История системного подхода в науке и технике
Представление о системах и системном подходе. Системное представление о мире, системность в природе. Ограничения при системном подходе. Развитие системного подхода в науке и технике. Становление инженерной деятельности и проблемы, возникающие перед ней.
Рубрика | Философия |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 20.03.2011 |
Размер файла | 215,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Развитие современной генетики началось одновременно с развитием других отраслей постклассического естествознания - в первых годах XX в., с переоткрытия несправедливо забытых перед тем законов Менделя (1900 г.) и введения в 1909 г. понятия “ген” (элементарная единица наследственности; как позднее выяснилось - отрезок молекулы нуклеиновой кислоты).Г. Мендель (1822-1884) в своей классической работе 1865 г. “Опыты над растительными гибридами" не употреблял, конечно, этой современной терминологии, но открыл существеннейшие закономерности наследственной передачи: независимость комбинирования генов (он писал: “наследственных факторов”), рецессивность и доминирование (см. ниже). По терминологии XX в., каждый ген лежит в основе какого-либо признака (впрочем, есть случаи определения признака несколькими генами и влияния гена на несколько признаков - упомянем об этом для полноты картины, но абстрагируемся от этих случаев). Гены и соответственно признаки при наследственной передаче дискретны и передаются независимо один от другого.
3.25 Теория эволюции Дарвина и ее синтез с генетикой
Генетика в тех ее формах, какие она приобрела в первую половину XX столетия, удачно объясняла постоянство наследственной природы организма, но в меньшей степени эффективно давала интерпретацию изменений этой природы. Между тем независимо от генетики (так сложилось первоначально) такую интерпретацию давало эволюционное учение и в особенности возникший в середине XIX в. дарвинизм.
Предположения о том, что современный растительный и животный мир не существовал извечно, но представляет собой нечто исторически возникшее и изменявшееся, бывали еще в древнем мире. Эти догадки принимали форму креационизма, т.е. учения о сотворенности жизни; иногда также форму учения о самозарождении жизни в неживых субстратах (иле, морской воде и т.д.). Постепенно накапливался позитивный материал (селекция, находки остатков вымерших организмов, обнаружения атавизмов), свидетельствовавший об историчности всех проявлений жизни.
С 1796 г. берет начало палеонтология - наука о строении, системе и свойствах ископаемых организмов. Сначала возникла палеонтология позвоночных (работы Ж. Кювье, 1769-1832, который был также основателем сравнительной анатомии), затем и беспозвоночных (1810-е гг. - работы Ж.Б. Ламарка (1744-1829), автора первой целостной эволюционной теории). Успехи биологии дали людям средства для борьбы со многими заболеваниями, в том числе инфекционными, и поставили на научную основу селекцию полезных организмов. Однако развитие наук о жизни тормозилось рядом ошибочных концепций: линнеевской догмой неизменности видов, теорией катастроф Кювье (жизнь на Земле якобы периодически погибла и затем создавалась вновь, в иной форме), учением Ламарка о наследовании приобретенных признаков.
Генетика послужила удачным дополнением дарвиновской теории эволюции. В частности, дискретность наследственных зачатков разъяснила одну из трудностей, с которой столкнулась концепция естественного отбора: при скрещивании вновь возникающие полезные признаки, казалось бы, должны были раствориться в массе старых бесполезных и исчезнуть. На самом деле они сохраняются даже при своей рецессивности и как сказано, в благоприятном случае вновь проявиться. К 60-м годам генетика столь тесно сплелась с теорией эволюции, что это привело к созданию синтетической теории эволюции (СТЭ) - концепции, объединившей генетику и отчасти молекулярную биологию (исследование биологических объектов на молекулярном уровне) с концепцией естественного отбора. Основные позитивные моменты теории Дарвина признаны СТЭ. В самом деле, сторонники СТЭ признают, давая новые толкование, также постулаты - теперь можно сказать, факты - как ненаправленная изменчивость (она объяснена как мутации - внезапные стойкие изменения генов; они как спонтанные встречаются в природе, а искусственно могут быть вызваны радиацией и химическими агентами - “мутагенами”); изоляция, способствующая накоплению изменений (в современном толковании: мутаций); естественный отбор (этот центральный для теории Дарвина пункт остался без изменений, т.е. трактуется как выживание наиболее приспособленных). Вместе с тем СТЭ отвергла как противоречащие реальности некоторые иногда встречаемые у Дарвина, хотя в целом не характерные для него ошибочные тезисы, например, иногда (далеко не всегда) допускаемое им наследование приобретенных признаков. Оно признавалось ранее многими, особенно Ж.Б. Ламарком, который создал на основе этого тезиса одну из наиболее ранних разновидностей эволюционного учения. У нас агрессивный вариант ламаркизма проповедовался в 1930-1960-х гг. “школой" Т.Д. Лысенко. Однако теперь идея наследования приобретенных признаков имеет лишь историческое значение.
3.26 Селекция, экология, клонирование, генетический код
Отбор действует преимущественно на уровне популяции. Поэтому в качестве неотъемлемого компонента в СТЭ вошла генетика популяций, т.е. изучение наследственных процессов в популяциях растений и животных; с генетикой популяций тесно связаны также включенные в СТЭ эволюционные аспекты - экологии - науки о связи организмов с условиями их местообитаний. Генетика приобретает в настоящее время огромное прикладное значение. Помимо уже давно применяемых методов улучшения пород домашних животных и сортов культурных растений с помощью искусственного мутагенеза, теперь начинают распространяться и приемы генной инженерии - целенаправленного изменения генов, вплоть до операций на генах и в целом воздействия на наследственную природу. С 1997 г. развернулись опыты по клонированию - генетическому копированию животных, в том числе из вегетативных клеток (ибо геном, т.е. набор генов организма, во всех клетках тождествен). Потенциально этот метод применим и к людям, но этические аспекты допустимости выведения “двойников” вызывают ожесточенные споры.
3.27 Цитология, биохимия, физико-химическая биология
По разнообразию своих уровней, от молекулярного до биосферного, с живой материей не может сравниться ни одна из других форм существования природы. Естественно, что мы не можем здесь подробно рассмотреть все эти уровни. Остановимся специально на одном из них, в известном смысле ключевом для понимания жизни на клеточном. Еще в классический период естествознания клетка была признана универсальной ячейкой всего живого. Сейчас так нельзя сказать безоговорочно, есть и доклеточные формы жизни (вирусы), и организмы с нетипичной (безъядерной) клеткой - прокариоты, например, бактерии и сине-зеленые водоросли. Но в целом всеобщая роль клетки с ее характерными структурами признается и сейчас. Именно клетка является той “ячейкой” организации, на уровне которой впервые в полной мере проявляются все свойства жизни как таковой: целостность, обмен со средой (открытость), целесообразное реагирование, сложность строения, способность к размножению.
Чтобы лучше понять современные представления о биологической клетке, полезно остановиться на некоторых сведениях из прошлого экспериментальных и описательных в биологии. Реальная эффективность экспериментального подхода в этой области проявилась почти одновременно с успехами эксперимента в физике (и раньше, чем в химии), а именно с 1628 г., когда У. Гарвей открыл кровообращение и определил его важные параметры (в частности, количество крови, выбрасываемое сердцем при каждом сокращении). В целом же для биологии XVII - первой половины XIX вв. характерно преобладание описательных исследований, развитию которых способствовало открытие огромного числа новых видов в эпоху великих географических открытий XVII в. и затем в ходе экспедиций XVIII - XIX вв., проникших в труднодоступные районы внутренней Африки, Сибири, Америки и других регионов.
Благодаря изобретению микроскопа в середине XVII в., перед учеными открылся мир микроорганизмов и клеточных, а затем и субклеточных структур. Клетка была описана английским натуралистом Р. Гуком (1635-1703) в 1665 г. в труде “Микрография”, но лишь в 1838-1839 гг. немецкий зоолог Т. Шванн оценил ее значение как основной ячейки строения организма, т.е. создал клеточную теорию - учение о том, что клетка представляет собой универсальную ячейку всех живых организмов. В основном эта теория сохраняет свое значение, хотя открыты и бесклеточные организмы - вирусы. Впрочем их не всегда признают за живые, поскольку они могут кристаллизироваться наподобие неживых объектов. Но им свойственны размножение делением и другие характерные свойства живого, о которых см. раздел 4.1.
3.28 Возникновение жизни на Земле
Наибольшее распространение получила гипотеза происхождения жизни, разработанная А.И. Опариным. Согласно этой гипотезе, первым этапом предбиологического процесса было перемещение тяжелых элементов к центру Земли, легких - на ее поверхность. Это происходило 5-4 млрд. лет назад, когда Земля была очень горячей. Атмосфера состояла из водорода и его соединений (воды, точнее, водяного пара; метана, аммиака, цианистого водорода и т.д.). В ней под действием излучения Солнца возникли сравнительно несложные органические вещества: сахара, аминокислоты, уксусная, молочная, муравьиная кислота и др. Этот процесс удается воспроизвести в лаборатории.
Затем абиогенным путем, в отсутствии свободного кислорода (он появился в атмосфере позднее, под действием зеленых растений) были синтезированы более сложные соединения, включая аденозинтрифосфат (АТФ) - богатое энергией соединение, впоследствии играющее центральную роль в энергетическом балансе организмов. В процессе охлаждения земли водяной пар превращался в воду, образовался “первичный бульон” - водный раствор аммиака, двуокиси углерода, метана и упомянутых более сложных органических соединений. В результате их полимеризации возникли линейные полимеры: полипептиды и полинуклеотиды. Последние способны к самокопированию почти так называемого комплементарного связывания их нуклеотидов (мономеров): аденина с урацилом, гуанина и уитозином. Этот процесс сам по себе идет очень медленно, но мог быть ускорен тем, что среди образовавшихся к тому времени полипептидов некоторые были катализаторами, т.е. могли, не расходясь сами, ускорять матричный синтез и урацила на аденине, цитозина на изанине. При этом путем отбора, т.е. отмирания нежизнеспособных комбинаций, сохранялись лишь “удачные” комбинации катализаторов и нуклеиновых кислот, т.е. (сначала РНК, затем более сложный ДНК), т.е. образовался генетический код. Так появились первые организмы (гетеротрофы, поскольку свободного кислорода еще не было, и прокариоты или даже еще более примитивные).
Однако главная и далеко еще не решенная проблема, связанная с появлением жизни и первых организмов, заключается в выяснении процессов, приведших к формированию генетического кода. Оно относится к древнейшим временам, видимо, еще к стадии химической эволюции, поскольку даже для прокариотной клетки, например, бактериальной, характерно наличие двойной спирали ДНК, правда, несколько более примитивного типа, чем у эукариотов. Бактерии, как и все клеточные организмы, содержат оба типа нуклеиновых кислот, ДНК и РНК, вирусы - только одну из них. Однако неизвестно, является ли простота вирусов первичной или вторичной. Во всяком случае, современные вирусы не могли существовать раньше клеточных организмов, ибо живут, только паразитируя на них.
Половой процесс возник на стадии прокариот; он имеется, например, у бактерий, хотя и не обязателен (существует наряду с простым делением). Во всяком случае наследственность и изменчивость представлены уже на самих ранних этапах происхождения жизни, причем в самом общем плане на основе тех же генетических механизмов, что и сейчас. Поэтому можно считать, что генетика является столь же универсальной по применимости биологической дисциплиной, как биохимия или биофизика.
Клетки, действительно возникшие, скорее всего, симбиогенным путем, (продолжали захватывать более мелкие аэробные клетки, которые, будучи богаты АТФ, эволюционировали, с одной стороны в митохондрии - энергетические центры клеток; с другой, в фотосинтезирующие хлоропласты) около 3 млрд. лет назад образовали многообразные скопления - колонии. По видимому, это были уже не стадии эукариотной жизни. В результате “разделения труда" между клетками колонии возникли многоклеточные организмы. Этот процесс знаменовал переход от древнейшей, архейской эры в истории Земли к протерозойской - “эре первичной жизни" (название достаточно условное, так как появлению многоклеточных предшествовала эволюция доклеточных и одноклеточных организмов в течение по меньшей мере одного - двух млрд. лет). Вплоть до палеозойской эры, около 1 млрд. лет назад, на Земле господствовали сравнительно примитивные животные (губки, кишечнополостные) и водоросли. В течение палеозойской эры, закончившейся около 200 млн. лет назад, растения постепенно усложнялись, вплоть до голосеменных, а из животных бурно развивались беспозвоночные (моллюски, гигантские ракоскорпионы, иглокожие - кембрийский период); затем - в силурийском периоде - осуществляется выход на сушу беспозвоночных, несколько позднее, в каменноугольном периоде - позвоночных. Первоначально это были земноводные (стегоцефалы), затем от них произошли уже более свободные от водной стихии, даже в своем размножении, пресмыкающиеся.
В течение мезозойской эры, приблизительно 200-100 млн. лет назад, шло иссушение климата Земли в связи с бурными горообразовательными процессами. Рептилии заняли господствующее положение и завоевали все среды обитания, вплоть до воздушной (летающие ящеры). Поздний мезой (меловой период) - время появления и стремительного распространения по всей суше известковых растений. Это также время появления млекопитающих, победивших рептилий в борьбе за существование благодаря ряду крупных эволюционных преобразований, открывших пути к дальнейшей эволюции (такие преобразования часто называют ароморфозами, в отличие от менее значительных, чисто приспособительных изменений - идиоадаптаций): благодаря более совершенной заботе о потомстве (внутриутробное развитие, вскармливание детенышей молоком), четырех камерному сердцу и полному разделению венозной и артериальной частей кровеносной системы, образованию волосяного покрова, совершенствованию коры головного мозга, преобладанию условных рефлексов над безусловными, что обеспечило более гибкое приспособление к среде.
Общей базой всех этих эволюционных процессов был естественный отбор. За мезозойской эрой последовала кайнозойская, важнейшим событием в ходе которой была с точки зрения эволюции смена естественного отбора, как доминирующего механизма эволюции, более сложными, социальными механизмами. Речь идет о возникновении человека, т.е. об антропогенезе.
3.29 Проблема возникновения и эволюции человека
Происхождение человека также входит со времен Дарвина в круг проблем, изучаемых теорией эволюции. В настоящее время наиболее вероятной признается концепция, согласно которой предки человека - рамапитеки отделились от человекообразных обезьян в миоцене, т.е.12-15 миллионов лет назад. Фрагменты челюстей рамапитеков находят в Индии, Кении и даже в Европе (Венгрия). Потомками рамапитеков был прямоходящий и изготовлявший каменные орудия Homo habilis (“человек умелый”), а также близкие к нему виды, жившие 3,5-2 млн. лет назад. Их остатки найдены в 1960-1970-х гг. в Танзании и Кении. Ближе к нам питекантропы и синантропы, жившие несколько сотен тысяч лет назад. Они уже употребляли огонь. Еще ближе к нам, появившиеся около 200 тысяч лет назад и создавшие элементы цивилизации (жилища, религия) неандертальцы. Наконец, человек современного вида - кроманьонец - появился на Земле около 80 тысяч лет назад. Движущими факторами антропогенеза (так называют процесс историко-эволюционного формирования человека) явились естественный отбор и мутации, в сочетании с позднейшими факторами: речью, трудом, социальностью.
3.30 Исследования поведения животных и человека
Важным направлением современной биологии, во многом смыкающимся с такими областями гуманитарного знания, как психология, социология, социальная психология и др., является также исследование поведения животных и человека. В биологическом плане это направление основывается на достижениях физиологии. Что касается изучения поведения человека и высших животных (млекопитающих), здесь основополагающим продолжает оставаться изучение условных рефлексов, открытых И.П. Павловым. Вместе с тем значительное развитие получили концепции “социальности" поведения животных, изучение явлений иерархии и доминирования в группах, коммуникации и т.д. Любопытным открытием явилось явление импринтинга - процесса на ранних этапах онтогенеза, в ходе которого животные научаются определенным действиям и связывают их с тем, кто осуществлял научение (или даже просто присутствовал при этом).К. Лоренц обнаружил, что если, учась передвигаться по суше, утята видели его, а не собственную мать-утку, то потом следовали за ним так же, как должны были бы следовать за матерью. Важным направлением развития науки на грани биологии и общественных наук является исследование группового поведения, иногда обозначаемое как социобиология. С ее помощью в группах приматов и других животных обнаружены такие явления, как иерархия, забота о слабых, сложные формы коммуникации.
3.31 Междисциплинарный характер современной биологии
В течение XIX столетия и особенно в XX в. (очевидно, эта тенденция сохранится и в XXI столетии) биологическое исследование все в большей мере приобретает междисциплинарный характер. Математика, физика, химия вошли в биологическое исследование как методы и компоненты. Физическая химия и химическая биофизика особенно важны в этом контексте. “Без преувеличения можно сказать, что именно современная физико-химическая биология как бы в единый комплекс объединила биологические дисциплины, которые ранее по объективному признаку считались самостоятельными. Сказанное относится не только к экспериментальным наукам, развитие которых всецело определяется характером и уровнем используемых ими физико-химических методов. Этими же методами пользуется сегодня … традиционная биология. Например, цитология и морфология издавна оценивались как описательные науки, а биохимия - как типично экспериментальная, имеющая независимый путь развития и накапливающая собственный багаж знаний. Какую же роль в судьбе этих наук сыграла физико-химическая биология?
Электронно-микроскопическая цитология воедино слилась с биохимией. Она “заговорила" на языке биохимии, а биохимия обрела новую роль: она стала топографической (от греч. topos - место, местность + grapho - пищу) биохимией клетки и получила возможность “вписать” процессы обмена веществ в общую картину цитологических структур. Появилась реальная возможность совместить субмикроскопическую и молекулярную системы клетки с функциями составляющих эти системы компонентов. Осуществилась давняя мечта биологов об объединении знаний о структуре и функциях организма в целом. Прямым следствием этого оказалось то, что традиционное разделение биологии на науки о строении - цитологию, гистологию, анатомию, морфологию - и науки, исследующие физиолого-биохимические процессы - физиологию и биохимию - в значительной мере утратило свой первоначальный смысл.
Таким образом, в биологии второй половины XX в. явственно обозначилась двойственная тенденция в ее развитии. С одной стороны, объективная и дисциплинарная специализация вследствие вычленения и конкретизации все новых объектов, требующих и особых подходов к их изучению. С другой стороны, происходит объективно-методическая интеграция биологических наук: проявляется тенденция к формированию как бы единого фронта наук, выявить границы между которыми становится все труднее" [1].
3.32 Взаимосвязь человека и природы
В наше время человеческая деятельность все более активно вторгается в природу, создавая на поверхности Земли практически современно новую экологическую среду. Соответственно в экологии и географии все большее место занимают исследования, так или иначе связанные с анализом последствий деятельности человека. Можно отметить направления, ориентированные на изучение культурных ландшафтов, антропогенных черт окружающей среды, результатов хозяйственной деятельности человека. На грани между биологией и физической географией возникла междисциплинарная область исследований - экология, изучающая динамику популяций и их приспособленности к среде, эффекты от воздействия человека на природу, процессы взаимодействия человека и природы. Важнейшими для экологии понятиями стали введенные в тридцатых годах понятия экосистемы (совокупность совместно обитающих животных и растений и их абиотической, т.е. неживой среды; понятие введено А. Тэнсли в 1935 г.) и биогеоценоза (единство организмов, населяющих определенный участок земли, и его ландшафтных, водных и почвенных условиями; понятие введено В.Н. Сукачевым в 1936 г.). Оба понятия характеризуют биогеоценотический уровень организации (см.2.3.). Различие между ними лежит в том оттенке, что в понятие биогеоценоза делается ударение на единстве организмов с их средой, в то время как “экосистема”, напротив, констатирует совместное наличие организмов и среды; и еще в том, что Сукачев подчеркивает такой компонент среды, как почву.
Это отнюдь не случайно, поскольку почвоведение как наука о почве - поверхностном слое земной коры, несущем растительный покров и характеризуемом качественно особым свойством - плодородием - родилась в России и была создана в 1860-1880-х гг. трудами Ф.И. Рупрехта и В.В. Докучаева. Двадцатый век и в этой области принес переворот, поскольку К.К. Гедройц в 1910-х гг. создал новое междисциплинарное направление - коллоидную химию почв и обнаружил в почвах “поглощающий”, или коллоидный комплекс, определяющий динамику почвенных процессов. Благодаря этому открытию Гедройцу удалось создать эффективную теорию мелиорации почв.
Учения об экосистеме и биогеоценозе сыграли важнейшую роль в построении концепций биосферы и ноосферы (см. ниже). Здесь же необходимо подчеркнуть наряду с огромным значением деятельности человека для окружающей среды еще и другую сторону вопроса - неотъемлемость человека от природных корней его существования. В основе всех сложнейших видов человеческой деятельности лежат достижения эволюции, хотя конечно, сами эти виды деятельности далеко не сводятся к своей биологической основе и не исчерпываются ею. Например, интеллектуальная деятельность была бы невозможна без накапливаемых в течение жизни условных рефлексов; управление механизмами, в том числе такими сложными, как компьютеры - без сенсорной базы человека (органов чувств с их характерным диапазоном, включая слух, цветное зрение и т.д.), возникшей в ходе эволюции и являющейся ее наследием. Собственно именно из-за этой неразрывности природного и интеллектуального, знание современных естественнонаучных концепций является необходимым специалистов в области гуманитарных наук.
3.33 Современный уровень знаний в науках о Земле
Если говорить только о новом времени, то в области наук о Земле роль, сходную с ролью дарвинизма в биологии, сыграли работы Ч. Лайелля (1797-1875), доказавшие однородность физических факторов, формировавших поверхность Земли, сейчас и в отдаленные геологические эпохи. Это помогло решить продолжавшийся в течение XVIII - первой половины XIX в. спор “вулканистов” и “нептунистов”, выдвигавших на первый план соответственно факторы, связанные с деятельностью вулканов и с работой воды. В налаживании связи между геологическими и биологическими дисциплинами особую роль сыграл опубликованный в 1875 г. в Вене труд Э.Ф. Зюсса “Возникновение Альп”, где введено важнейшее понятие биосферы - оболочки Земли, являющейся областью распространения жизни и ареной деятельностью организмов. Благодаря этому получила законченный вид модель Земли как шара (или близкого к шару слегка сплюснутого “геоида”), в центре которого находится массивное ядро, а по периферии от него - сферические оболочки, “геосферы”: мантия, литосфера (она же земная кора - твердая, каменистая оболочка Земли) и гидросфера - прерывистая водная оболочка (моря, океаны, озера, реки и т.д.). Очевидно, что биосфера охватывает часть гидросферы (кроме некоторых глубоководных участков или водоемов, перенасыщенных солями) и самые нижние слои атмосферы, а на поверхности суши образует сплошной - если учитывать микроорганизмы - покров. Но при этом не обращалось специального внимания на деятельность человека, по существу надстраивающую над биосферой еще одну оболочку. Концепция биосферы эффективно способствовала приданию завершенности всей системе классического естествознания.
Появившиеся в результате обновления в течение XX в. естественно-научных представлений практически во всем их объеме, новые концепции природы и материи не могли не коснуться и области исследований строения Земли. Открытие П. Кюри и М. Склодовской в 1899-1903 гг. явления радиоактивного распада позволило разработать методику определения абсолютного возраста горных пород. Возраст Земли оказался равным не нескольким десяткам миллионов лет, как полагали ранее, а, по крайней мере, двум-трем миллиардам лет. Начальные этапы истории Земли стало возможным связать с космогонической эволюцией.
Была выявлена общность химического состава Земли и метеоритов. Изучена история земной атмосферы. Древнейшая атмосфера была весьма разреженной и состояла в основном из паров воды и из углекислого газа, современная же атмосфера образовалась как вторичная, причем весь свободный кислород в ней возник как продукт фотосинтеза, а азот - в результате вулканических извержений.
Выяснена структура такого грозного и опасного явления, как землетрясение. Его очаг представляет собой разрыв в земной коре, на глубине в большинстве случаев 20-30 км. На основании “стандартной” модели Земли, в основе которой лежат рассмотренные нами представления о земной коре, мантии и ядре, разработан метод определения очагов землетрясения - “сейсмический годограф
3.34 Учение Вернадского о биосфере и ноосфере
Важнейшим достижением в области наук о Земле в XX в. - достижением, которое в значительной мере относится и к биологическим, гуманитарным и техническим наукам, объединяя их в единое целое - было создание В.И. Вернадским (1863-1945) учения, глубоко укоренившегося в традициях русского естественнонаучного и философского мышления. Непосредственно же Вернадский исходил из концепций своего учителя, В.В. Докучаева (1846-1903), которые на основе своих исследований строения почв значительно углубил существовавшее и ранее учение о зональной структуре биосферы и области человеческого обитания на Земле (ойкумены), стал разрабатывать новые глобальные обобщения, получившие с двадцатых годов мировое признание. Прежде всего, Вернадский углубил учение Зюсса о биосфере, показав, что ее компоненты - атмосферный, гидросферный и литосферный (биосферы частично перекрывается с литосферой, т.е. земной корой, а именно с ее верхней частью) - непрерывно обмениваются потоками вещества и энергии (так называемые биогеохимические циклы миграции вещества и энергии).
Вернадский раскрыл планетарную функцию живого вещества, о которой мы отчасти уже говорили, упомянув, что весь свободный кислород земной атмосферы является результатом деятельности зеленых растений. Но также и горючие сланцы, нефти, угли, вообще каустобиолиты - горючие ископаемые органического происхождения - созданы живым веществом планеты. То же в значительной мере верно о известняках, глинах и таких продуктах их метаморфоза, как мраморы и граниты. К современной биосфере они не относятся, но составляют реликтовую “область былых биосфер”.
Учение о биосфере связывается с конкретно-биологическими исследованиями через уже рассмотренные нами понятия экосистемы и биогеоценоза, которые можно рассматривать как “ячейки" или элементарные структуры биосферы, как ее составляющие. Почва составляет неотъемлемую часть этих структур, источник их продуктивности, а следовательно и один из важнейших компонентов биосферы в целом. Огромное значение имеет вставшая перед человечеством в особенности именно в XX веке задача сохранить биологические ресурсы биосферы, нейтрализовать вредные последствия техногенных и антропогенных воздействий на нее. Биосфера устойчива благодаря многообразию своих живых компонентов (организмов, видов). Сознательно или несознательно снижая это разнообразие, человек подрывает основы своего биологического существования. Вернадский отчетливо видел это и считал, что одна из задач науки - предотвратить опасности, угрожающие биосфере.
3.35 Понятие ноосферы
При этом Вернадский пошел еще дальше и, опираясь на усовершенствованное им учение и биосфере, выдвинул концепцию еще одной оболочки Земли, ноосферы, сферы взаимодействия человека и биосферы (опосредованно также - природы в целом), для которой (для ноосферы как последней по времени формирования земной оболочки) определяющим факторов является человеческая деятельность.
Особенно важным при этом является технизованный и общественный характер этой деятельности. При рациональном подходе ноосфера, постепенно охватывая и пронизывая биосферу, не уничтожит ее богатств, поскольку человек как главный системообразующий фактор носсферы может и должен прилагать все усилия к их сохранению и (в том, что касается возобновимых, т.е. биологических ресурсов) приумножению, а также проводить мероприятия по охране природы, включая создание биосферных заповедников.
3.36 Неизбежность перехода биосферы в ноосферу
Чтобы уяснить себе соотношение биосферы и ноосферы, надо иметь в виду, что последняя по времени охватывает лишь ничтожный отрезок времени сравнительно с миллиардами лет существования биосферы; и тем не менее за этот малый отрезок, в особенности (если иметь в виду наиболее интенсивное развитие ноосферы) за XX век и даже меньше - за период существования того, что науковеды называют “большой наукой”, т.е. за последние полвека - ноосфера по порядку величины своих планетарных воздействий практически сравнялась с биосферой. Из космоса можно теперь наблюдать Землю как мощную радиоизлучающую звезду - благодаря радиостанциям и другим источникам техногенных излучений. Ноосфера является, с одной стороны, принципиально новым состоянием и завершающей стадией развития биосферы; но с другой стороны, она особая оболочка, поскольку пока еще не вся биосфера переходит в ноосферу. Со временем положение измениться и в конечном счете вся биосфера неизбежно перейдет в ноосферу.
Далее, ноосфера (буквальное значение этого греческого слова - “сфера ума”) есть плод дискретных человеческих интеллектов. Она не является в полном смысле - как, например, атмосфера - сплошной, но, тем не менее она достаточно непрерывна, чтобы можно было с основанием считать ее еще одной, пятой (наряду с литосферой, гидросферой, атмосферой и биосферой) оболочкой Земли или геосферой. Ведь в нее входят не только люди, но и все результаты их деятельности и влияния. Со всеми присущими другим оболочкам энергиями ноосфера сопоставима по мощности своего воздействия на природу. Благодаря космическим полетам ноосфера уже сейчас не только идеальным образом, через познание (зрение, телескопы) выходит за земные пределы, но и вполне материально - через космические зонды и другие аппараты - соприкасается с космосом, продолжая и развивая космическую функцию, присущую уже биосфере (зеленые растения как источник кислородного компонента атмосфера). Опыты по созданию искусственной пищи могут, в конечном счете, превратить человечество в автотрофную систему, что будет представлять собой прорыв и новацию по отношению ко всем имевшимся в течение миллиардов лет существования Вселенной формам использования энергии.
Параллельно с вариантом Вернадского, другие трактовки концепции ноосферы предложили во Франции Э. Леруа (1870-1954) и П. Тейяр де Шарден (1881-1955). Из них более разработан в естественнонаучном плане вариант Тейяра, рассматривавшего эволюцию Вселенной как цепь стадий усложнения единой субстанции - “ткани Универизма”, в свою очередь являющейся модификацией особого вида энергии - “радиальной энергии”, которая служит воплощением вечного стремления к процессу.
Завершение этого стремления - “феномен человека”, собственно и выражающийся в создании ноосферы, которую Тейяр понимает в общем так же, как Вернадский, но больше подчеркивает идеальный характер этой оболочки и духовный фактор технического прогресса. В работах Тейяра много недоконченного, неясного, требующего доработки; вместе с тем его идеи предвосхитили некоторые важнейшие концепции и подходы современного и быть может, даже будущего естествознания: тенденцию к синтезу естественнонаучного и гуманитарного подхода, видение прогресса как неотъемлемого принципа природы, понимание того, что в биологическом и геологическом познании так же, как в физическом, наблюдатель не может быть “осмыслен”: ноосфера в одинаковой мере выступает и как субъект, и как объект исследования.
3.37 Рациональное использование природных ресурсов и охрана биосферы
Как уже было сказано, охрана природы является одной из прикладных областей современной биологии; здесь можно добавить: также и физических, химических и технических наук, наук о Земле и (поскольку для эффективной охраны природы нужно воспитание людей в соответствующем духе) гуманитарных наук.
Между тем реально далеко не всегда (скорее наоборот!) деятельность человека является благотворной для окружающей среды. Например, в значительной мере вредным и создающим для многих организмов совершенно непривычную, часто губительную среду обитания является парниковый эффект, вызванный увеличением содержания в атмосфере таких компонентов, как СО, СО2 и СН4. Приведем только одно возможное последствие парникового эффекта: подъем уровня моря всего на 1м приведет к затоплению 25% дельты Нила и до 30% территорий такой страны, как Бангладеш. Нарушение озонного слоя атмосферы уже сейчас ведет к росту ультрафиолетового излучения и соответственно заболеваемости раком. Воздух загрязняется многими примесями, вплоть до ядовитых тяжелых металлов и сернистого газа, порождающего кислотные дожди, которые делают безжизненными внутренние водоемы. Неумеренное расширение орошаемых территорий уже вызвало гибель многих водоемов, в том числе таких крупных, как Аральское море. Истребление лесов ведет к размыванию почвы и к загрязнению внутренних водоемов, в конечном счете, и мирового океана.
Рациональное использование природных ресурсов и охрана биосферы представляют собой две стороны единой задачи, стоящей сейчас перед человечеством. Из всей площади суши почти половина уже занята пахотными, пастбищными и другими угодьями и плантациями, т.е. ее природный режим резко деформирован. В атмосферу ежедневно выбрасывается огромное количество углекислоты и других газов, что ведет, помимо загрязнения воздуха, к опасному потеплению климата вследствие парникового эффекта. Сельскохозяйственное использование ресурсов по крайней мере оставляет открытый путь для их возобновления, в то время как добыча каустобиолитов, металлов и т.д. истощает их запасы. Только рациональная система природопользования может спасти человека от опасности загрязнения среды и истощения ее ресурсов. В эту систему входит создание широкой сети охраняемых территорий всех рангов, внедрение давно уже разработанных технологий переработки отходов и создание новых, правовая регуляция охраны среды и природопользования. Природа Земли - наше невозместимое ничем достояние, и все страны, все человечество должны объединиться для решения труднейшей задачи сохранения и оптимального использования этого достояния.
Задачами рационального использования природных ресурсов является овладение экологически чистыми источниками энергии (ветром, геотермальными водами, солнечной энергией и т.д.), ограничение вредных выбросов, налаживание цикличного повторного использования отходов производства. Применяя биологические методы борьбы с вредителями, мы снижаем применение ядохимикатов. Редкие или вообще стоящие под угрозой виды организмов во многих случаях удается сохранить путем создания заповедников и заказников. Но пожалуй, наиболее общей и эффективной мерой в области охраны природы является воспитание у людей экологического сознания, включая понимание того, насколько - при современных технических средствах - легко нарушить и насколько трудно восстановить биосферу.
3.38 Нелинейная динамика
В "доквантовую" эпоху развития наука, техника и общество довольно неплохо обходились законами классической механики и математической логичными моделями расчетов, не обращая внимания на якобы незначительные вопросы, не подчиняющиеся расчетам. Но как ограниченные возможности экономики заставили экономить на значительных научно-технических проектах, вынудив с помощью системного подхода виртуально проигрывать большое число вариантов решений без их натурной реализации, так и возможности ограниченные прежних подходов к моделированию хаотических процессов заставили искать новые средства для их описания. Активное изучение подобных процессов, насчитывающее около двух десятилетий, осуществляется в рамках новой дисциплины, называемой нелинейной динамикой.
Достижения в этой среде позволяют говорить о возможности управления сложными системами. "Эффект бабочки" из рассказа Рея Брэдбери "И грянул гром" подводит к идее о возможности направления развития целого государства "по другой траектории" одним телефонным звонком. Эти же достижения помимо необычайных возможностей в компьютерной графике, в создании искусственного интеллекта, в более достоверном описании законов рынка в экономике, привели к созданию целой индустрии прогноза, Модели, созданные на основе нелинейной динамики, предложенные американским ученым Дж. Маейр-Крессом и его коллегами, стали в свое время важным аргументом в пользу отказа от планов США по созданию СОИ. Выяснилось, что развертывание такой системы не повысит, а существенно понизит безопасность США.
Кроме того, при изучении хаотических процессов было выявлено явление их равновесия при определенных условия, т.е. при этих условиях происходит самоорганизация системы. Изучением таких систем занимается синергетика. Возможности синергетики помимо предсказания условий наступления состояний равновесия в хаотических системах открывает необычайные перспективы по эффективному сжатию и хранению огромных массивов информации.
4. Развитие системного подхода в технике
Инженерная деятельность занимает одно из центральных мест в современной культуре. Ведь все, что нас сегодня окружает, небоскребы и автомобили, вычислительные устройства и космические корабли, атомные электростанции, железные дороги и самолеты все это было бы невозможно без ее достижений.
4.1 Техническая деятельность в эпоху Древнего мира и античности
Что означает слово "техника"? Как и когда возникло слово "инженер" и сама инженерная деятельность как профессия? Чем отличаются техническая и инженерная деятельности?
Слово "техника" (греч. и лат. tehne искусство, мастерство) имеет несколько значений. Оно может быть истолковано как мастерство, умение, сноровка, т.е. как система определенных навыков, выработанная для любого применения. В боле узком смысле техникой называют орудия труда, с помощью которых человек оказывает воздействие на природу (изготовление разнообразных предметов, процессов и явлений). Техника рассматривается как специфическая человеческая деятельность техническая деятельность, посредством которой человек выходит за пределы ограничений, налагаемых его собственной природой. Техника это также система технических знаний, включающая в себя не только научные, но и различные конструктивные, технологические и другие подобные знания, выработанные в ходе технической практики (технологии). Современная техника тесно связана с наукой.
Родственным слову "техника" считается слово "инженер". Оно произошло от латинского корня ingeniare? Что означает "творить", "создавать", "внедрять". Слово "ingenious" было впервые применено к некоторым военным машинам во II в. Человек, который мог создавать такие хитроумные устройства, стал называться ингениатор (изобретатель), также и слово "механик" в первом своем значении применялось к умельцу, создателю машин, а "машина" к ухищрению.
Крупнейшим естествоиспытателем древнего мира был тесно связанный с александрийской наукой Архимед (287-212 до н.э.). Он заложил основы механики, открыл законы рычага и определив силу, действующую на тело, погруженное в жидкость. Своим открытием Архимед положил начало статике жидкостей. В своих механических и математических работах Архимед примыкал к александрийской школе, в частности к работам Эрапосфена; ряд идей и методов Архимеда позволяют считать его предшественником математического анализа; в частности, Архимед впервые исследовал бесконечные ряды. Из результатов своих работ он наиболее ценил свои геометрические достижения: открытие методов вычисления объема шара и цилиндра, площади поверхности конуса и шара. Он же был первым, кто регулярно стал применять физические закономерности к построению машин и вообще в области техники в особенности военной. Архимед погиб при защите своего родного города Сиракуз от осадивших его римлян.
Галилей первым экспериментально показал, что воздух - тело, имеющее тяжесть, и вычислил его удельный вес. Его опыты по механике тел животных поставили на количественную основу гениальные догадки Леонардо. Экспериментами по определению прочности веществ Галилей заложил начало сопротивлению материалов как дисциплине.
Инженерная деятельность вначале носила военный характер, т.к. инженер руководил созданием военных машин и фортификационных сооружений. Таким инженером был, например, Леонардо да Винчи. До этого времени инженер и архитектор практически не различались это тот, кто руководит созданием сложных искусственных сооружений.
В XIX в. с развитием машинного производства появились многочисленные инженеры-механики. Данное событие можно назвать ключевым в формировании понятия "инженер" в современном смысле. В ХХ в. инженерия разделилась на множество групп и подгрупп: физическая (электрическая, оптическая, механическая и т.д.), химическая, биохимическая инженерия, информационная и вычислительная техника представляют собой лишь некоторые ее разделы. Но они имеют характерную черту: инженер это не тот, кто действительно делает искусственный объект, а тот, кто управляет процессом его создания, планирует или проектирует сложную техническую систему.
Следует различать инженерную и техническую деятельность. Современная техническая деятельность по отношению к инженерной несет на себе исполнительную функцию, направленную на непосредственную реализацию в производственной практике инженерных идей, проектов и планов. Инженерная деятельность выделилась на определенном этапе развития общества из технической деятельности, которая присуща человеческому обществу на самых ранних его стадиях и связана с изготовлением орудий труда. Она возникает тогда, когда изготовление орудий уже не может основываться только на традиции, ловкости рук, смекалке, а требует ориентации на науку, целенаправленное использование для этого научных знаний и методов. Теперь именно инженерная деятельность занимает промежуточное место между исполнительской технической деятельностью и наукой.
Предыстория инженерной деятельности разворачивается в недрах технической деятельности длительного периода ремесленного творчества (первобытного, античного рабовладельческого, средневекового феодального обществ). Но только в условиях раннего капиталистического общества создаются условия для того, чтобы она постепенно стала особой профессией, имеющую ориентацию на научную картину мира и целенаправленное применение в технической практике научных знаний.
В древности не было сознательной ориентации техников на науку вплоть до эпохи Возрождения. Современная культура, начиная с эпохи Возрождения, ориентирована на создание, изобретение нового, на научно-технический прогресс. Древние культуры были каноническими, ориентированными на освещенную веками традицию, поэтому в те далекие времена не могло быть изобретателей в их современном понимании, хотя изобретения как таковые конечно были.
Способность делать орудия неотъемлемая черта человека разумного. Выделившись из природы, человек создал вокруг себя "искусственный мир", "вторую природу", без которой немыслимо существование современной цивилизации. И все это было бы невозможно без знания, без науки. Именно на пересечении знания, науки и практики возникла профессия инженера.
Уже у древних вавилонян можно найти зачатки дифференциального исчисления, а в древнем Египте инженеров. Знания вавилонян об окружающем их мире были созданы практической необходимостью. Многие из этих знаний так и остались в области чистой практики и передавались из поколения к поколению только устно (например, как большинство ремесленных приемов, навыков и рецептов). Нет данных о том, что древние строители занимались техническими расчетами, если не считать приходно-расходных расчетов, требовавших преимущественно знания арифметики и некоторых элементом геометрии. И хотя человечество до сих пор удивляется красоте и грандиозности египетских пирамид, вряд ли можно назвать создателя первой из них инженером в современном смысле этого слова. Свидетельством этому может служить, например, диалог между двумя писцами Хори и Аменемоном, сохранившийся в древних египетских папирусах (XIII в. до н.э.). Хори упрекает Аменемона в недостаточной компетенции, и эти упреки служат яркой иллюстрацией того, что именно требуется от “ученого” писца: Аменемон, оказывается, не умеет вычислить необходимое количество пайков для отряда войска, вычислить размеры и количество строительных материалов для возведения строительной насыпи, составить расчеты для установки каменного колоса и т.д. по В. Г Горохов. "Знать, чтобы делать", с. 20. Все это такие сведения, которые необходимы в повседневной практической деятельности. Сама же практика была эмпирична, опиралась на традиции, умение, догадку.
Научное познание в этот период отождествлялось с созерцанием природы, всматриванием, вслушиванием в нее. Подлинная цель науки виделась в усмотрении истины в природе, а всякое практическое действие с природными объектами рассматривалось как мешающее ему, затемняющее истину. В античности теоретическая и практическая деятельности были четко разграничены. Аристотель по этому вопросу говорил так: "Целью теоретического знания является истина, а целью практического дело" В. Г Горохов. // Цит. по: Аристотель. Метафизика. М.,1934. . Именно в античной культуре были впервые сформулированы ценность и реальность чистой науки. Получение "знания ради знания" рассматривалось как высшая форма человеческой деятельности. "Из наук считается мудростью та, которая избирается ради нее самой и в целях познания, а не та, которая привлекает из-за ее последствий" (Аристотель) В. Г Горохов. // Цит. по: Аристотель. Метафизика. М.,1934. . Так сложилось противоречие теории и практики.
Однако это вовсе не значит, что античная философия и наука никак не были связаны с практическими нуждами общества. Так, Сократ, будучи сыном скульптора, имел также некоторое количество обще признанных работ в этой области. Философ Анаксимандр создал солнечные часы с устройством указывающим равноденствие и солнцестояние. Платону приписывают изобретение водяного будильника, который собирал ранним утром учеников академии на лекции и занятия. Даже в биографии первого древнегреческого философа Фалеса, одного из мудрецов, деятельность которого Платон и Аристотель ставили как образец "созерцательной жизни", имеется интересный факт. По свидетельству Диогена Лаэртского, желая показать силу знания, он однажды в предвидении большого урожая оливок снял в наем все маслодавильни и этим нажил много денег. А перевод войск Креза через реку Галис (при соответствии этого действительности) говорит о высокой квалификации Фалеса в чисто инженерных вопросах.
Так были ли в античности инженеры в том смысле слова, в котором оно понимается сегодня? Этот вопрос лучше всего рассмотреть на примере всем известного древнегреческого механика и геометра Архимеда.
Архимеда соотечественники считали отрешенным от земных проблем геометром-мудрецом. Решая математическую задачку, он даже не заметил, как римляне ворвались в его родной город Сиракузы, и был убит римским воином, несмотря на просьбу дать ему возможность дорешать геометрическую задачу. В своих трудах Плутарх писал о нем: "Архимед был человеком такого возвышенного образа мыслей, такой глубины души и богатства познаний, что в вещах доставивших ему славу ума не смертного, а божественного, не пожелал написать ни чего, но, считая сооружение машин и вообще всякое искусство, сопричастное повседневным нуждам, низменным и грубым, все свое рвение обратил на такие занятия, в которых красота и совершенство пребывают не смешанными с потребностями жизни. … И нельзя не верить рассказам, будто он был тайно очарован некой сиреной, не покидавшей его ни на миг, а потому забывал о пище и об уходе за телом, и его нередко силой приходилось тащить мыться и умащаться, но и в бане он продолжал чертить геометрические фигуры на золе очага и даже на собственном теле проводил пальцем какие-то линии поистине вдохновленный музами, весь во власти великого наслаждения". *** В. Г Горохов. // Цит. по: Плутарх. Сравнительные жизнеописания. М.,1962. - Т. 1. *
Такое представление не совсем соответствует действительности. Архимед начал свою деятельность как механик и закончил ее как механик, ведь даже в его математических произведениях механика является важным средством решения математических задач. К ранним механическим работам Архимеда относится создание механической модели "небесной сферы", в которой при помощи вращательного движения водяного двигателя, получались различные вращения небесных светил. На ней также демонстрировались солнечные и лунные затмения. Его заслугой также является усовершенствование машины для поливки полей, более известной сейчас под названием "винт Архимеда", при помощи которой можно было выкачивать из реки большие объемы воды с малой затратой сил.
Подобные документы
Принципы системного подхода. Объект как система и одновременно элемент более крупной, объемлющей его системы. Системное познание и преобразование мира. Противоположные свойства системы: отграниченность и целостность. Логические основы системного подхода.
контрольная работа [140,0 K], добавлен 10.02.2011Основные этапы развития системных идей. Возникновение и развитие науки о системах. Важные постулаты системного подхода к освоению мира, изложенные Ф. Энгельсом. Предпосылки и основные направления системных исследований. Виды системной деятельности.
реферат [39,1 K], добавлен 20.05.2014Исторический процесс развития системного подхода, утверждение принципов многомерного понимания действительности. Гносеологические основания развития системного знания как методологического средства. Типы и и основные направления синтезирования знаний.
реферат [33,0 K], добавлен 19.10.2011Общенаучный характер системного подхода. Понятия структуры и системы, "множество отношений". Роль философской методологии в формировании общенаучных понятий. Содержательные признаки и общие свойства систем. Основные содержательные признаки систем.
реферат [21,6 K], добавлен 22.06.2010Научно-мировоззренческий контекст формирования и развития мир-системного подхода Валлерстайна. Историко-философская реконструкция современной мир-системы в концепции И. Валлерстайна. Недостатки мир-системного анализа Валлерстайна и пути их преодоления.
курсовая работа [52,2 K], добавлен 14.06.2012Общее представление о пространстве и времени, являющихся общими формами существования материи. Важнейшие философские проблемы, касающиеся пространства и времени. Особенность концепции Лейбница. Относительность пространственно-временных характеристик тел.
реферат [46,7 K], добавлен 22.06.2015Развитие технической мысли в истории, представления об искусстве, науке и технике. Механистическая картина мира. Формирование философии техники в XIX-XX вв. Феномен обезличивания человека техникой. Этико-технический аспект изменения социальной реальности.
дипломная работа [106,1 K], добавлен 08.07.2012Характеристика логической связанности и целостности процесса изучения социальной реальности. Понятие и основные черты логики и системного анализа. Графические и количественные методы системного исследования. Этапы методик системного анализа по С. Янгу.
курсовая работа [47,9 K], добавлен 23.10.2013Представления о мире согласно Шопенгауэру. Размышления по основным вопросам философии, систематизация взглядов на познание, отношение к науке. Взгляд Шопенгауэра на природу, на целесообразность всех органических созданий природы. Объяснение мира как воли.
курсовая работа [26,1 K], добавлен 03.03.2012Отличительными особенностями подхода к технике в зарубежной философии является следующие: четко выраженное гуманитарное и аксиологическое отношение, постановка во главу угла вопросов природы и сущности техники и её значения для судеб нашей культуры.
реферат [23,9 K], добавлен 08.12.2010