История системного подхода в науке и технике
Представление о системах и системном подходе. Системное представление о мире, системность в природе. Ограничения при системном подходе. Развитие системного подхода в науке и технике. Становление инженерной деятельности и проблемы, возникающие перед ней.
Рубрика | Философия |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 20.03.2011 |
Размер файла | 215,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Иногда удивительные достижения Архимеда в практической области подвергаются сомнению. Например, сообщения древних авторов о том, как он один с помощью механических приспособлений (системы блоков) сдвинул с места полностью груженый корабль, или легенда о сожжении им неприятельского флота с помощь зеркал.
Как и другие античные философы и механики он следовал в своей деятельности идеалу построения научного знания. Работа Архимеда "О плавающих телах" построена строго в соответствии с научными нормами: выдвигаются аксиомы, на основе которых доказываются теоремы, при доказательстве которых используется знание предыдущих теорем. В этой работе не приведены описания практических моделей, наблюдений или опытов. Тем не менее, Архимед использовал практические знания о реальных жидкостях и телах, осуществляя в некотором смысле действия схожие с постановкой современного опыта. Так широко известен ставший классикой случай с золотой короной царя Гиерона, когда великого геометра попросили определить количество золота, ушедшего на ее изготовление.
Архимед строго различает доказательство определенного положения, проведенное математически (теоретическое обоснование), и практическое усмотрение того же положения с помощью механических средств. По его собственному мнению, изучение при помощи механического метода "еще не является доказательством: однако получить при помощи этого метода некоторое предварительное представление об исследуемом, а затем и найти само доказательство гораздо удобнее, чем производить изыскания, ничего не зная". Таким образом, механический метод рассматривается Архимедом как вспомогательное средство для решения некоторых математических задач, но строгих доказательств этот метод дать не может и поэтому выносится им за пределы всякой науки.
Фактически сформулированное Архимедом основное уравнение плавучести нашло практическое применение только в XVII в. Тогда (в 1666 г.) английский корабельный инженер А. Дин "предсказал" углубление корабля до спуска его на воду. Он был настолько уверен в своей правоте, что приказал еще на стапеле вырезать во внешней обшивке корпуса отверстия пушечных портов, которые после спуска корабля на воду возвышались над ее поверхностью на расстоянии, которое было заранее вычислено строителем.
Как видно на примере Архимеда, в период античности можно говорить лишь об отдельных "образцах" инженерной деятельности. Архимеда нельзя назвать инженером в современном смысле этого слова.
Сегодня кажется обычным требовать от науки прикладных результатов. Да и сама современная наука без технической практики просто не мыслима. Однако такое соотношение науки и практики существовало не всегда. В период античности, даже если полученные в результате ремесленной практике, использовались в науке, то они подвергались переработке и систематизировались в соответствии с идеалами теоретического знания.
Прикладные исследования, направленные на специальное исследование техники, по существу, отсутствовали, как и многочисленные сегодня технические науки. В них тогда просто не было необходимости. Кроме того, рабский труд не способствовал развитию техники и целенаправленному приложению к ней техники. Свободный же ремесленник более был заинтересован в высоком качестве производимой им продукции. В античности ремесленное производство это прежде всего художественное производство. Оно не ориентировалось на науку, хотя и использовало научные знания. Различные механические изобретения служили лишь демонстрацией мощи научного знания. Но повсеместного применения в ремесленном производстве они не находили. Поэтому и не возникла в тот период профессиональная инженерная деятельность, без которой немыслим современный инженер, а сами изобретения зачастую служили лишь украшением частных библиотек.
4.2 Техническая деятельность в Европе Х-XII в.
В это время в Европе зарождаются одни из первых профессиональных ремесленных структур цехи. В момент своего зарождения цехи были прогрессивны. Они формировались как корпорации свободных ремесленников, занимающихся одним и тем же ремеслом. Каждый цех имел свой статут, в котором строго регламентировали тип и качество используемого материала, вид приспособлений и орудий труда, количество и качество выпускаемых изделий, поведение его членов и многое другое. При этом велся строгий надзор за выполнением предписаний этих статутов. Обычно статут начинался примерно так: "Тот кто хочет и знает ремесло может стать мастером с условием того, чтобы он работал согласно обычаям цеха, которые таковы: …". Далее следовал ряд запретов типа: "запрещается вырабатывать в неделю больше 110 кож", "переманивать друг у друга работников, предлагая им большее количество денег", "покупать больше сырья чем требуется без ведома старосты цеха" и т.д. [1]
Как уже говорилось, будучи в момент зарождения прогрессивными, постепенно цехи стали тормозом в развитии технической деятельности и ремесленного производства. Жесткая регламентация ремесленной технической деятельности, слабая специализация ремесел внутри цехов, ограниченность рынков сбыта, отсутствие стимулов, заставляющих удешевлять и увеличивать выпуск изделий, не заинтересованность в развитии технической базы определяли тогда отношение к технике. Боясь конкуренции, цехи были противниками всяких новшеств и изобретений, которые воспринимались ими как нечто "отвратительное" и нарушающее их привилегии. Выдвигались даже запреты на использование не только самих изобретений, но и изделий изготовленных с их помощью, а изобретателей преследовали. В конце средних веков цеховая организация промышленности приходит в противоречия с новыми потребностями производства, рассчитанного на широкий рынок. Однако, не смотря на все это, у средневековых ремесленников были качества, которых часто не достает современному инженеру озабоченность нуждами потребителя, ориентация не на усредненного, а на конкретного потребителя, стремление держать высокую марку цеха.
4.3 Становление инженерной деятельности
Становление инженерной деятельности было связано с развитием высших технических школ, которые начинают целенаправленную научную подготовку инженеров. В них проводятся и первые научно-технические исследования. С необходимостью систематизации научного материала, нужного для подготовки инженеров, связано и возникновение первых технических наук. К концу XIX в. научная подготовка инженеров, их специальное, именно высшее образование, становится настоятельной необходимостью. Поэтому к этому времени многие ремесленные, средние технические училища преобразуются в высшие учебные заведения, где наряду с практическими предметами основное место начинают занимать самые различные науки, хотя на практике эти науки и применяются первоначально весьма редко и инженеры работают пока часто, как и раньше, "на глазок". Но уже когда начинает ощущаться недостаточность основательной теоретической научной базы инженеров. В то же время образование инженеров должно было сочетаться с их практической подготовкой. К концу IХ началу XX в. наука все более проникает в инженерную практику и инженерное образование. Эти две тенденции ориентация на практику и на науку характерны и сегодня для высших технических школ. С точки зрения первой ориентации, инженерная деятельность рассматривается как искусство, то есть система приемов и методов практической деятельности (например, строительное искусство, искусство проектирования и т.п.); с точки зрения второй как своего рода прикладная, техническая наука как порождение науки, как результат приложения науки к технической практике. В соответствии с этими тенденциями реализуются и различные идеалы и нормы инженерной деятельности и инженерного образования: поощрение преимущественно изобретательско-проектной функции инженера, восходящей к художникам-архитекторам и ремесленникам-механикам эпохи Возрождения, или познавательски-исследовательской, расчетной, научной, восходящей к ученым-экспериментаторам Нового времени. В течение всего периода становления классической инженерной деятельности эти две тенденции конкурируют и поочередно возобладают как в сфере практической инженерной деятельности, так и в сфере инженерного образования.
Технический стиль мышления близок художественному, поскольку оба они связаны с очеловечиванием природы. В эпоху Возрождения эта связь получает новое выражение в деятельности великих мастеров того времени. И хотя у них уже намечается четкая ориентация на науку, все же преобладающим является художественный стиль мышления. Мифологическая картина мира средневекового ремесленника в эпоху Возрождения сменяется художественной картиной реальности, стремлением к научному познанию окружающего человека мира [2, с.57]. В отличии от научного и технического мышления основной функцией художественного является культурная проблема ценностей и идеалов выражающих замысел и пути развития мира по законам красоты. В свою очередь инженерное мышление несет в себе черты как практического технического мышления предшествующих эпох, переработанного художниками-архитекторами Возрождения в новый художественно-научно-технический стиль, так и теоретического мышления архимедово-галилеевской времени.
С художественным мышлением сближает широкое использование им графических средств для выражения своих идей. Язык черчения язык богатый своими возможностями и международный. Чертеж для инженера это не только средство общения с исполнителями и коллегами, это идеализированная, но в тоже время поставленная в четкое соответствие с практикой, плоскость выражения его мысли. Именно по этому инженеры предпочитают чертить схемы, а не писать формулы или текст. В отличие от художника это графическое пространство служит инженеру не для художественного отображения окружающего мира с целью вызвать эстетическое наслаждение, а для детализации и конкретизации инженерной идеи в развернутую схему, научного обоснования и математического расчета этой схемы, чтобы впоследствии можно было выполнить рабочие чертежи предписания мастерам и рабочим к реализации его замыслов [2, с.58]. В современных технических школах студенты в процессе обучения значительную часть своего времени уделяют черчению, где усваивают этот графический язык.
Средневековые ремесленники и архитекторы тоже могли пользоваться и действительно пользовались чертежами и математическими пропорциями, но они выполняли тогда иную функцию. Между языками ремесла и современного проектирования, в структуру которого действительно входит наука, есть принципиальная разница. Пропорция для античного и средневекового мастера была не научным или даже не эстетическим средством, а живой методикой делания вещи, начиная с выбора материала, всей технологической последовательности выполнения работ и кончая определением строя вещи в целом и каждой ее части. Когда современный архитектор, желая придать фасаду здания эстетичый вид, расчерчивает его по так называемому "золотому сечению", то это совсем иной научно-рациональный подход, чем это было в прошлом. Не следует забывать, что сегодня техническое черчение - это воплощенная наука, применение начертательной и проективной геометрии к решению практических задач машиностроения, строительства и т.д. Одним из создателей этого графического языка инженеров был французский инженер и ученый Гаспар Монж.
Монж был математиком и инженером одновременно. Он одним из первых понял и создал строго научную, математически точную систему графических изображений для нужд техники. В этом смысле он был продолжателем учения о перспективе художников-инженеров эпохи Возрождения. Но Монж пошел дальше их, сделав язык чертежа, с одной стороны, более строгим и научным, а с другой пригодным для решения практических инженерных задач [3, с.103]. Очень скоро техническое черчение стало центральным пунктом инженерного образования, графическим языком инженеров. В других отраслях техники и технической науки также сложились свои особые графические средства для выражения инженерных идей, хотя и не всегда тесно связанные с геометрией, как, например, электрические схемы в электротехнике и радиотехнике.
Таким образом, на протяжении веков сформировались три особенности инженерного мышления художественная, техническая (практическая) и научная. И хотя инженеры более охотно рисуют чертежи и схемы, а ученые пишут формулы и тексты (статьи, учебники), современное инженерное мышление глубоко научно. И чертеж, и схема, эти языки инженера, насквозь пронизаны наукой, прежде всего математикой.
Научная картина мира, вырабатывавшаяся на протяжении XVII-XVIII столетий, только в XIX в. начала медленно входить в повседневный обиход рядового инженера. В XVIII в. галилеева экспериментальная математизированная наука так и не дошла еще до всех "уголков" практической инженерной деятельности, продолжавшейся оставаться инженерным искусством. Подлинное проникновение науки в сферу инженерной деятельности и промышленности начинается лишь с развитием машинного производства.
4.4 Инженерная деятельность в эпоху машинного производства
Со становлением машинного производства происходит дифференциация инженерной деятельности, которая на первых этапах включает в себя лишь изобретательство, конструирование и технологию производства. С возникновением технических наук к ним добавляются еще инженерные исследования и проектирование.
Приемы работы конструктора в зависимости от каждого конкретного случая, но они не выходят за пределы конструктивных вариантов и представляют собой применение известных, уже выработанных искусственных приемов и простых стандартных расчетов. Поэтому его задача заключается в том, чтобы произвести такое видоизменение, чтобы получилась лишь новая конструкция, а не новое изобретение. Прогресс в технике как раз и заключается в том, что нововведение усваивается и переходит из разряда изобретений в разряд конструкций. Конструкторская деятельность становится особенно необходимой с развитием серийного и массового производства технических изделий. Проектирование же занимает промежуточное положение между изобретением и конструированием и более тесно связано с научной деятельностью.
Полный цикл инженерной деятельности включает изобретательство, конструирование, проектирование, инженерное исследование, технология и организация производства, эксплуатация и оценка техники, а завершает этот процесс ликвидация устаревшей или вышедшей из строя техники.
Изобретательство. Изобретательская деятельность, как правило, начинает цикл инженерной работы. В изобретательской деятельности на основании научных знаний и технических достижений заново создаются новые принципы действия, способы реализации этих принципов или конструкции инженерных устройств и систем или же их отдельных компонентов. Сложности в изготовлении, конструировании и техническом обслуживании существующих технических систем, а также необходимость создавать принципиально новые инженерные устройства и системы стимулируют производство особого продукта - изобретений, авторство на которые закрепляется в виде патентов. Они имеют широкую сферу применения, выходящую за пределы единичного акта инженерной деятельности, и используются при конструировании и изготовлении новых технических систем или усовершенствовании старого оборудования.
Вот как, например, в своих записках характеризует суть такой деятельности академик Борис Николаевич Юрьев, разработчик и исследователь вертолетной техники: "Основные этапы изобретательской работы. Изобретения возникают лишь в результате долгой и систематической работы. Вдохновение, озарение и т.п. приходят лишь тогда, когда для них уже создан солидный фундамент.
Обычно работа по изобретательству состоит из следующих четырех этапов:
1. Четкая постановка задачи. Правильно поставить задачу это часто означает решить ее наполовину.
2. Анализ задачи. Разложение ее на составляющие элементы. Теория. Часть элементов окажется известной. Неизвестное встает более ясно.
3. Комбинаторика (творчество). Классификация решений и заполнения пустых классов. Аналогии. Смелые скачки мысли. Фантазии. Теория и наивыгоднейшие соотношения. Чем смелее, тем лучше!
4. Критический фильтр. Строгая проверка п.3. Проверка новизны, целесообразности и пользы. Чем строже, придирчивее, тем лучше" (Практически этапы системного подхода).
Изобретение, по мнению Б.Н. Юрьева, это открытие новых методов использования явлений природы для удовлетворения нужд человека, его потребностей наиболее рациональным или экономичным способом. И далее:
"Пути изобретательства.
Зарождение идеи.
1. От явления к применению. Узнав о каком-нибудь явлении или открыв его, нужно попытаться приложить его к практическим целям. Списки не использованных еще явлений природы.
2. От применения (задания) к явлению. Наметив практическую задачу, пытаться решить, подбирая подходящие физические явления. Списки неудовлетворенных технических потребностей или удовлетворенных, но плохо.
3. Подражание природе.
4. Дикие фантазии с последующим отбором. Неожиданные решения, делание наоборот. Рассуждения по аналогии.
5. Научные исследования вопроса и нахождение оптимальных величин (максимума, минимума, экстремума, вариационные задачи и т.д.). Сначала перевод задания на математический язык. Анализ формул. Практические выводы.
6. Комбинирование известного для получения нового эффекта"** В. Г Горохов. // Цит. по: Стражева И.В., Буева М. В.. Борис Николаевич Юрьев. М.,1980.
Весьма показательным в плане систематики труда изобретателя является алгоритм решения изобретательских задач, предложенный Альтшуллером в 60-х годах прошлого века.
Конструирование. Инженерная деятельность направлена на создание нового, а не на слепое копирование имеющихся образцов, как это было свойственно ремесленной практике. Однако только сформулировать идею еще недостаточно. Идея изобретателя, даже воплощенная в виде опытного образца, требует работы целой армии конструкторов, меняющих детали и их расположение, упрощающих конструкцию и т.д. Результатом конструкторской деятельности является готовая конструкция технического устройства или системы, материализуемая затем в процессе изготовления. Эта конструкция, как правило, состоит из определенным образом связанных стандартных элементов, выпускаемых промышленностью. Если каких-либо элементов не достает или их параметры не соответствуют требованиям конструктора, они изобретаются и проектируются заново. Для целей массового производства и варьирования технических характеристик по требованию заказчиков на этой стадии проводятся дополнительные инженерные расчеты и учет ряда таких требований, как простота и экономичность изготовления, удобство использования, соблюдение определенных габаритов и возможность применения стандартных или уже имеющихся конструктивных элементов. Конструктор рассчитывает конкретные конструктивно-технические характеристики создаваемого устройства, учитывающие специфические условия его изготовления на данном производстве. Конструктор создает новые типы машин, имеющие общее устройство, но различающиеся характером отдельных деталей, их расположением, материалом и другими конструктивными особенностями.
Конструкторская деятельность становится необходимой именно с развитием серийного и массового машинного производства технических изделий и заключается в создании, испытании и отработке опытных образцов различных вариантов будущего инженерного объекта, выборе из них наиболее оптимального с точки зрения заказчика варианта и разработке технической документации руководства для изготовления его на производстве [3, с.107]. За конструктором остается расчет конструктивно-технических и технологических параметров технического устройства, разработка же технологии изготовления задача уже другого специалиста инженера-технолога. Однако это не снимает с конструктора ответственности за создание технологичной конструкции. Конструктор должен быть хорошо знаком со всеми процессами изготовления и обработки проектируемых машин, сооружений или вообще всяких изделий. Без такого знакомства он может сконструировать детали, которые вообще невозможно изготовить или обработать либо которые окажутся неудобными, дорогими и чрезмерно долгими в изготовлении.
Технология и организация производства. В результате конструирования рождается чертеж готовой технической машины или системы, который является посредником для передачи идеи изобретателя и описания конструкции, разработанной инженером-конструктором, не только исполнителю-рабочему, но и инженеру-технологу, который руководит изготовлением деталей и их сборкой. Исходным материалом этого вида инженерной деятельности являются материальные ресурсы, из которых создается изделие, а продуктом готовое технически устройство и руководство к его эксплуатации. Функция инженера в данном случае заключается в организации производства конкретной типа изделия с требуемым качеством и разработка технологии изготовления определений конструкции этого изделия, а также, если это необходимо, орудий машин для его изготовления или отдельных его частей. Разработка и усовершенствование новой технологии в той или иной отрасли промышленности связана сегодня с научными исследованиями, например новых материалов, и созданием нового наукоемкого технологического оборудования.
Часто крупные инженеры сочетают в одном лице и изобретателя и конструктора, и технолога, выполняя функции организатора производства какого-либо типа изделий промышленности. Однако современное разделение труда в сфере инженерной деятельности неизбежно ведет к специализации инженеров, работающих в научной следовательских институтах, конструкторских бюро, на заводах и фабриках преимущественно либо в области инженерного исследований либо конструирования, либо организации производства и технологи изготовления определенного типа технических систем. Такого рода разделение труда наметилось уже на первых заводах, хотя первые их создатели и руководители совмещали в своей деятельности почти все эти позиции одновременно. Однако в конце XIX в. на них уже действовал более четкий принцип разделения инженерного труда, выделяются в самостоятельные подразделения техническая дирекция, конструкторское бюро, мастерские и технический надзор за исполнением заказов. Инженер в мастерских уже ничего не изготавливает сам, как нередко случалось раньше, а лишь руководит сборкой по чертежам, полученным от инженеров-конструкторов, имея в распоряжении мастеров и старших рабочих. В дальнейшем ни изобретательская, ни конструкторская, ни технологическая инженерная деятельность не обходятся без тщательного научно-технического исследования.
Эксплуатация, оценка функционирования и ликвидация. В настоящее время в сферу инженерной деятельности попадает и эксплуатация технических систем, то есть операторская деятельность, и их техническое обслуживание. В процессе эксплуатации технической системы проводится также оценка ее функционирования, что весьма важно для постоянного совершенствования и разработки новых таких систем.
В последнее время особенно сложной инженерной задачей становится утилизация и ликвидация отработавших технических устройств и их компонентов, которая может составлять предмет особого научного исследования. Уже на стадии разработки новой технической системы должны быть сформулированы требования к материалам и компонентам, входящим в ее состав, с точки зрения возможности их утилизации с минимальным ущербом для окружающей среды и здоровья людей. Это относится не только к атомным реакторам и к новейшим вычислительным комплексам, утилизация которых обходится весьма дорого и требует специальных инженерных и научных разработок и даже создания особых устройств для их утилизации, но и к таким, казалось бы, простым побочным продуктам технической деятельности, как упаковка отдельных компонентов или устройства в целом. Для переработки всего этого также разрабатываются достаточно сложные технические комплексы, такие, например, как печи для сжигания мусора или очистные сооружения для очистки промышленных вод, бывших в употреблении. Научные исследования и инженерные разработки в этой области финансируются в настоящее время во все большем объеме в промышленно развитых странах. Утилизация отходов атомной энергетики требует создания не только специальных наукоемких и дорогостоящих производств, но и специальных транспортных средств, контейнеров и хранилищ для них, представляющих собой вершину науки и инженерного искусства.
Таким образом, развитая инженерная деятельность включает в себя целый набор различных специализаций и видов деятельности, которые и сами составляют сложную систему, требующую исследования и организации. Организация инженерной деятельности сама становится одним из важных видов инженерной деятельности.
Инженерные исследования и проектирование. Развитие инженерной деятельности привело к необходимости выделения в ней слоя собственных исследований, которые получили название инженерных, или научно-технических, где доводится до практически применимого уровня полученные в науке результаты, происходит обобщение, систематизация выработанных в ходе инженерной деятельности знаний. Часто имеющихся научных разработок недостаточно и в ходе решения той или иной конкретной инженерной задачи возникает потребность постановки и разработки чисто научной проблемы. В историческом плане это приводит к формированию сначала отдельных, а затем и целых блоков технических наук.
Для классической инженерной деятельности характерна ориентация каждого вида инженерной практики на соответствующую базовую науку, или на целый комплекс научно-технических дисциплин. В современных видах технической деятельности привлекаются любые методы, средства и знания из любых научных предметов. Их объединяет общность решаемой сложной инженерной задачи и единство подхода к ее решению. Система сложившихся на сегодня технических наук простирается от теоретических до практических исследований. Прямым посредником между инженерной деятельностью и производством становятся инженерные исследования и проектирование. Да и само проектирование развилось из простой работы чертежников-рисовальщиков до квазинаучной деятельности инженера-"теоретика" со всеми, как в науке, аналогичными методами решения проблем, включая системный анализ.
4.5 Инженерная деятельность и проблемы возникающие перед ней на современном этапе ее развития
Современный этап инженерной деятельности характеризуется системным подходом к решению сложных научно-технических задач, обращением ко всему комплексу общественных, естественнонаучных, математических и научно-технических дисциплин Так, в 1969г. в СССР была начата разработка многоцелевого орбитального комплекса, параллельно с работами над станцией "Салют". И хотя в 1974г. эти работы были прекращены, при разработке технического предложения впервые в истории советского космического ракетостроения для решения разноплановых задач с использованием ракетной техники был применен системный подход с широким технико-экономическим анализом и оценкой реализуемости.
Обособление проектирования и экспансия его в смежные области, связанные с решением экологических, биотехнологических и социотехнических проблем, привели к кризису традиционного инженерного мышления и развитию новых форм проектной культуры, системных и методологических ориентаций современной инженерной деятельности, выходу ее на гуманитарные методы познания и освоения действительности. Например, для создания автоматизированных систем управления предприятиями или отраслями промышленности уже недостаточно традиционно используемых в инженерной деятельности знаний технических и естественных наук. Для их разработки требуются особые социально-экономические, социологические, социально-психологические исследования. А пренебрежение ими приводит к снижению эффективности таких систем. Конкретные социальные условия функционирования автоматизированных систем управления должны учитываться на стадии проектирования.
Есть и еще одна важная сторона этой проблемы. Как известно, многие современные массовые технологии, например в пищевой, фармацевтической промышленности, сельском хозяйстве и т.д., часто приводят к губительным для человека и природы последствиям. Все это требует тщательного исследования технологий производства пищевых продуктов, лекарств, сельскохозяйственных продуктов, вдумчивому научному анализу будущих разработок.
Сегодня особенно актуальными становятся проблемы социальной ответственности инженеров и проектировщиков, не только перед заказчиком, но и перед обществом в целом. В результате научно-технического прогресса перестраивается окружающий нас мир и не всегда наилучшим образом, а часто и во вред человеку, обществу и даже всему человечеству.
5. Заключение
Последние годы XIX в. и начало XX в. были периодом переворота по всему фронту естественнонаучных исследований. По-видимому, научные дисциплины, несмотря на все различия их предметов, развиваются в какой-то мере в одном ритме. С другой стороны, имела место как бы цепная реакция на всем концептуальном пространстве естествознания: квантовая механика и теория строения атома позволили переосмыслить периодическую систему элементов и теоретическую химию в целом, что отразилось и на биологии, приведя к формированию ряда новых дисциплин, включая молекулярную биологию и молекулярную генетику.
Методологические принципы, на которых основывается естествознание, также претерпели в XX в. некоторые изменения. Детерминизм как учение о том, что все явления имеют причину, в целом сохранился, но в модифицированном виде: на микроуровне он перестал быть столь жестким, как того требовала классическая механика. Принципы дополнительности и неопределенности заставили заменить классические выражения типа “А следует из В" уравнениями, накладывающими определенные ограничения на последовательность превращений микрочастиц, и сделали реальность такого рода превращений вероятностной функцией. На мезоуровне термодинамические закономерности позволяют говорить о статистической природе детерминированности. Наконец, на мегауровне причинно-следственная структура мира оказывается теснейшим образом связанной со структурой релятивистского пространства - времени.
Метод редукции сохранил и углубил свое значение по сравнению с классическим периодом: была осуществлена, например, редукция периодического и других законов химии к количественным закономерностям строения электронных оболочек и ядра атома. Однако это не означало победы редукционизма: биологические явления не могут быть сведены к физическим и химическим, а в пределах самой физики выделяется несколько областей исследования, которые, будучи взаимосвязанными, тем не менее не могут быть сведены друг к другу. Таковы, например, теория относительности и квантовая механика, или СТО и ОТО.
Мы видим, что мир представляет собой единство систем, находящихся на разном уровне развития, причем каждый уровень служит средством и основой существования другого, более высокого уровня развития систем. Данное относится не только к природе, но и обществу, где мы наблюдаем ряд организационных форм, наиболее грандиозные из которых получили название “общественно-экономические формации”.
Итак, мир, будучи системой систем, сложнейшим материальным образованием, находится в процессе непрерывного движения, возникновения и уничтожения, взаимоперехода одних систем в другие, причем одни системы изменяются медленно и длительное время кажутся неизменными, другие же изменяются настолько стремительно, что в рамках обыденных человеческих представлений фактически не существуют. Чем обширнее система, тем медленнее она изменяется, а чем меньше, тем быстрее она проходит этапы своего существования. В этом простом соответствии скрыт глубокий смысл еще не до конца понятой связи пространства и времени. И здесь можно увидеть одну из закономерностей развития материи: от меньшего к большему и от большего к меньшему, осознание которой привело к пониманию развития и качественного изменения систем слагающих мир, и мира как системы.
Во второй половине XX в. воздействие научно-технического прогресса на общество и природу становится глобальным. Это вызывает целый ряд сложнейших экологических проблем, означающих, что ученый и инженер не просто специалисты. Они имеет дело и с природой основой жизни общества, и с другими людьми. Современная научно-техническая деятельность выдвигает поэтому и проблему социальной ответственности, интеллектуальной честности и профессиональной этики.
В результате научно-технической деятельности создано многое, без чего немыслима цивилизация наших дней. Инженеры и конструкторы сделали реальным то, что казалось сказочным и фантастическим, и чему теперь мы перестали удивляться (полеты человека в космос, телевидение и т.п.). Но они разработали и изощренные технические средства уничтожения людей. И хотя сами наука и техника этически нейтральны, творцы не могут оставаться равнодушным к ее вредоносному использованию. Еще великий Леонардо да Винчи был всерьез обеспокоен возможным нежелательным характером использования его изобретений. Развивая идею аппарата подводного плавания, он писал: "Каким образом человек с помощью машины может оставаться некоторое время под водой. И почему я не решаюсь описывать мой метод пребывания под водой и то, как долго я могу оставаться без пищи. И о том, что я не хочу опубликовать и предать гласности это дело из-за злой природы человека, который мог бы использовать его для совершения убийств на дне морском путем потопления судов вместе со всем экипажем". Это пример высокой морали, оставленный Леонардо да Винчи будущим поколениями инженеров. В связи с этим мы сталкиваемся с необходимостью при системном подходе к решению проблем кроме обычного набора "технических" факторов принимать во внимание дополнительные, нравственно-этические факторы.
Но одними призывами к ученым и инженерам следовать в своей деятельности идеалам гуманизма делу не поможешь. Не они распоряжаются результатами своей деятельности. И не от них, фактически, зависит финансирование тех или иных исследований и разработок. С другой стороны, кто посмеет осудить создателей образцов вооружения Красной Армии, использованных во время Великой Отечественной войны 1941-45г. г. или Курчатого за создание атомной бомбы во время великого противостояния. Без ее создания вероятность повторения Херосимы на территории СССР была бы практически стопроцентной, что и показали действия США в отношении Кореи, Вьетнама, Кубы, Панамы, Ирака. Но стоит воздать хвалу разработчикам модели "ядерной зимы", которая в значительной степени способствовала переходу ядерных держав в подходе к статусу ядерного оружия от оружия нападения к средству сдерживания и отказу от доктрин, допускающих глобальную ядерную войну. Думаю, что именно в этом направлении можно найти действительно эффективные средства предотвращения негативного воздействия научно-технического прогресса на человечество и окружающий мир.
Но есть и еще один существенный момент. Как видно из истории системного подхода в свете сведений, приведенных в данной работе, системность подхода развивается в направлении расширения количества и продолжительности проявления связей изучаемого явления или создаваемого объекта с окружающим его пространством или увеличения количества рассматриваемых явлений, объектов. Наукой, несмотря на весь ее консерватизм, практически признано существование биополя человека, не за горами научное подтверждение и признание телепатии. Очередным скачком, аналогичным переходу от классической механики к нелинейной динамике и ее частному случаю - синергетике, скорее всего будет признание влияния космоса на жизнь и развитие человечества, к чему подводят труды Чижевского, Гумилева, Вернадского. Но эта перспектива тоже не ведет к очевидным эффективным средствам воздействия на сознание политиков, а именно они определяют направление использования научно-технических разработок. И убедить их скорее всего можно, по-видимому, только с помощью разработок, подобных модели "ядерной зимы" и т.п. Вполне очевидно, что включение при разработке элементов системного подхода в число рассматриваемых и этих факторов - это наиболее эффективный путь к предотвращению негативного использования результатов научно-технического прогресса.
Литература
1. Князева Е.Н. Сложные системы и нелинейная динамика в природе и обществе. // Вопросы философии, 1998, №4
2. "Синергетика-на-Оке", "Знание - сила", 1983 год, № 12
3. Аверьянов А.Н. Системное познание мира. М.: Политиздат, 1985.
4. Андреев И.Д. Методологические основы познания социальных явлений. М., 1977.
5. Фурман А.Е. Материалистическая диалектика. М., 1969.
6. Анохин П.К. Философские аспекты функционирования системы.
7. Блохинцев Д.И. Проблемы структуры элементарных частиц. - Философские проблемы физики элементарных частиц. М., 1963.
8. Кулындышев В.А., Кучай В.К. Унаследованность: качественная и количественная оценки. - Системные исследования в геологии. Владивосток, 1979.
1. Кузнецов В.И., Идлис Г.М., Гутина В.Н. Естествознание. М., 1996.
2. Лавриненко В.Н. и др. Концепции современного естествознания. Учебник для вузов. М., 1997.
3. Мэрион Дж.Б. Физика и физический мир. М., 1975.
4. Жизнь науки. Антология выступлений к классике естествознания / Сост. Капица С.П.М., 1973.
5. Миллер Т. Жизнь в окружающей среде. Программа всеобщего экологического образования. Т.1-3.М., 1993-1996.
8. Старостин Б.А. Параметры развития науки. М., 1980.
9. Пахомов Б.Я. Становление физической картины мира. М., 1985.
10. Романовский С.И. Великие геологические открытия. С. - Пб., 1995.
11. Соловьев Ю.И., Курашов В.И. Химия на перекрестке наук. М., 1989.
12. Пригожин И., Стенгерс И. Порядок из хаоса.
13. Соловьев В.С. Философский словарь Владимира Соловьева. Р-на-Д, 2000.
14. Горохов В.Г. Знать, чтобы делать. М., 1987.
15. Горохов В.Г., Розин В.М. Введение в философию техники. М., 1992.
Размещено на Allbest.ru
Подобные документы
Принципы системного подхода. Объект как система и одновременно элемент более крупной, объемлющей его системы. Системное познание и преобразование мира. Противоположные свойства системы: отграниченность и целостность. Логические основы системного подхода.
контрольная работа [140,0 K], добавлен 10.02.2011Основные этапы развития системных идей. Возникновение и развитие науки о системах. Важные постулаты системного подхода к освоению мира, изложенные Ф. Энгельсом. Предпосылки и основные направления системных исследований. Виды системной деятельности.
реферат [39,1 K], добавлен 20.05.2014Исторический процесс развития системного подхода, утверждение принципов многомерного понимания действительности. Гносеологические основания развития системного знания как методологического средства. Типы и и основные направления синтезирования знаний.
реферат [33,0 K], добавлен 19.10.2011Общенаучный характер системного подхода. Понятия структуры и системы, "множество отношений". Роль философской методологии в формировании общенаучных понятий. Содержательные признаки и общие свойства систем. Основные содержательные признаки систем.
реферат [21,6 K], добавлен 22.06.2010Научно-мировоззренческий контекст формирования и развития мир-системного подхода Валлерстайна. Историко-философская реконструкция современной мир-системы в концепции И. Валлерстайна. Недостатки мир-системного анализа Валлерстайна и пути их преодоления.
курсовая работа [52,2 K], добавлен 14.06.2012Общее представление о пространстве и времени, являющихся общими формами существования материи. Важнейшие философские проблемы, касающиеся пространства и времени. Особенность концепции Лейбница. Относительность пространственно-временных характеристик тел.
реферат [46,7 K], добавлен 22.06.2015Развитие технической мысли в истории, представления об искусстве, науке и технике. Механистическая картина мира. Формирование философии техники в XIX-XX вв. Феномен обезличивания человека техникой. Этико-технический аспект изменения социальной реальности.
дипломная работа [106,1 K], добавлен 08.07.2012Характеристика логической связанности и целостности процесса изучения социальной реальности. Понятие и основные черты логики и системного анализа. Графические и количественные методы системного исследования. Этапы методик системного анализа по С. Янгу.
курсовая работа [47,9 K], добавлен 23.10.2013Представления о мире согласно Шопенгауэру. Размышления по основным вопросам философии, систематизация взглядов на познание, отношение к науке. Взгляд Шопенгауэра на природу, на целесообразность всех органических созданий природы. Объяснение мира как воли.
курсовая работа [26,1 K], добавлен 03.03.2012Отличительными особенностями подхода к технике в зарубежной философии является следующие: четко выраженное гуманитарное и аксиологическое отношение, постановка во главу угла вопросов природы и сущности техники и её значения для судеб нашей культуры.
реферат [23,9 K], добавлен 08.12.2010