Выбор напряжений

История развития электроэнергетики. Система напряжений электрических сетей. Определение рационального напряжения аналитическим расчётом. Необходимые для осуществления электропередачи от источников питания к приёмникам электроэнергии капитальные затраты.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 13.07.2013
Размер файла 245,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Контрольная работа

Электроснабжение промышленных предприятий

Тема 5

Выбор напряжений

Содержание

1. Система напряжений электрических сетей

2. Выбор рационального напряжения на предприятии

3. Определение рационального напряжения аналитическим расчётом

Литература

1.

1. Система напряжений электрических сетей

Структура существующих электрических сетей Единой энергетической системы (ЕЭС) России по используемым номинальным напряжениям сформировалась под влиянием многих объективных и субъективных факторов, а также волевых решений руководства страны.

Напряжения электросетей были стандартизованы в конце 1920 годов, когда вместо многочисленных напряжений и разного рода тока (например освещение осуществлялось на постоянном токе), была введена единая шкала номинальных напряжений: 3, 6, 35, 110 кВ. Предполагалось, что в дальнейшем будет вводиться подобно странам Европы напряжение 220 и 380 кВ, которое в то время считалось предельно возможным.

В довоенный период формировались первичные «энергоузлы», энергосистемы и связи между ними в основном с использованием принятой шкалы. К 1950 году в стране было только пять линий электропередачи 220 кВ, протяжённостью 2,5 тыс. км. В середине 1950 годов для выдачи мощности крупнейших строящихся ГЭС на Волге была выбрана ступень напряжения 400 кВ.

Целесообразность шкалы высших напряжений с шагом 2 обуславливается увеличением пропускной способности линий ВН примерно в 4 раза по сравнению с сетями низшего напряжения (НН). Это позволяет создать более рациональную схему основной сети энергосистемы, в которой от узловых подстанций более высокого напряжения мощность распределяется по четырём-пяти линиям более низкого напряжения. При этом узловые подстанции ВН размещаются на оптимальном расстоянии друг от друга, что обеспечивает рациональное расходование ресурсов и снижение потерь электроэнергии.

При большой разнице напряжений необходимо сооружать подпитывающие подстанции ВН более близко друг от друга и значительно утяжелять сети НН, увеличивая сечение проводов с вытекающими последствиями. В результате линии ВН и НН приближаются по стоимости. Такое развитие системы менее экономично.

Шкала напряжений с шагом 1,5 также менее экономична, поскольку при этом пропускная способность сети ВН всего в два раза выше по сравнению с сетью НН. Поэтому узловая подстанция ВН может обеспечить питание только ограниченного числа линий более низкого напряжения. В связи с этим попытка использовать напряжение 150 кВ в районах с сетью 110 кВ в некоторых энергосистемах, также не удалась.

Шкала с шагом напряжения 2 была нарушена в середине 1950 годов, когда выявилось, что при проектировании первых электропередач 400 кВ были заложены большие запасы по мощности и их можно перевести на 500кВ. Так шаг высших напряжений увеличился до 2,3.

При анализе существующих напряжений того времени было решено, что напряжение 500 кВ слишком высоко даже для крупнейших электростанций, и было принято волевое решение о введении напряжения 330 кВ. Такое напряжение было внедрено в Днепровской, Донбасской, Эстонской, Латвийской и Азербайджанской энергосистемах.

Дальнейшее развитие электроэнергетики, сопровождающееся быстрым ростом электрических нагрузок и концентрацией производства электроэнергии на крупных электростанциях, повлекло за собой объединение энергосистем в регионах и создание крупных энергообъединений. Развитие электрических сетей в каждой системе и на своём ВН невозможно, так как на всех межсистемных линиях требовалась установка дополнительных трансформаторов 220/330 кВ, мощность которых должна была соответствовать пропускной способности линии. Поэтому введение промежуточного напряжения 330 кВ оказалось неудачным решением.

По мере увеличения всё возрастающего электропотребления в середине 1960 годах было предложено ввести напряжение 750 кВ. И началось сооружение широтной магистрали в наиболее загруженном районе страны ОЭС Юга.

Дальнейшее развитие ЕЭС представляло собой проработку и опробование различных сочетаний напряжений (110-220-500кВ, 110-330-750кВ).

В 1970 годах к шкале напряжений 110-220-500 кВ была добавлена следующая ступень 1150 кВ, предназначенная в качестве надстройки над сетью 500 кВ. Обоснованием этому послужили прогноз высокого темпа роста электропотребления на территории всей страны, дальнейшего увеличения единичной мощности агрегатов, создание комплексов АЭС. Исходя из этого, на территории страны предполагалось создание сети сверхвысокого напряжения (СВН) 1150 кВ. Первую электропередачу напряжением 1150 кВ решено было построить по направлению Сибирь-Казахстан-Урал для комплексного её использования: реализации межсистемного эффекта от объединения работы ОЭС Сибири с европейскими энергообъединениями страны. Такая линия была построена, но при опытной эксплуатации было выявлено ряд замечаний технического характера.

После распада СССР часть ВЛ 1150 кВ оказалась на территории другого государства. Кроме этого фактора наложились такие как: общее снижение энергопотребления, прогнозируемый рост мощности электростанций не подтвердился и др. Следовательно, рациональное использование ВЛ 1150 кВ обеспечить в ближайшем будущем не удастся. Поэтому данная линия используется на напряжение 750 кВ.

В настоящее время можно утверждать, что электрические сети России были ориентированы на другие условия ЕЭС. Сейчас, перспектива развития ЕЭС России связана с рациональным выбором используемых напряжений в системообразующей сети.

2. Выбор рационального напряжения на предприятии

При проектировании системы электроснабжения предприятия наряду с выбором схемы электроснабжения, включает в себя и выбор рационального напряжения, поскольку их значениями определяются параметры ЛЭП и выбираемого электрооборудования подстанций и сетей.

Необходимые для осуществления электропередачи от источников питания к приёмникам электроэнергии капитальные затраты К зависят от передаваемой мощности S, расстояния l между источником питания и местом потребления.

Капитальные затраты на сооружение системы электроснабжения можно найти:

К=Кл+Коб+Кд.в, (5.1)

электроэнергетика напряжение источник приёмник

где Кл - капитальные затраты на сооружение линий (ВЛ или КЛ), Коб - капитальные затраты на установку оборудования, Кд.в - дополнительные капитальные вложения в источники электроэнергии на покрытие потерь мощности в системах электроснабжения.

Эксплуатационные расходы складываются из стоимости потерь электроэнергии Сп, стоимости амортизационных отчислений Са и стоимости содержания обслуживающего эксплуатационного персонала Со,п:

Сэ=Сп+Са+Со,п (5.2)

Капитальные затраты изменяются по кривой К=f(U) (рис. 5.1) и имеют свой минимум при определённом значении напряжения, которое можно назвать рациональным по капитальным затратам (Ua). Данные кривые относятся к определённой расчётной мощности и длине линии.

В свою очередь, эксплуатационные расходы изменяются так же по некоторой зависимости Сэ=f(U) и имеют свой минимум ежегодных при напряжении, которое можно назвать рациональным по эксплуатационным расходам (Uб). В общем случае эти напряжения не совпадают.

При использовании стандартного ряда напряжений 6, 10, 20, 35, 110 кВ, как правило, рациональные напряжения совпадают (рис. 5.1.б).

Если пользоваться данными капитальных затрат и ежегодных эксплуатационных расходов, то определение рационального напряжения данной системы электроснабжения при рассмотрении двух вариантов производится:

(5.3)

где Ка, Кб - капиталовложения в вариантах а и б, Са, Сб - ежегодные эксплуатационные расходы в вариантах а и б.

а) б)

Рис. 5.1 Зависимости капитальных затрат и эксплуатационных расходов от напряжения.

электроэнергетика напряжение источник приёмник

Когда число вариантов более двух, для производства расчётов удобнее пользоваться вычислением ежегодных затрат, тогда производится построение зависимости от напряжения. Эту кривую З=f(U) можно описать с помощью интерполяционных полиномов. Большее распространение получили методики Ньютона и Лагранжа.

Рис. 5.2 Определение нестандартного напряжения по кривой годовых затрат

На рис. 5.2. изображена кривая зависимости годовых затрат в функции напряжения, где минимальные затраты соответствуют нестандартному напряжению.

Вопросу нахождения нестандартного напряжения аналитическим путём разработаны эмпирические формулы:

формула Вейкерта

(5.4)

формула Стилла

, (5.5)

где S - полная мощность, Р - активная мощность, l - длина линии.

3. Определение рационального напряжения аналитическим расчётом

При решении задачи о рациональном напряжении, в общем случае, следует предварительно определить нестандартное напряжение, при котором имели бы место минимальные затраты. Зная такое напряжение, можно правильнее выбрать целесообразное стандартное напряжение, применительно к конкретному случаю. Для нахождения нестандартного напряжения предлагается методика, основанная на том, что используя результаты определения затрат при стандартных напряжениях, с одной стороны, а математические интерполяционные теории - с другой, можно составить уравнение для кривой зависимости З=f(U) (рис. 5.2).

Найдя первую производную этого уравнения и приравняв её к нулю, можно найти теоретический минимум затрат и соответствующее ему напряжение.

Интерполяционная теория Ньютона.

Любая зависимость двух взаимно связанных величин, если известны координаты n точек, может быть выражена аналитически с помощью интерполяционной формулой Ньютона, представляющей собой степенную функцию (n-1) порядка. В нашем случае это уравнение должно соответствовать кривой, проходящей через координаты, выражающие капитальные затраты К, эксплуатационные расходы Сэ или годовые затраты З при различных стандартных напряжениях U1=6 кВ, U2=10 кВ, U3=20 кВ, U4=35 кВ:

З=З1+А(U-U1)+B(U-U1) (U-U2)+C(U-U1) (U-U2) (U-U3)+D(U-U1) (U- U2) (U-U3) (U-U4) (5.6)

В большинстве случаев рассматриваются три варианта. Тогда, следуя вышеприведённой методики, получим исходное выражение:

З=З1+А1(U-U1)+B1(U-U1) (U-U2) (5.7)

Коэффициент

, (5.8)

где ?З1=З2-З1, ?U1=U2-U1

, ?З2=З3-З2, ?U2=U3-U2 (5.9)

Для нахождения рационального напряжения дифференцируем:

(5.10)

Приравняв правую часть равенства нулю, и решив его относительно напряжения, получим:

(5.11)

Приближённое определение рационального напряжения.

Опыт проектирования позволяет эмпирически оценить ожидаемое рациональное напряжение. Однако, при таком способе решения вопроса высока вероятность ошибки. В то же время трудоёмкие расчёты по определению затрат требуют большой дополнительной работы. Поэтому были составлены ориентировочные таблицы либо номограммы, в зависимости от мощности предприятия, длины питающей линии, типа линии (ВЛ или КЛ), стоимости электроэнергии по которым выбираются два - три соседних напряжения, а затем производится расчёт по известным методикам. Такой способ значительно сокращает трудоёмкость и позволяет быстро определить значение рационального напряжения.

Например, для системы бестрансформаторного электроснабжения предприятия и стоимости электроэнергии 1,1 руб/кВт ч величины рациональных напряжений представлены в таблице 5.1.

Таблица 5.1

S, тыс. кВА

Длина линии l, км

1

5

10

50

100

1000

10

20

20

20

35

5000

20

20

35

35

35

10000

20

35

35

110

110

60000

110

110

110

110

110

100000

110

110

110

110

110

Выбор рационального напряжения при равномерно распределённой нагрузке. В результате работы по определению рационального напряжения ряда предприятий с равномерной нагрузкой установлено, что решающим фактором в определении Uрац является удельная нагрузка площади (кВт/м2), занимаемой строениями.

На рис. 5.3 представлены такие зависимости. Пользуясь данными таких номограмм, можно решить вопрос о выборе рационального напряжения с учётом перспективы, что очень важно, так как электрические сети служат до перехода на новое напряжение примерно 20-30 лет. Так, например, если принять какие-то конкретные условия, то при стоимости электрической энергии 0,9 руб/кВтч при удельной нагрузке 40 Вт/м2 рациональное напряжение составило 20 кВ. При нагрузке в 60 Вт/м2 напряжение составит 27 кВ, тогда необходимо рассмотреть вопрос о выборе более высокого напряжения.

Рис. 5.3 Номограммы для приблизительного определения рационального напряжения в зависимости от удельной нагрузки на площадь для различной стоимости электроэнергии: 1 - 1 руб/кВтч, 2 - 0,9 руб/кВтч, 3 - 0,7 руб/кВтч, 4 - 0,5 руб/кВтч

Как уже было указано, более высокое напряжение при равенстве вариантов должно выбираться во всех случаях. Это обусловлено меньшим использованием цветных металлов и возможным расширением производства.

Определение рационального напряжения с применением методов планирования эксперимента. Метод оптимизации систем электроснабжения промышленных предприятий с использованием теории планирования эксперимента состоит в получении математических моделей, связывающих значение оптимизируемого параметра с рядом факторов, оказывающих наибольшее влияние. В данном случае в качестве оптимизируемого параметра выбрано рациональное напряжение для систем внутризаводского электроснабжения.

Наиболее важными факторами, влияющими на значение рационального напряжения являются:

· S - суммарная нагрузка предприятия, кВА,

· lср - средняя длина линий распределительной сети, км,

· с - стоимость 1 кВт в год потерь электроэнергии, руб,

· в - отношение нагрузки потребителей 6 кВ ко всей нагрузке предприятия, %,

· б - отношение числа часов работы предприятия в году к числу часов использования максимума нагрузки Тг/Тmax.

Для математических моделей были выбраны диапазоны варьирования по каждому влияющему фактору, позволяющие охватить большинство промышленных предприятий.

Кроме факторов, перечисленных выше, на выбор рационального напряжения оказывает схема распределения электроэнергии по территории предприятия.

Определение рационального напряжения с применением методов планирования эксперимента обычно выполняется с помощью вычислительной техники.

Литература

Липкин Б.Ю. Электроснабжение промышленных предприятий и установок. - М.: Высшая школа, 2000.

Кудрин Б.Н. Электроснабжение промышленных предприятий - M.: Энергоатомиздат, 2005.

Размещено на Allbest.ru


Подобные документы

  • Описания потерь мощности при передаче электроэнергии по сети. Расчет напряжений в узлах сети и потерь напряжения в ее элементах. Построение векторных диаграмм и определение значения векторов. Нахождение линейной поперечной составляющей падения напряжения.

    презентация [94,9 K], добавлен 20.10.2013

  • Понятие и назначение электрических сетей, их роль в народном хозяйстве. Расчет электрических сетей трех напряжений, в том числе радиальной линии с двухсторонним питанием. Выбор сечения проводов по экономическим интервалам и эквивалентной мощности.

    курсовая работа [2,3 M], добавлен 21.03.2012

  • Выбор номинальных напряжений сети. Определение сопротивлений и проводимостей линий электропередач и трансформаторов. Расчет потерь мощностей, падений напряжения. Полные схемы электрических соединений. Себестоимость передачи и распределения электроэнергии.

    курсовая работа [3,4 M], добавлен 11.06.2014

  • Структура электрических сетей, их режимные характеристики. Методика расчета потерь электроэнергии. Общая характеристика мероприятий по снижению потерь электроэнергии и определение их эффективности. Зависимость потерь электроэнергии от напряжения.

    дипломная работа [2,0 M], добавлен 18.04.2012

  • Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.

    курсовая работа [111,3 K], добавлен 28.11.2009

  • Электрические сети переменного и постоянного тока. Синусоидальный ток и напряжение. Влияние несинусоидальности напряжения на работу потребителей электрической энергии. Коэффициент искажения напряжения. Снижение несинусоидальности напряжений и токов.

    курсовая работа [997,7 K], добавлен 29.03.2016

  • Система распределения электроэнергии на предприятии. Выбор рационального напряжения питания. Определение мощности и количества трансформаторных подстанций. Расчет токов короткого замыкания, параметров схемы замещения. Выбор элементов электроснабжения.

    дипломная работа [1,6 M], добавлен 02.10.2014

  • Электрическая цепь при последовательном и параллельном соединении элементов с R, L и C, их сравнительные характеристики. Треугольник напряжений и сопротивлений. Понятие и свойства резонанса токов и напряжений, направления и особенности его регулирования.

    реферат [344,8 K], добавлен 27.07.2013

  • Армирование железобетонных изделий и конструкций. Расчет электрических нагрузок завода. Выбор числа и мощности силовых трансформаторов. Определение рационального напряжения внешнего электроснабжения. Выбор сечения кабельной линии. Капитальные вложения.

    дипломная работа [458,5 K], добавлен 12.11.2013

  • Выбор электрических схем распределительных устройств всех напряжений. Выбор схемы питания собственных нужд подстанции. Расчёт токов короткого замыкания. Выбор электрических аппаратов: выключателей, разъединителей. Выбор шин и ошиновок на подстанции.

    курсовая работа [1,8 M], добавлен 15.10.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.