по формулам: и . Тогда общая работа, совершенная обеими силами равна
. (1)
С другой стороны, если к телу приложены две силы F1(x) и F2(x), направленные по одной прямой в одну сторону, то их равнодействующая F(x) находится по формуле F(x)= F1(x)+F2(x). Работа этой силы равна
. (2)
В силу равенства левых частей в формулах (1) и (2), получаем равенство правых, т. е.
.
Нетрудно показать, что данное свойство выполняется для любого конечного числа сил, действующих на точку и направленных по одной прямой в одну сторону. Это свойство показывает, что интеграл суммы нескольких слагаемых разбивается на сумму интегралов отдельных слагаемых.
Попробуйте самостоятельно доказать, что если к телу приложены две силы F1(x) и F2(x), направленные по одной прямой, но в противоположную сторону, то тогда верно следующее равенство
.
Тогда, возвращаясь к исходной задаче, можно сделать следующую запись
.
Как видно из формулы под знаком интеграла остались постоянные множители.
Теперь проверим можно ли за знак интеграла вынести постоянный множитель.
Вспомним рассмотрение задачи о давлении жидкости на прямоугольную стенку бассейна с основанием а, в результате решения которой была получена формула
, (3)
где а - величина постоянная, равная ширине стенки бассейна.
Разделим прямоугольную стенку бассейна на а прямоугольников с основанием, равным единице. Тогда весь бассейн также разделится на а равных частей, при чем давление на прямоугольную стенку с основанием, равным единице в каждой части будет вычисляться по формуле . Учитывая, что во всех частях давление одно и то же и всего частей а, то общее давление равно
. (4)
В силу равенства левых частей в формулах (3) и (4), получаем равенство правых, т. е.
.
Данное равенство можно обобщить на произвольную непрерывную функцию F(x) и произвольный отрезок [a; b], т. е.
.
Данное свойство показывает, что постоянный множитель можно выносить за знак интеграла.
Тогда применяя это свойство к решению исходной задачи, получаем
.
Выведенные формулы называются свойствами линейности интеграла.
Но интеграл обладает и другими свойствами, которые необходимо знать для решения задач. Одно из таких свойств выглядит следующим образом
.
Рассмотрим доказательство данного свойства на задаче о перемещении точки [с.18].
При введении интеграла рассматривается случай, когда нижний предел интегрирования меньше верхнего. Но определенный интеграл можно обобщить и на случай, когда верхний предел меньше нижнего. В этом случае обратимся к определению интеграла как суммы. Разбивая отрезок от [a; b] промежуточными значениями t1, t2, …,tn-1, убедимся, что все Дt теперь отрицательны. Легко убедиться, что
, (5)
так как при любом разбиении отрезка [a; b] соответствующие суммы будут отличаться знаками всех Дt во всех слагаемых.
Следующее свойство называется свойством аддитивности интеграла
.
Докажем свойство на примере задачи о перемещении точки [с.18].
Существенное свойство интеграла состоит в том, что область интегрирования можно разбить на части: путь, пройденный за время от а (начала) до b (конца), можно представить
как сумму пути, пройденного за время от a до c (промежуточного момента) и от c до b
. (6)
При помощи соотношения (5) можно распространить формулу (6) и на случай, когда с не лежит внутри промежутка [a; b].
Пусть c>b>a. Тогда очевидно
.
Перенесем последнее слагаемое в левую часть и воспользуемся (5)
. (7)
Таким образом, получили равенство (7), в точности совпадающее с (6).
Аналогично можно рассмотреть случаи другого расположения чисел a, c, b (их всего шесть вариантов), которые нужно самостоятельно разобрать и убедиться, что формула (6) оказывается верной во всех этих случаях, т. е. независимо от взаимного расположения чисел a, c, b.
Ещё одно свойство интеграла звучит так:
если на отрезке [a; b], то .
Вспомним формулу для вычисления массы стержня по известной плотности.
.
Как известно, плотность вещества - это физическая величина, показывающая, чему равна масса вещества в единице объема, следовательно, это величина неотрицательная. С другой стороны масса вещества есть также величина неотрицательная. Таким образом, получаем: если подынтегральная функция неотрицательна на рассматриваемом отрезке, то
.
Далее учащимся для самостоятельного решения предлагаются следующие задачи:
1) на вычисление интеграла ([2] стр.264 №11 8)-9), 15)-16), 23));
2) с физическим содержанием ([8] стр.193 №373, 374, 376; [2] стр.269 №3)
Замечание. Данная методика изучения свойств интеграла возможна при условии, что учащиеся знают все используемые при доказательствах формулы. Этого можно добиться, вводя понятие интеграла следующим образом. Методом дифференциалов, а конкретно на задаче о перемещении точки вводится понятие интеграла, затем этим же методом выводится формула для вычисления массы стержня по известной плотности. Далее поясняется, что интегралы можно приближенно вычислять с помощью составления интегральных сумм, и именно с этим методом исторически связано появление понятия интеграл. Этот метод рассматривается на задаче о давлении жидкости на стенку и на задаче о работе силы.
Анализ. Данные свойства интеграла, как известно, можно вывести и другим способом (например, с помощью формулы Ньютона-Лейбница и с использованием свойств площади криволинейной трапеции). Но используемые в доказательствах физические модели, во-первых, наглядны, а, следовательно, легче воспримутся учащимися, позволят лучше запомнить свойства и оставят в памяти учащихся наглядное представление о каждом из свойств. Во-вторых, при соответствующей методике введения понятия интеграла, данная методика введения свойств заставляет постоянно повторять пройденное, вспоминать выведенные при введении формулы (а, следовательно, и сами формулы лучше отложатся в памяти учащихся). Все это удовлетворяет принципу прочности знаний и наглядности в обучении. Учитывая, что понятие интеграла вводилось через физические модели, а свойства вводятся аналогично, то при данной методике выполняется и принцип последовательности и систематичности в обучении, и принцип доступности. Выше описаны ценные стороны факультатива, но есть и недостаток - данная методика подходит не для всех учащихся. Например, в гуманитарных классах она не применима, данным классам достаточно иметь общее представление об интеграле.
Подобные документы
Общие вопросы изучения тригонометрических функций в школе. Анализ изложения темы "Тригонометрические функции" в различных школьных учебниках. Методика преподавания темы в курсе алгебры и начал анализа. Опытное преподавание.
дипломная работа [213,1 K], добавлен 08.08.2007Понятие определенного интеграла. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям в определенном интеграле. Задача о площади криволинейной трапеции. Задачи, приводящие к понятию определенного интеграла.
дипломная работа [616,9 K], добавлен 24.06.2011Психолого-педагогические основы применения принципа наглядности в обучении. Современные средства информатизации образования, интерактивная доска. Функциональная линия в школьном курсе алгебры 7-9 классов. Сравнительный анализ изложения темы "Функции".
дипломная работа [2,9 M], добавлен 08.12.2011Понятие линии второго порядка в аналитической геометрии, содержание темы в элементарной математике. Примеры фрагментов уроков алгебры в 7-9 классах. Анализ содержания темы "Линии второго порядка" в учебниках по алгебре. Вывод уравнения окружности.
дипломная работа [770,8 K], добавлен 25.04.2012Средства систематизации учащихся при обучении старших школьников и их влияние на математическую подготовку. Методика обучения учащихся систематизации учебного материала на уроках алгебры. Цели и содержание темы "Показательные и логарифмические уравнения".
дипломная работа [100,1 K], добавлен 30.05.2015Понятие квадратного трехчлена и квадратичной функции, их место в школьном курсе алгебры. Определение порядка раскрытия темы по решению квадратных уравнений и неравенств на уроках математики. Разработка методики по изучению квадратного трехчлена в школе.
дипломная работа [1,6 M], добавлен 18.07.2013Из истории возникновения раздела о движениях в школьном курсе геометрии. Психолого-педагогические основы изучения движений в школьном курсе геометрии. Мультимедийное пособие по теме "Движения на уроках геометрии" и методика его применения в обучении.
дипломная работа [3,4 M], добавлен 23.04.2011Уравнение как общематематическое понятие. Направления изучения линии уравнений в школьном курсе алгебры. Методика изучения квадратных уравнений. Характеристика форм уроков. Разработка и практическое использование различных форм уроков математики.
дипломная работа [4,0 M], добавлен 29.01.2011Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Подходы к изучению понятия "функция". Функциональная пропедевтика. Методические рекомендации по изучению функциональной линии по учебникам.
дипломная работа [3,1 M], добавлен 08.08.2007Психолого-педагогические основы обучения математике в школе. Физиологические особенности подростков, особенности развития их личности и познавательной сферы. Двуполушарный подход в обучении - средство развития мышления. Работа с графиками в курсе алгебры.
дипломная работа [927,2 K], добавлен 05.11.2011