Электрификация животноводческой фермы крупного рогатого скота на 2700 голов ЗАО "Агрофирма Луговская" Тюменского района Тюменской области с разработкой системы горячего и холодного водоснабжения

Системы электроснабжения в сельском хозяйстве. Электрификация технологических процессов на животноводческой ферме. Расчет мощности осветительной установки стойлового помещения. Выбор сечения проводов. Графики нагрузки, защитные меры в электроустановках.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 08.06.2010
Размер файла 411,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

109

Тюменская государственная сельскохозяйственная академия

ФГОУ ВПО

Механико-технологический институт

Кафедра "Энергообеспечение сельского хозяйства"

Специальность 311400 "Электрификация и автоматизация сельского хозяйства"

Выпускная квалификационная работа

Тема: "Электрификация животноводческой фермы крупного рогатого скота на 2700 голов ЗАО "Агрофирма Луговская" Тюменского района Тюменской области с разработкой системы горячего и холодного водоснабжения"

Выполнил: студент

Булыгин Андрей Валерьевич

Содержание

  • Введение
    • 1. Анализ хозяйственной деятельности
    • 3. Электрификация технологических процессов
    • 3.1 Выбор технологии содержания животных
    • 3.2 Выбор оборудования для доения коров
    • 3.3 Выбор резервуара для хранения молока
    • 3.4 Выбор холодильной установки
    • 3.5 Расчет осветительных установок
    • 3.5.1 Расчет осветительных установок
    • 3.5.2 Расчет мощности осветительной установки стойлового помещения
    • 3.5.3 Расчет осветительной сети с выбором щитов и оборудования
    • 3.5.3.1 Выбор сечения проводов
    • 3.5.3 Расчет осветительных установок молочного блока
    • 3.5.3.1 Расчет мощности осветительной установки электрощитовой
    • 3.5.3.2 Расчет мощности осветительной установки молочной
    • 3.5.3.3 Расчет мощности осветительной установки коридора
    • 3.5.3.4 Расчет мощности осветительной установки тамбура
    • 3.5.3.5 Расчет мощности осветительной установки вакуум-насосной
    • 3.5.3.6 Расчет мощности осветительной установки лаборатории
    • 3.5.3.7 Расчет мощности осветительной установки моечной
    • 3.5.3.8 Расчет мощности осветительной установки уборной
    • 3.5.4 Расчет осветительной сети молочного блока
    • 3.5.4.1 Выбор сечения проводов ввода
    • 3.6 Расчет электропривода вакуумных насосов доильной установки
    • 3.7 Расчет отопления и вентиляции
    • 3.8 Выбор (описание) холодного и горячего водоснабжения
    • 3.8.1 Выбор оборудования
    • 3.8.2 Определение мощности установки
    • 3.9 Расчет силовой сети молочного блока
    • 3.9.1 Выбор аппаратуры защиты и распределительного щита
    • 4. Составление графиков нагрузки
    • 5. Выбор Т.П. Расчет наружных сетей
    • 6. Техника безопасности
    • 6.1 Безопасность жизнедеятельности на производстве
    • 6.2 Защитные меры в электроустановках
    • 6.3 Безопасность жизнедеятельности в чрезвычайных ситуациях
    • 7. Технико-экономические расчеты
    • Литература
    • Доклад

Введение

Современное сельскохозяйственное производство - крупный потребитель топливно-энергетических ресурсов. В сельских районах электрическую энергию расходуют на отопление, вентиляцию и горячее водоснабжение производственных, общественных и жилых зданий, создание искусственного микроклимата в животноводческих помещениях, сооружениях защищенного грунта, хранилищах и др.

Для систем электроснабжения сельского хозяйства характерны большая разобщенность, разнообразие потребителей и неравномерность электрических нагрузок не только в течении года, но и в течении суток. Эффективное использование энергии в хозяйствах возможно при учете особенностей электропотребления.

Важную роль в получении электроэнергии играет электрификация и автоматизация технологического процесса, которая обеспечивает бесперебойную и безаварийную работу. Электрификация, то есть производство, распределение и применение электроэнергии - основа устойчивого функционирования и развития всех отраслей промышленности и сельского хозяйства страны и комфортного быта населения. На базе электроэнергетике стали развиваться промышленность сельского хозяйства и транспорта.

Развитие сельскохозяйственной промышленности базируется на современных технологиях, широко использующих электрическую энергию. В связи с этим возросли требования, к качеству электрической энергии, к ее экономному и рациональному расходованию.

Электрификация, то есть производство, распределение и применение электроэнергии - основа устойчивого функционирования и развития всех отраслей промышленности и сельского хозяйства страны и комфортного быта населения. На базе электроэнергетике стали развиваться промышленность сельского хозяйства.

1. Анализ хозяйственной деятельности

ЗАО АФ "Луговская" в современных границах организовано 28 января 1987 года в связи с ликвидацией совхоза "Новоторманский". Расположено в центральной части Тюменского района на северо-востоке от районного и областного центров г. Тюмени 15 км.

Хозяйство размещено в ІІІ агроклиматическом районе, который характеризуется следующими данными: район теплый, умеренно увлажненный. Среднесуточная температура воздуха в период с температурой выше +10 колеблется в пределах 1900-2050. Средняя температура самого теплого месяца года (июль) равна +20, самого холодного (январь) - 18. Устойчивый снежный покров образуется 5-11 ноября. Наибольшей высоты он достигает в марте и обычно не превышает 27-35 см. Сумма осадков за год

по зоне составляет 363-422 мм. Около 1/3 осадков теплого периода (96-110мм) выпадает в апреле - первой половине июня, но примерно раз в три года в этот период выпадает всего 50% осадков, что отрицательно сказывается на урожае зерновых культур. Половина летних осадков выпадает во второй половине июля - сентября, что сильно усложняет уборку урожая.

Рельеф территории хозяйства представляет собой приподнятую равнину, рассеченную значительным количеством балок. Поросших лесом и кустарником, имеется большое количество блюдцеобразных впадин, которые значительно затрудняют механизацию в растениеводстве. В северной части землепользование равнина круто обрывается и переходит в надпойменную террасу реки Тура.

В зависимости от рельефа землепользования размещается и почвенный покров. Так, если в северной части землепользования располагаются луговые слоистые, лугово-болотные и торфяно-болотные почвы, то в центральной ее

части черноземы оподзоленные и выщелоченные. Далее к югу идут серые и темно-серые оподзоленные, а частично и подзолистые почвы.

Гидрографическая сеть представлена рекой Турой, которая протекает с востока на северо-запад, Малой речкой, ручьями, озерками.

Глубина залегания грунтовых вод тесно связана с рельефом, на повышенных элементах рельефа 6-8 м, на пониженных 3-4 м.

Растительный покров представлен двумя формами: древесной и травянистой.

Мясомолочная продукция, производимая в хозяйстве, реализуется на предприятиях и в магазинах города Тюмени.

Дорожная сеть представлена асфальтированной дорогой, проходящей от г. Тюмени и до ЗАО "Каменское", а на территории асфальтированными и грунтовыми дорогами.

ЗАО АФ "Луговская" имеет молочно-мясное направление. В структуре товарной продукции молоко занимает основную прибыль от общей суммы. Общая земельная площадь хозяйства 11639га, в т. ч.6505га сельскохозяйственных угодий, из них 3673га полей, 2057га сенокосов и

781га пастбищ. Распахано сельскохозяйственных угодий 57%. На начало 2005 гада имеется 2649 голов крупно рогатого скота, в т. ч.1021 коров, что составляет в структуре стада 39% и 115 голов лошадей данные показатели показаны на диаграмме и на листе № 6

В структуре посевных площадей зерновые занимают 1200га или 39%, кормовые 65,5%.

Урожайность зерновых 18ц/га. Материальное обеспечение осуществляется через ЗАО Тюменьагромаш и Ч.П. по запасным частям г.

Тюмени. Ремонт комбайнов, тракторов, автомашин и сельскохозяйственной техники производится в своем хозяйстве.

Показатели характеризующие размер предприятия Таблица 2.1.

Показатели

2002

2003

2004

2004г к 2002г

%

1. Валовая продукция в сопоставимых ценах 1994г, (т. руб)

2620

2628

2711

103,4

2. Товарная продукция, (т. руб)

29295

29258

36365

124,1

3. Общая земельная площадь, (га) в том числе:

а) с/х угодий из них

б) пашни

11639

6505

3673

11639

6505

3673

11639

6505

3673

100,0

100,0

100,0

4. Стоимость основных производственных фондов, (т. руб)

15720

17248

17743

112,9

5. Численность работников занятых в с/х производстве.

278

242

233

83,8

6. Условное поголовье животных

2116

2078

2113

99,9

7. Энергетические мощности, л. с.

18454

17550

18900

102,0

Стоимость товарной продукции в 2004г. увеличилась на 24,3% по сравнению с 2003г., а в сравнение с 2002г. на 24,1%. Земельная площадь в хозяйстве осталась неизменной. Стоимость основных производственных фондов увеличилась за все три анализируемых года. В хозяйстве наблюдается снижение численности работников и увеличение энергетических мощностей. В целом предприятие работает стабильно, т.к увеличивается стоимость товарной продукции и основных производственных фондов. Условное поголовье скота находится почти на уровне.

2002 2003 2004

Состав и структура товарной продукции.

Таблица 2.2

Виды продукции.

2002

2003

2004

тыс. руб.

%

тыс. руб.

%

тыс. руб.

%

1. Продукция растениеводства всего

671

2,5

1158

4,0

236

0,6

Прочая продукция растениеводства

67

0,2

875

3,0

212

0,6

Итого по растениеводству

671

2,5

1158

4,0

236

0,6

2. Продукция животноводства в т. ч. К.Р. С

3685

13,5

2188

7,5

6058

16,7

Прочая продукция животноводства

99

0,1

540

1,8

200

0,5

Продукция животноводства собственного производства, реализуемого в переработанном виде.

22568

82,6

24554

83,9

28208

77,6

Итого по животноводству

26352

96,5

27282

93,2

34466

94,8

3. Прочая продукция, работы и услуги

272

1,0

818

2,8

1663

4,6

Всего

27295

100

19258

100

36365

100

Товарная продукция это та часть продукции, которая реализуется непосредственно на рынке сбыта. Структура товарной продукции это отношение стоимости отдельных видов продукции к общей стоимости.

Наибольший удельный вес в структуре товарной продукции за все 3

года занимает реализация молока. Товарная продукция крупно рогатого скота занимает второе место в удельном весе. Продукция собственного производства, реализуемая в переработанном виде, занимает наибольший удельный вес 77,6%. Данное предприятие специализируется на продукции животноводства, т.к молоко и мясо К.Р.С. доминируют в структуре товарной продукции. Имеется собственный цех переработки молока. Молочная продукция реализуется в торговую сеть г. Тюмень.

2002 2003 2004

2002 2003 2004

2002 2003 2004

Состав и структура работников по категориям

Таблица 2.3

Категории работников

2002

2003

2004

чел.

%

чел.

%

чел.

%

По сельской организации всего в т. ч.

325

100

282

100

265

100

Работники, занятые в с/х производстве из них

278

85,6

242

85,8

233

87,9

Рабочие постоянные

138

42,5

117

41,5

108

40,8

а) трактористы-машинисты

19

5,8

17

6,0

14

5,3

б) операторы машинного доения

39

12,0

32

11,3

29

10,9

в) скотники К.Р.С.

38

11,7

37

13,1

35

13,2

Рабочие сезонные и временные

103

31,7

90

31,9

91

34,3

Служащие из них

37

11,4

35

12,4

34

12,8

Руководители

14

4,3

12

4,3

12

4,5

Специалисты

17

5,2

17

6,0

17

6,4

Работника занятые в подсобных промышленных предприятиях и промыслах

41

12,6

34

12,0

26

9,8

Работники торговли и общественного питания

6

1,8

6

2,2

6

2,3

Наибольший удельный вес в структуре работников за все три года занимают постоянные рабочие. Сезонные рабочие 2004 и 2002 году в удельном весе по категориям занимают 34 и 32% соответственно, уступая лишь постоянным рабочим, численность временных рабочих 91 человек.

Служащие, куда входят руководители, и специалисты занимают относительно небольшой удельный вес 12,8%. На предприятии идет уменьшение количества работников с каждым годом, однако производство молока и процент крупно рогатого скота ежегодно растет. В агрофирме на весенне-полевые и уборочные работы привлекаются сезонные рабочие.

Таблица 2.4. Использование годового фонда рабочего времени

Показатели

2001

2002

2003

Среднегодовая численность работников (чел)

Состоит по списку на конец года (чел)

325

220

282

187

265

180

Трудообеспеченность, %

68

66,3

68

Фактически отработанно за год одним работником.

Человеко-дней

Человеко-часов

257

1996

263

2049

260

2052

Коэффициент использования годового фонда рабочего времени.

0,98

1,00

1,01

Основные показатели трудовых ресурсов это коэффициент трудообеспеченности, использование годового фонда рабочего времени, среднесписочная численность работников, среднегодовая численность работников.

Трудообеспеченность в 2002 и 2004 году составила 68%, а в 2003 году 66,3%. Численность временных колхозных работников не снижается.100% использования фонда рабочего времени наблюдается в 2004 году, по составленным годам коэффициент перешагнул 100% барьер. Нормативный

фонд рабочего времени был перерасходован в 2004 году. В 2003 и 2004гг,

часам наблюдается перерасход вследствие сверхурочной работы.

2002 2003 2004

Таблица 2.5. Результаты расчетов показателей производительности труда

Показатели

2002

2003

2004

2004 к 2002г.%

Произведено валовой продукции в целом по хозяйству (т. руб)

В расчете на 1 работника (руб)

В расчете на 1 чел/час (руб)

2620

8062

4,25

2628

9319

4,87

2711

10230

4,98

103,4

126,9

117,2

Получено товарной продукции (тыс. руб)

В расчете на 1 работника (руб)

В расчете на 1 чел/час (руб)

29295

90,1

47,6

29258

103,8

54,2

36365

137,3

66,8

124,1

152,4

140,3

Трудоемкость 1 центнера продукции (ч/час)

Зерно

Молоко

Мясо

0,9

3,8

22,1

1,1

3,8

19,4

1,0

3,7

19,2

111,1

97,4

89,8

Среднегодовая заработная плата 1 работника (руб)

37388

40592

49147

131,5

Оплата 1 ч/час (руб)

19,73

21, 20

23,94

121,3

Производительность труда это способность конкретного труда человека производить определенное количество потребительских стоимостей в единицу времени. Учет совокупных затрат труда в рабочем времени является основой для определения стоимости сельхоз продукции.

Наибольшая стоимость валовой продукции наблюдается в 2004 году и составляет 2711 тысяч рублей. В хозяйстве идет снижение затрат труда на производство зерна и мяса, молока. Для дальнейшего уменьшения показателя трудоемкости нужно проводить автоматизацию и механизацию технологических процессов. В целом производительность труда в 2004 году увеличивается по отношению к 2002 году на 3,4%. Для увеличения производительности труда нужно: повышать интенсивность использования основных фондов, углублять специализацию и усилить концентрацию производства, внедрять ресурсосберегающие и прогрессивные технологии,

улучшать организацию труда и повышать его интенсивность. Оплата труда за 1 час ежегодно возрастает на 21,3%.

Таблица 2.6. Оснащенность предприятия фондами и эффективности

Показатели

2002

2003

2004

2003 к 2004г.%

Фондообеспеченность, т. руб.

241

265

272

112,8

Энергообеспеченность, л. с.

284

270

290

102

Фондовооруженность, т. руб.

56,5

71,3

76,2

134,9

Энерговооруженность, л. с.

66,3

72,5

81,1

122,3

Фондоотдача

0,17

0,15

0,15

88,2

Фондоемкость

6,0

6,6

6,6

110,0

Уровень рентабельности,%

0,07

2,8

4,2

В 60 раз

Фонды предприятия делятся на основные и оборотные, которые различаются разницей способа перемещения их стоимости на вновь созданный продукт

В хозяйстве идет увеличение показателя энергообеспеченности на 2%, увеличение энерговооруженности объясняется снижением количества работников. Наибольшая фондоотдача наблюдается в 2002 году. Наибольшая рентабельность вышла в 2004 году и составила 4,2% наименьшая, была в 2002 году и составила всего 0,07%. Оснащенность предприятия энергетическими мощностями увеличивается на 102%. В целом по хозяйству основные производственные фонды используются эффективно, т.к их стоимость увеличивается с каждым годом.

2002 2003 2004

2002 2003 2004

2002 2003 2004

2002 2003 2004

Таблица 2.7. Финансовые результаты от реализации продукции за 2004 год

Продукция

2004

зерно

молоко

Мясо

план

факт

план

факт

план

Факт

Выручено от реализации продукции, т. руб.

553

236

27311

27413

7048

6853

Полная себестоимость продукции, т. руб.

484

188

19507

19592

13540

13297

Прибыль, т. руб.

69

48

7804

7821

-6492

-6444

Уровень рентабельности, %

14,3

25,5

40,0

39,9

-

-

От того, как будет реализована продукция, зависит нормальное функционирование производства. При производстве продукции нужно стремиться к уменьшению материальных затрат чтобы в итоге себестоимость продукции была ниже ее рыночной стоимости. Основными показателями при реализации являются прибыль и уровень рентабельности.

Предприятие выгодно реализовало продукцию зерна и молока, прибыль соответственно составила 48 и 7821 тысяч рублей, а продукция мяса была продана со значительно меньшей стоимостью, чем ее себестоимость и убыток составил 6444 тысяч рублей. Прибыль вышла больше плана от реализации молочной продукции, убыток сократился от реализации мяса по

сравнению с планом на 48,0 тысяч рублей. Для того, чтобы производство было более рентабельным нужно снижать себестоимость продукции и искать более выгодные рынки сбыта. В целом хозяйство сработало рентабельно, прибыль от реализации составила 1453 тысяч рублей.

Данное хозяйство расположено в двух отделениях и для расчёта принимаем одно отделение, остальные нагрузки сводим в таблицы.

2002 2003 2004

3. Электрификация технологических процессов

Комплексная электрификация и механизация технологических процессов животноводческих ферм заключается в применении систем машин и механизмов Она обеспечивает лучшее использование средств, внедрение интенсивных технологий производства продукции животноводства, резкое повышение производительности труда, способствует ликвидации различий между умственным и физическим трудом. В основу систем машин для комплексной механизации и автоматизации животноводства закладываются пути по увеличению производства высококачественной продукции, росту производительности труда, улучшение условий труда и др.

3.1 Выбор технологии содержания животных

Расчеты ведутся с расчетом на один комплекс аналогично производятся расчеты по остальным 8 комплексам.

По способу содержания различают две основные системы: со свободным выходом животных за пределы здания, в котором они размещаются, и с ограниченным перемещением животных в здании. Существенное влияние на выбор системы содержания животных оказывают природно-климатические условия, вид и половозрастные особенности животных, тип, размер и направление хозяйства, а также другие факторы.

Принимаем привязное содержание коров. Содержание коров стойлово-пастбищное, привязное, в стойлах размерами 1,9·1,2 м. Для привязи предусмотрено стойловое оборудование ОСК-25А с групповым привязыванием животных. Стойла располагаются в четыре ряда, образуя два кормовых проезда шириной 2,25 метров и три навозных прохода: два пристенных шириной 1,8 метра и один в середине здания шириной 2,28 метра (между окончаниями стойл). В одном непрерывном ряду размещается 25 коров.

В зимнее время в течение дня при благоприятных погодных условиях возможна организация прогулок коров продолжительностью не менее 2

часов на выгульных площадках с твердым покрытием из расчета 8 мІ на одну голову.

Кормление коров зимой предусмотрено в здании из стационарных кормушек, кормосмесями в состав которых входят: сено, корнеплоды, концентраты, и минеральная подкормка.

В летний период коровы пасутся на пастбище с организацией подкормки из зеленого корма и концентратов.

Поение скота водой предусмотрено из индивидуальных поилок ПА-1А, установленных из расчета одна поилка на две головы.

3.2 Выбор оборудования для доения коров

Доение коров это одно из наиболее трудоемких процессов. Машинное доение облегчает работу людей и повышает производительность труда.

В зависимости от системы содержания животных и применяемых установок можно снизить затраты труда по сравнению с ручным доением в 2…5 раз, что уменьшает потребность в рабочей силе.

Различают два способа машинного доения: отсос при помощи вакуума и механическое выжимание.

Последний способ, как подражательный ручному доению разработан неудовлетворительно и практически не применяется.

Выбираем вакуумный способ машинного доения, т.к он более автоматизирован и имеет значительное преимущество по сравнению с механическим выжиманием.

Для доения коров на животноводческой ферме принимаем установку вакуумного доения АДМ-8 в варианте, рассчитанном на 200 коров.

Необходимая подача вакуум насоса доильной установки.

Qп=k·g·n=2,5·1,8·12=54 мі/ч (3.1)

где, k=2…3 стр. 207 (л-2) - коэффициент, учитывающий неполную герметизацию системы.

g-расход воздуха 1 доильным аппаратом (g=1,8 табл.13.1 стр. 204 [л-2])

n-число доильных аппаратов в установке. (n=12 табл.13.1 стр. 204 [л-2])

Выбираем вакуум насос УВУ-60/45 с подачей вакуума 60 м3

Таблица 3.1. Технические данные АДМ-8 комплектации.

Обслуживаемое поголовье, гол

200

2700

100 голов необеспеченно доильной установкой т. к раздаиваются в ручную.

Число операторов

4

32

Пропускная способность, кор/ч

100

800

Тип доильного аппарата

АДУ-1

Вакуум-насос

УВУ-60/45

Масса установки, кг

2000

16000

Полученное молоко по молокопроводу подаётся в молочное отделение где фильтруется, охлаждается и перекачивается в резервуар для хранения молока. Т.к. в комплект поставки не входят холодильная машина и резервуар охладитель то их выбираем отдельно.

Продолжительность работы вакуумных насосов в течении дойки.

tд=0,88N/Q·n+Дt=0,88·200/25·4=2,1ч (3.2)

где, N-число коров (0,88N число дойных коров)

Q-производительность оператора машинного доения (Q=25 стр. 204 [л-2])

n-число операторов (n=4 табл.13.1 стр204 (л-2))

Дt=0,3…0,4ч - продолжительность промывки молокопровода стр. 204 [л-2]

3.3 Выбор резервуара для хранения молока

Резервуар предназначен для сбора и охлаждения молока. Для доильной установки АДМ-8 рекомендуется применять танки-охладители ТОВ-1 или ТО2 и поэтому выбираем танк охладитель ТО-2 емкостью 2000л, предназначенный для хранения молока на фермах с поголовьем 200 коров.

Таблица 3.2. Технические характеристики ТО-2.

Емкость, л

2000

Продолжительность охлаждения молока, ч (от 35?С до 4?С)

3,25

Насос для промывки

ВКС-2/26

Частота вращения мешалки, об/мин

50

Габаритные размеры, мм

длина

ширина

высота

2820

1350

1550

Масса, кг

808

3.4 Выбор холодильной установки

Охлаждение - важнейший способ сохранения качества и удлинение сроков сохранности сельскохозяйственных продуктов, замедляющий протекания в них биологических процессов

Т.к. в основном для получения холодоносителя для охлаждения молока в танке охладителе ТО-2 применяют холодильную установку МХУ-8С, а также ее рекомендуют применять совместно с доильной установкой АДМ-8, то выбираем именно ее.

Таблица 3.3. Технические данные МХУ-8С.

Холодопроизводительность, кДж/ч

25120,8

Компрессор.

тип

количество

частота вращения, об/мин

число цилиндров, шт.

ФВ-6

1

1450

2

Конденсатор.

теплообменная поверхность, мІ

производительность вентилятора, мі/ч

60

5000

Водяной насос.

тип

производительность, мі/ч

Е-1,5КМ-Б

6

3.5 Расчет осветительных установок

Свет является одним из важнейших параметром микроклимата. От уровня освещенности, коэффициента пульсации светового потока зависит производительность и здоровье персонала.

3.5.1 Расчет осветительных установок

Характеристики здания.

Таблица 3.4

Наименование

помещения.

площадь

мІ

длина

м

ширина

м

высота

м

Среда.

Стойловое помещение

1380

69

20

3,22

сыр.

Площадка для весов.

9,9

3,3

3

3,22

сыр.

Инвентарная

9,9

3,3

3

3,22

сух

Венткамера

14,4

4,8

3

3,22

сух.

Помещение для

подстилки кормов

9,9

3,3

3

3,22

сыр.

Электрощитовая

9,9

3,3

3

3,22

сух.

Тамбур.

12,6

4,2

3

3,22

сыр.

3.5.2 Расчет мощности осветительной установки стойлового помещения

Согласно СниП принимаем рабочее общее равномерное освещение т.к работы ведутся с одинаковой точностью, нормированная освещенность составляет Ен=75Лк на высоте 0.8м от пола стр35 [л-4]. Т.к. помещение сырое и с химически агрессивной средой то принимаем светильник ЛСП15 со степенью защиты IР54 стр.41 табл.2 [л-4]. Расчетная высота осветительной установки.

Нр=Н-Нс-Нр п=3,22-0-0,8=2,42. (3.3)

где, Н-высота помещения

Нс - высота свеса светильника, принимаем равной нулю, т.к крепежные

кронштейны устанавливаться не будут.

Нр. п. - высота рабочей поверхности.

Расстояние между светильниками.

L=Нр·лс=2,42·1,4=3,3м (3.4)

где, лс - светотехническое наивыгодное расстояние между светильниками при кривой силы света "Д" лс=1,4

Количество светильников в ряду

nс=а/L=69/3,3=21 шт. (3.5)

где, а - длина помещения

Количество рядов светильников.

nр=в/L=20/3,3=6 ряд. (3.6)

где, в - ширина помещения

Расчет производим методом коэффициента использования светового потока, т.к нормируется горизонтальная освещенность, помещение со светлыми ограждающими стенами без затемняющих предметов.

Индекс помещения.

i=а·в/Нр· (а+в) =69·20/2,42· (69+20) =6,4 (3.7)

Согласно выбранному светильнику, индексу помещения и коэффициентам отражения ограждающих конструкций (сп=30 сс=10 ср. п. =10) выбираем коэффициент использования светового потока Uоу=0,67

Световой поток светильника.

Фс=А·Ен·Кз·z/nс·Uоу=1380·75·1,3·1,1/126·0,67=3861 Лм (3.8)

где, А-площадь помещения, мІ

Ен-нормированная освещенность, Лк

Кз-коэффициент запаса

z-коэффициент неравномерности (z=1,1…1,2 стр.23 (л-4))

Световой поток одной лампы.

Фл=Фс/nл=3861/2=1930,5 Лм (3.9)

где, nл-число ламп в светильнике.

Принимаем лампу ЛД-40-1 с Фк=2000 Лм Рн=40Вт

Отклонение светового потока.

ДФ=Фк-Фр/Фр·100%=2000-1930/1930·100%=3,6% (3.10)

Отклонение светового потока находится в пределах -10%…+20% и поэтому окончательно принимаем светильник ЛСП15 с лампой ЛД-40-1.

Аналогичные расчеты освещения произведёны и представлены в таблице № 3,9.

Таблица 3.5. Выбранное световое оборудование.

Наименование

помещения

тип светильника

тип лампы

кол-во

светильников

уст. мощность,

Вт

стойловое

помещение

ЛСП15

ЛД-40-1

126

10080

помещение для

подстилки

НСР01

Б-215-225-200

1

200

инвентарная

НСР01

Б-215-225-200

1

200

Венткамера

НСП17

Б-215-225-200

4

25,3

Тамбур

Н4Б300-МА

Г-215-225-300

4

1200

Электрощитовая

ЛСП02

ЛДЦ40-4

1

80

площадка перед входом

НСП03-60

Б220-40

7

280

площадка для весов

НСР01

Б-215-225-200

1

200

помещение

навозоудаления

НСР01

Б-215-225-200

2

400

3.5.3 Расчет осветительной сети с выбором щитов и оборудования

3.5.3.1 Выбор сечения проводов

Согласно ПУЭ из условий механической прочности сечение проводов с алюминиевыми жилами, должно быть не менее 2ммІ, т.к. у применяемых светильников корпуса металлические, то сечение заземляющих и токопроводящих проводов должно быть не менее 2,5ммІ, выбор сечения проводов производим по потере напряжения.

Суммарная нагрузка осветительной сети.

РУ=УРл. н. +1,2УРл. л. =3380+1,2·10160=15,5кВт (3.11)

где, УРл. н. - суммарная мощность ламп накаливания

1,2УРл. л. - суммарная мощность люминесцентных ламп

УРлн=800+200+1200+280+200+400=3380Вт (3.12)

УРлл=10080+80=10160Вт (3.13)

Силовая сеть питается от трех осветительных щитов, схема компоновки осветительной сети приведена ниже.

Момент нагрузки между силовым и 1 осветительным щитом.

Мсщ-ощ=1,2 (РУ) ·Lсщ-ощ=6·5=30 кВт·м (3.14)

УР - суммарная мощность люминесцентных ламп питающиеся от данного щита.

Lсщ-ощ - расстояние между силовым и 1 осветительным щитом

Расчетное сечение между щитами.

S=Мсщ-ощ/С·ДU=30/50·0,2=3 мм (3.15)

где, С-коэффициент зависящий от напряжения и металла из которого состоит токоведущая жила (при U=380В и алюминиевой жилы С=50. ДU-допустимая потеря напряжения между щитами, т.к согласно ПУЭ допустимая потеря напряжения составляет 2,5%, между щитами принимаем допустимую потерю 0,2%, а на группах 2,3%. Принимаем ближайшее наибольшее сечение, которое равняется 4ммІ и по этому сечению, принимаем провод АПВ4-4ммІ. Ток на вводе в осветительный щит.

Iсщ-ощ=РУ/U·cosц=15,5/0,38·0,98=39,8А (3.16)

где, U-номинальное напряжение, В, cos ц-коэффициент мощности осветительной нагрузки.

Выбранный провод проверяем по допустимому нагреву. Согласно (л-5) допустимая токовая нагрузка на данное сечение составляет Iдоп=50А

Iсщ-ощ=20,4А<Iдоп=50А (3.17)

Окончательно принимаем четыре провода АПВ4-4ммІ

Выбор сечения проводов на участках.

Момент нагрузки на каждой группе

М=У (Р·L) (3.18)

где, L-расстояние от осветительного щита до светового прибора.

У-сумма мощностей входящих в группу.

М1=1,2· (80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4+80·74,7=81,9 кВт·м

М2=1,2· (80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4=74,8 кВт·м

М3=1,2· (80·2,1+80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1) =68 кВт·м

Допустимая потеря напряжения на группах принята 2,3%

Сечение проводов на каждой группе

S=М/С·ДU (3.19)

где, М - момент нагрузки на группе

Значение коэффициента С аналогично что и при выборе сечения провода между щитами, т.к питание осветительной нагрузки на группах осуществляется трехфазной четырехпроводной линией.

S1=81,9/50·2,3=0,7 ммІ (3.20)

S2=74,8/50·2,3=0,6 ммІ (3.21)

S3=68/50·2,3=0,59 ммІ (3.22)

На группах принимаем 4 провода АПВ (2,5) прокладываемых в трубах с сечением токоведущей жилы 2,5 ммІ выбранный провод проверяем по условию нагрева длительным расчетным током.

Допустимая токовая нагрузка на выбранное сечение составляет Iдоп=30 А.

Определяем токи на группах, токи на всех трех группах аналогичны друг другу и поэтому рассчитываем ток одной из групп.

I=Р/Uном·cosц=6/0,38·0,8=20А (3.23)

Проверяем выбранный провод по условию

Iдоп=30А?Iрасч=20А (3.24)

Условие выполняется, значит принимаем выбранный ранее провод.

Момент нагрузки между силовым и 2 осветительным щитом.

М=1,2 (УР) ·L=6·5,6=33,6 кВт·м (3.25)

Расчетное сечение.

S=М/С·ДU=33,6/50·0,2=3,3 (3.26)

Принимаем 4 одножильных провода АПВ с сечением токоведущей жилы 4 ммІ, дальнейший расчет тока и проверка выбранного сечения аналогична что и при расчете 1 осветительного щита, т.к. они имеют одинаковые нагрузки, значит принятый провод принимаем окончательно. Моменты нагрузки на группах.

М1=1,2· (80·2,1+80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1=68 кВт·м

М2=1,2· (80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4=74,8 кВт·м

М3=1,2· (80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4+80·74,7) =81,9 кВт·м

Сечение проводов на каждой группе

S1=68/50·2,3=0,59 ммІ (3.27), S2=74,8/50·2,3=0,6 ммІ (3.28)

S3=81,9/50·2,3=0,7 ммІ (3.107)

Значение С и ДU аналогично что и при расчетах 1 осветительного щита.

Принимаем на группах 4 провода марки АПВ с одной жилой сечением 2,5 ммІ, дальнейший расчет токов на группах и проверка выбранного сечения по нагреву длительным расчетным током аналогично расчету на группах 1 осветительного щита, т.к они имеют одинаковые нагрузки на группах.

Момент нагрузки между силовым и 3 осветительным щитом.

Мсщ-3ощ= (1,2· (УР) +Р) ·Lсщ-ощ3= (1,2· (40) +3360) ·1=3,4 кВт·м (3.29)

где, 1,2· (УР) - суммарная мощность люминесцентных ламп

Р - суммарная мощность ламп накаливания

Расчетное сечение провода между щитами.

S=Мсщ-ощ3/С·ДU=3,4/50·0,2=0,3 ммІ (3.30)

Принимаем 4 одножильных провода АПВ с сечением токоведущей жилы 2,5 ммІ

Расчетный ток на вводе в осветительный щит.

I=Р/мUн·cosц=3,4/3·220·0,8=6,8 А (3.31

Проверка выбранного сечения по допустимому нагреву.

Iдоп=30А?Iрасч=6,8 А (3.32)

Условие выполняется, значит провод выбран верно.

Моменты нагрузки на группах

М1=1,2· (40·1,2) + (40·3,1+300·3,1+40·3,1+200·3,9+200·5,9+40·7,9+300·7,9+200·9,4+200·11,4+200·12,4+40·11,4+40·11,4) =12,9кВт·м

М2=200·71+300·73,1+40·73,1+200·74,2+200·76,3+300·77,8+40·77,8+200·79,3=110,6кВт·м

Сечение проводов на каждой группе.

S1=12,9/50·2,3=0,1 ммІ (3.33)

S2=110,6/50·2,3=0,9 ммІ (3.34)

На всех группах принимаем провод АПВ4 (1·2,5), то есть четыре провода с сечением токоведущей жилы 2,5 ммІ способ прокладки 4 провода в трубе.

Расчетный ток на группах.

I1=1980/3·220·0,98=3 А (3.35)

I2=1480/3·220·0,98=2,2 А (3.36)

Наибольший расчетный ток вышел в 1 группе и составил I1=3А, именно этот ток будем учитывать при проверке провода по допустимому нагреву длительным расчетным током.

Iдоп=30А?Iрасч=3А (3.37)

Условие выполняется, значит принимаем выбранный ранее провод.

Для защиты осветительной сети от токов коротких замыканий, а также для распределения электроэнергии в осветительной сети принимаем 2 осветительных щита, серии ЯРН 8501-3813 ХЛЗБП с вводным автоматом серии ВА5131 с Iн=100А и 3 автоматами на отходящих линиях серии ВА1426 с Iн=32А. Выбранные щиты будут питать осветительную сеть стойлового помещения. Для питания осветительной сети остальных помещений принимаем аналогичный щит. В сумме выбрано три осветительных щита серии ЯРН 8501-3813 ХЛЗБП.

3.5.3 Расчет осветительных установок молочного блока

Молочный блок предназначен для сбора очистки и охлаждения молока, освещение играет немаловажную роль в технологическом процессе, от уровня освещенности зависит производительность и здоровье персонала.

Таблица 3.5. Характеристики здания.

Наименование помещения

площадь

ширина

длина

среда

Молочная

78,6

5,7

13,8

сыр.

Электрощитовая

10

2,4

4,2

сух

Лаборатория

5,67

2,1

2,7

сух

Моечная

5,13

1,9

2,7

сыр.

Комната персонала

16,8

4

4,2

сух

Уборная

1,35

0,9

1,5

сыр.

Вакуумнасосная

13,02

3,1

4,2

сух

Тамбур

7,6

1,9

4

сыр

Коридор

30,26

1,7

17,8

сыр

Высота помещений молочного блока Н=3м

3.5.3.1 Расчет мощности осветительной установки электрощитовой

Согласно (л-4) принимаем рабочее, общее равномерное освещение, нормированная освещенность составляет Ен=100Лк на вертикальной плоскости, на высоте 1,5м от пола стр.38 (л-4), т.к. помещение электрощитовой сухое то выбираем светильник ЛСП02 со степенью защиты IР20. Расчетная высота осветительной установки.

Нр=Н-Нс-Нр. п. =3-0-1,5=1,5м (3.38)

высоту свеса принимаем равной нулю, т.к подвесные кронштейны устанавливаться не будут.

Расчет мощности осветительной установки электрощитовой производим точечным методом, т.к в ней нормируется освещенность на вертикальной плоскости.

0,5·Нр=0,5·1,5=0,75<Lл=1,2

поэтому будем считать источник света линейный.

Расстояние от точки проекции светильника до контрольной точки в центре щита.

Р=в/2-Сщ=2,4/2-0,38=0,82м (3.118)

где, в - ширина помещения, м

Сщ - ширина щита, м

Расстояние от светильника до контрольной точки

dл=vНрІ+РІ=v1,5І+0,82І=1,7 (3.39)

Угол между вертикалью и линией силы света к контрольной точке.

г=arctgР/Нр=arctg0,82/1,5=28є (3.40)

Угол под которым видна светящееся линия.

б=arctgLл/dа=arctg1,2/1,7=57,7є=1рад (3.41)

Условная освещенность в контрольной точке.

Еа=Iг·cosІг/2·Нр· (б+1/2sin2б) =135·cosІ28є/2·1,5· (1+sin2·1/2) =48,3Лк (3.42)

где, Iг=135кд сила света светильника в поперечной плоскости под углом г=28є. Перейдем к вертикальной освещенности.

Еа. в. =Еа (cosИ+Р/НрsinИ) =48,3 (cos90є+0,82/1,5·sin90є) =26,4Лк (3.43)

где, И=90є-угол наклона поверхности.

Световой поток светильника.

Фс=1000·Ен·Кз·Нр/з·Еа. в. =1000·100·1,3·1,5/1·26,4=7386Лм (3.44)

где, з-коэффициент учитывающий дополнительную освещенность от удаленных светильников, т.к этих светильников нет то з=1

1000-световой поток условной лампы.

Световой поток одной лампы.

Фл=Фс/nс=7386/2=3693 (3.45)

Принимаем лампу ЛД-65 с Фк=4000Лм отклонение светового потока лампы, от расчетного потока находится в пределах -10%…+20%, и окончательно принимаем светильник ЛСП02 с 2 лампами ЛД-65

3.5.3.2 Расчет мощности осветительной установки молочной

Принимаем рабочее, общее равномерное освещение, нормированная освещенность составляет Ен=100Лк на высоте 0,8м от пола, т.к. помещение сырое то принимаем светильник ЛСП15 со степенью защиты IР54. Расчетная высота осветительной установки.

Нр=Н-Нс-Нр. п. =3-0-0,8=2,2м (3.46)

высота свеса равняется нулю, т.к крепежные кронштейны использоваться не будут.

Расстояние между светильниками.

L=Нр·лс=2,2·1,4=3,08 (3.47)

Количество светильников.

nс=а/Lс=13,8/3,08=5св. (3.48)

Количество рядов светильников.

nр=в/L=5,7/3,03=1ряд (3.49)

Расчет производится методом коэффициента использования светового потока, т.к. нормируется горизонтальная освещенность, помещение со светлыми ограждающими конструкциями. Индекс помещения:

i=а·в/Нр· (а+в) =13,8·5,7/2,2· (13,8+5,7) =1,8 (3.50)

по полученному индексу, а также типу светильника выбираем коэффициент использования светового потока Uоу=0,41. Световой поток светильника.

Фс=А·Ен·Кз·z/nс·Uоу=78,6·100·1,3·1,1/5·0,41=5482,4Лм (3.51)

Световой поток лампы

Фл=Фс/2=5482,4/2=2741,2Лм (3.52)

По полученному значению светового потока принимаем лампу ЛБ-40-1 с Фк=3200Лм, отклонение светового потока. Лампы от расчетного находится в пределах -10%…+20% и окончательно принимаем пять светильников ЛСП15 с 2 лампами ЛБ-40-1.

Расчет оставшихся помещений производим методом удельной мощности, т.к этим методом разрешается рассчитывать, когда расчет освещения не входит в основную часть задания.

3.5.3.3 Расчет мощности осветительной установки коридора

Принимаем рабочее общее равномерное освещение, освещение нормируется на высоте 0м от пола стр36 (л-4), т.к помещение сырое то принимаем светильник НСР01 со степенью защиты IР54

Расчетная высота осветительной установки.

Нр=Н-Нс-Нр. п. =3-0,2-0=2,8м (3.53)

т.к в коридоре будут устанавливаться крепежные кронштейны то Нс=0,2м

Расстояние между светильниками.

L=2,8·1,4=3,9м (3.54)

Количество светильников.

nс=а/L=17,8/3,9=4св. (3.55)

Количество рядов

nр=в/L=1,7/3,9=1ряд (3.56

Мощность лампы

Рл=А·Руд/nс=30,2·23,5/4=177,4Вт (3.57)

Руд=23,5 при кривой силе света "Д", h=3м, А=30,2мІ

Окончательно принимаем 4 светильника НСР01 с лампой Б-215-225-200 с Рн=200Вт

3.5.3.4 Расчет мощности осветительной установки тамбура

Система освещения, нормированная освещенность, выбор светильника и расстояние между ними аналогично помещению коридора.

Количество светильников

nс=а/L=4/3,9=1св. (3.58)

т.к. при расчете тамбура в него была включена часть коридора и принимая в расчет что между ними установлена дверь, принимаем количество светильников равное 2

Количество рядов.

nр=в/L=1,9/3,9=1ряд

Мощность лампы.

Рл=А·Руд/nс=7,6·25,4/2=96,7Вт (3.59)

Руд=25,4 при кривой силе света "Д" h=3м, А=7,6мІ

Принимаем 2 светильника НСР01 с лампой Б-215-225-100 с Рн=100Вт.

3.5.3.5 Расчет мощности осветительной установки вакуум-насосной

Принимаем общее равномерное рабочее освещение, освещение нормируется на высоте 0,8м от пола стр.35 (л-4), т.к помещение сухое то принимаем светильник ЛСП02 со степенью защиты IР20

Расчетная высота осветительной установки.

Нр=Н-Нс-Нр. п. =3-0-0,8=2,2м (3.60)

Расстояние между светильниками.

L=Нр·лс=2,2·1,4=3,08м (3.61)

Количество светильников.

nс=а/L=4,2/3,08=1шт (3.62)

Количество рядов.

nр=в/L=3,1/3,08=1ряд (3.63)

Мощность светильника

Рс=А·Руд/nс=13,02·12/1=156,2Вт (3.64)

Руд=12 при кривой силе света "Д" h=3м А=13,02мІ

Мощность лампы.

Рл=Рс/2=156,2/2=78,1Вт (3.65)

Для освещения вакуум-насосной принимаем 1 светильник ЛСП02 с двумя лампами ЛД-80 с Рн=80Вт стр54 (л-4)

3.5.3.6 Расчет мощности осветительной установки лаборатории

Принимаем рабочее общее, равномерное освещение, т.к. помещение сухое то принимаем светильник ЛСП02 со степенью защиты IР20

Мощность светильника.

Рс=А·Руд/nс=5,67·5,2/1=32,4Вт (3.66)

Руд=5,2 Вт/мІ при кривой силе света "Д" h=3м А=5,67мІ

Мощность лампы.

Рл=Рс/2=32,4/2=16,2Вт (3.67)

Для освещения лаборатории принимаем светильник ЛСП02 с 2 лампами ЛД-40

с Рн=40Вт (3.68)

3.5.3.7 Расчет мощности осветительной установки моечной

Принимаем рабочее, общее равномерное освещение, т.к. помещение сырое то принимаем светильник НСР01 со степенью защиты IР54

Мощность лампы.

Рл=А·Руд/nс=5,13·25,4/1=130,3Вт (3.69)

Руд=25,4 Вт/мІ при кривой силе света "Д" h=3м А=5,13мІ

Принимаем светильник НСР01 с лампой Б-215-225-150 с Рн=150Вт

3.5.3.8 Расчет мощности осветительной установки уборной

Принимаем рабочее общее равномерное помещение, т.к. помещение сырое то принимаем светильник НСП03 со степенью защиты IР54

Мощность лампы.

Рл=А·Руд/nс=1,35·25,4/1=34,29Вт (3.70)

Руд=25,4 Вт/мІ при кривой силе света "Д" h=3м А=1,35мІ

Для освещения уборной принимаем светильник НСП03 с лампой БК-215-225-40 с Рн=40Вт

Таблица 3.6. Выбранное световое оборудование молочного блока.

Наименование

помещения

тип

светильника

тип лампы

кол-во

свет.

Уст. мощ.

Вт

Молочная

ЛСП15

ЛБ-40-1

5

400

Электрощитовая

ЛСП02

ЛД-40-1

80

Лаборатория

ЛСП02

ЛД-40-1

1

80

Моечная

НСР01

Б-215-225-150

1

150

Лаборатория

молочной

ЛСП02

ЛД-40-1

1

80

Помещение для

моющих средств

НСР01

Б-215-225-150

1

150

Комната персонала

ЛСП02

ЛД-40-1

1

80

Вакуумнасосная

ЛСП02

ЛД-80

2

160

Тамбур

НСР01

Б-215-225-100

2

200

Коридор

НСР01

Б-215-225-200

4

800

Уборная

НСПО3

БК-215-225-40

1

40

3.5.4 Расчет осветительной сети молочного блока

3.5.4.1 Выбор сечения проводов ввода

Суммарная нагрузка между силовым и осветительным щитом.

РУ=УРлн+1,2УРлл=1340+1152=2,5кВт (3.71)

УРлн=150+150+200+40+800=1340Вт (3.169)

1,2УРлл=1,2· (400+80+160+80+80+160) =1152Вт (3.72)

Момент нагрузки между силовым и осветительным щитом.

Мсщ-ощ=2,5·1,2=3кВт·м

Сечение проводов между щитами.

S=Мсщ-ощ/С·ДU=3/50·0,2=0,3ммІ (3.73)

значение коэффициента С и допустимых потерь напряжения аналогично что и при расчетах осветительной сети животноводческого комплекса.

Принимаем провод АППВ (3·2,5) с сечением токоведущей жилы S=2,5ммІ

Ток на вводе в осветительный щит

Iсщ-ощ=РУ/ U·cosц=2,5/0,38·0,98=6,7А (3.74)

согласно стр.210 (л-6) допустимая токовая нагрузка на выбранное сечение составляет

Iдоп=23А

Iдоп=23А>Iсщ-ощ=6,7

Т.к. по условию допустимого нагрева провод проходит, то принимаем выбранный ранее провод окончательно.

Выбор сечение проводов на каждой группе.

Моменты нагрузки на каждой группе.

М1=У (Р·L) =1,2· (80·4,7+80·6,7+80·9,7+80·12,7+80·15,3) =4,7кВт·м

М2=200·6,45+200·5,7+200·9,15+200·12,1=6,7кВт·м

М3=1,2· (80·1,5+160·4,5+80·8,2+80·10,2) =2,7кВт

М4=1,2· (80·8,1) +150·10,1+1,2· (80·10,5) +150·13,5=5,3кВт

М5=1,2· (80·4,2) +40·2,1+40·2,8=0,6кВт·м

М6=100·6,2+100·6,2+100·7,2=1,9кВт·м

Сечение проводов на каждой группе.

S1=М1/С·ДU=4,7/8,3·2,3=0,2ммІ (3.75)

С=8,3 при однофазной линии U=220В и алюминиевой токоведущей жилы стр211 (л-5) ДU аналогично, что и при расчетах животноводческого комплекса.

S2=6,7/8,3·2,3=0,3 ммІ

S3=2,7/8,3·2,3=0,1 ммІ

S4=5,3/8,3·2,3=0,2 ммІ

S5=0,6/8,3·2,3=0,03 ммІ

S6=1,9/8,3·2,3=0,1 ммІ

На всех 6 группах принимаем провод АППВ (2·2,5) с сечением токоведущей жилы S=2,5ммІ, выбранный провод проверяем по условию допустимого нагрева.

Расчетные токи в группах

I1=Р1/U·cosц=1,2·400/220·0,97=2,2А (3.76)

I2=400/220·0,97=1,8А

I3=1,2·400/220·0,97=2,2А

I4=1,2· (160) +300/220·0,97=2,3А

I5=1,2· (80) +80/220·0,97=0,8А

I6=300/220·0,97=1,4А

Наибольший расчетный ток вышел в 4 группе и составил I=2,3А, допустимая токовая нагрузка на двужильный провод сечением 2,5ммІ Iдоп. =33А

Iдоп=33А>Iр=2,3

выбранный провод проходит по условию нагрева, а значит, окончательно принимаем именно его.

Для защиты осветительной сети от токов коротких замыканий, а также для распределения электроэнергии между осветительными приборами выбираем осветительный щит ЯОУ8501 укомплектованным вводным рубильником ПВЗ-60 и 6 однополюсными автоматами ВА1426-14 с Iн=32А

3.6 Расчет электропривода вакуумных насосов доильной установки

Для нормальной работы доильных установок в вакуумопроводе должен

поддерживаться вакуум 50000 Па (380 мм рт. ст). В предыдущих расчетах для доильной установки был выбран вакуум-насос марки УВУ-60/45 с подачей Q=60мі/ч и вакуумом р=10,8 Н/мІ

Необходимая мощность электродвигателя для вакуум-насоса

Р=Q·р/1000·зн·зп=60·10,8/1000·0,25·0,72=3,7 кВт (3.23)

где, Q-подача вакуума насосом

р - давление вакуума

зп-КПД передачи (зп=0,72 стр. 207 (л-2)) (3.77)

зн-КПД вакуум насоса (зн=0,25 стр207 (л-2)) (3.76)

Для вакуум-насоса УВУ-60/45 выбираем электродвигатель серии RA112М4 с

Рн=4кВт n2=1430 об/мин з=85,5 КiIп=9 Кiп=2,2 Кimax=2,9

3.7 Расчет отопления и вентиляции

В воздушной среде производственных помещений, в которых находятся люди, животные, оборудование, продукты переработки всегда есть некоторое количество вредных примесей, а также происходит отклонение температуры от нормированных значений, что отрицательно влияет на состояние здоровья людей, продуктивность животных, долговечность электрооборудования. Вентиляционные установки применяют для поддержания в допустимых пределах температуры, влажности, запыленности и вредных газов в воздухе производственных, животноводческих и других помещений. Уравнение часового воздухообмена по удалению содержания углекислоты.

1,2·C+L·C1=L·C2 (3.78)

где, 1,2 - коэффициент учитывающий выделение углекислоты микроорганизмами в подстилке.

С - содержание СО2 в нужном воздухе, л/мі, для сельской местности С1=0,3л/м3, [л-1],

L-требуемое количество воздуха, подаваемое вентилятором, чтобы обеспечить в помещении допустимое содержание СО2 мі/ч,

С2 - допустимое содержание СО2 в воздухе внутри помещения, л/мі, принимаем по таблице 10.2, стр157, С2=2,5 л/мі, (л-2).

Определяем количество углекислого газа, выделяемого всеми животными.

С=С`·п=110·200=22000 л/ч. (3.79)

где, С` - количество СО2 выделяемого одним животным, л/ч, по таблице 10.1. принимаем С`=110л/ч [л-1],

п - количество поголовья животных, 200голов.

Требуемое количество воздуха подаваемого вентилятором.

L=1,2·С/ (С2-С1) =1,2·22000/ (2,5-0,3) =12000 мі/ч (3.80)

Расчетная кратность воздухообмена.

К=L/V=12000/4057=3 (3.81)

V-объем вентилируемого помещения, равняется 4057мі

L-требуемое количество воздуха, подаваемого вентилятором

Часовой воздухообмен по удалению излишней влаги.

Lи=1,1·W1/ (d2-d1) =1,1·28600/ (7,52-3,42) =5200 г/мі (3.82)

где, W1-влага выделяемая животными внутри помещения

d2 - допустимое влагосодержание воздуха.

d1 - влагосодержание наружного воздуха

Влага выделяемая животными

W1=w·N=143·200=28600 г/ч (3.83)

где, w - влага выделяемая одним животным w=143 г/ч стр75 (л-1)

N-количество животных

Допустимое влагосодержание внутри помещения

d2=d2нас·ц2=9,4·0,8=7,52 г/мі (3.84)

где, d2нас-влагосодержание насыщенного воздуха внутри помещения при оптимальной температуре +10єС по табл.10.3 (л-2) d2нас=9,4 г/мі

ц-допустимая относительная влажность внутри помещения, по табл.10.2 (л-2) ц=0,8

Влагосодержание наружного воздуха.

d1=d1нас·ц=3,81·0,9=3,42 (3.85)

где, d1нас-влагосодержание насыщенного наружного воздуха

ц-относительная влажность наружного воздуха.

Т. к. сведений значений расчетной температуры и относительной влажности наружного воздуха нет то ориентировочно расчетную температуру наружного воздуха можно принять равной - 3єС и при такой температуре d1нас=3,81 ц=0.9

Давление вентилятора.

Р=Рд+Рс=105,6+1154,9=1260,5 Па (3.86)

где, Рд и Рс - динамические и статические составляющие давления вентилятора.

Динамическая составляющая давления

Рд=с·VІ/2=1,25·13І/2=105,6 кг/мі (3.87)

где, с-плотность воздуха

V-скорость воздуха, м/с V=10…15м/с (л-1)

Определяем плотность воздуха.

с=с0/ (1+б·U) =1,29/ (1+0,003·10) =1,25кг/мі (3.88)

где, с0-плотность воздуха при 0єС с0=1,29 кг/мі стр34 [л-1]

U-температура воздуха

б - коэффициент учитывающий относительное увеличение объема воздуха при нагревание его на один градус б=0,003 стр.35 [л-1]

Статическая составляющая давления.

Рс=l·h+Рм=66,8·1.8+1035,1=1154,9 Па (3.89)

где, Lh-потеря давления, затрачиваемое на преодоление трения частиц воздуха о стенки трубопровода.

l-длина трубопроводов, равная 66,6м

h-потери давления на 1 метр трубопровода, Па/м

Рм - потери давления затрачиваемое на преодоление местных сопротивлений.

Потери напора на 1 метре трубопровода.

h=64,8·V ·/d · (с/1,29) =64,8·13· /750 · (1,25/1,29) =1,8 Па/м (3.90)

где, V-скорость воздуха в трубопроводе, м/с

d-диаметр трубопровода

d=2·а·в/ (а+в) =2·1000·600/ (1000+600) =750 мм (3.91)

где, а и в стороны прямоугольного сечения трубопровода а=1000мм в=600мм (л-5). Потери напора в местных сопротивлениях.

Рм=Уо·Рд=Уо·с·UІ/2=9,8·1,25·13І/2=1035 Па/м (3.92)

где, о-коэффициент местного сопротивления, Уо=9,8 стр.75 (л-2)

Вентилятор подбираем по их аэродинамическим характеристикам. По наибольшему значению L и расчетному значению Р.

С учетом равномерного распределения вентиляторов в коровнике выбираем вентилятор Ц4-70 с подачей L=6000 мі/ч, при давлении 630 Па.

Ц4-70 N5 n=1350 об/мин з=0,8

Определяем число вентиляторов.

n=L/Lв=12000/6000=2 (3.93)

где, Lв - подача воздуха одним вентилятором.

Принимаем 2 вентилятора один из которых будет располагаться в начале здания другой в конце здания.

Масса воздуха проходящего через вентилятор.

m1=с·S·V=1,29·0,6·13=10 кг/с (3.94)

где, с-плотность наружного воздуха, с=1,29кг/мі стр45 (л-1)

S-площадь сечения трубопроводов S=0,6мІ стр45 (л-2)

Полезная мощность вентилятора.

Рпол=m1·VІ/2=10·13І/2=845Вт (3.95)

Мощность электродвигателя для вентилятора.

Р=Q·Р/1000·зв·зп=1,6·630/1000·0,8·0,95=1,3 кВт (3.96)

где, Q-подача вентилятора Q=1,6мі

Р - давление создаваемое вентилятором Р=630Па

зв-КПД вентилятора зв=0,8

зп-КПД передачи зп=0,95, для ременной передачи стр80 (л-1)

Расчетная мощность двигателя для вентилятора.

Рр=Кз·Р=1,15·1,3=1,5 кВт (3.97)

где, Кз - коэффициент запаса Кз=1,15 стр80 (л-1)

Для вентилятора выбираем электродвигатель серии RA100L4 с Рн=1,5 кВт Iн=4А

Расчет калорифера.

Определяем мощность калорифера.

Рк=Qк/860·зк=16191/860·0,9=20,9 кВт (3.98)

где, Q-требуемая калорифера, ккал/ч

зк-КПД установки зк=0,9

Теплопередачу установки находят из уравнения теплового баланса помещения.

Qк+Qп=Qо+Qв (3.99)

отсюда

Qк=Qо+Qв-Qп=114744+26047-124600=16191 ккал/ч

где, Qо - теплопотери через ограждения, ккал/ч

Qв-тепло уносимое с вентилируемым воздухом

Теплопотери через ограждения

Qо=УК·F· (Vп·Qм) =8·2049· (10-3) =114744 ккал/ч (3.100)

где, К-коэффициент теплопередачи ограждения, ккал/ч К=8 (л-2)

F-площадь ограждений, мІ F=2049 (л-3)

Uп - температура воздуха, подведенная в помещение, Uп=+10єС

Uн - расчетная температура наружного воздуха, Uнм=-3єС

Тепло, уносимое с вентилируемым воздухом.

Qв=0,237·н·V (Qп-Uм) =0,239·1,29·12171· (10-3) =26047 ккал/ч (3.101)

где, н-плотность воздуха, принимаемая равной 1,29 кг/мі стр.56 (л-1)

V - обьем обогащаемого воздуха за 1 час

V=Vп·Коб=4057·3=12171мі (3.102)

где, Vп - объем помещения равный 4057мі

Коб - часовая кратность воздухообмена

Тепловыделение в помещение

Qп=g·N=623·200=124600 ккал/ч (3.103)

где, g-количество тепла выделяемого одним животным за 1 час, для коров весом до 500 кг g=623 ккал/ч стр89 (л-1)

N-число коров.

Считаем, что в каждую фазу включены по два нагревательных элемента.

Определяем мощность одного нагревательного элемента.

Рэ=Рк/м·n=10,4/3·2=1,6 кВт (3.104)

где, n - число нагревателей.

м - число фаз.

Рабочий ток нагревательного элемента

Iраб=Рэ/Uф=1,6/0,22=7,2 А (3.105)

где, Uф - фазное напряжение.

Принимаем 6 ТЭН мощностью 2 кВт: ТЭН-15/0,5 Т220

Принимаем 2 калорифера СФОЦ-15/0,5Т один из которых устанавливаем в начале комплекса другой в конце

Таблица 3.7. Технические данные калорифера.

Тип

калорифера

Мощность

калорифера, кВт

Число секций

Число

нагревателей

СФОЦ-15/0,5Т

15

2

6

3.8 Выбор (описание) холодного и горячего водоснабжения

3.8.1 Выбор оборудования

При автоматизации водоснабжения значительно сокращаются затраты на подачу воды потребителям и улучшаются условия труда обслуживающего персонала. Проанализируем водоподъемные установки и выберем наиболее подходящую.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.