Действие физических сил на конструкцию

Определение реакций опор составной конструкции по системе двух тел. Способы интегрирования дифференциальных уравнений. Определение реакций опор твердого тела. Применение теоремы об изменении кинетической энергии к изучению движения механической системы.

Рубрика Физика и энергетика
Вид задача
Язык русский
Дата добавления 23.11.2009
Размер файла 527,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Определение реакций опор составной конструкции (система двух тел)

Задание: Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.

Дано: = 9,0 кН; = 12,0 кН; = 26,0 кНм; = 4,0 кН/м.

Схема конструкции представлена на рис.1.

Рис.1. Схема исследуемой конструкции.

Решение:

1) Определение реакции опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.2.). Составим уравнение моментов сил относительно точки B.

Рис.2.

(1)

где кН.

После подстановки данных и вычислений уравнение (1) получает вид:

кН (1')

Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 3):

Рис. 3.

.

Отсюда находим, что

кН.

Подставив найденное значение в уравнение (1') найдем значение :

кН.

Модуль реакции опоры А при шарнирном соединении в точке С равен:

кН.

2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 4.

Рис. 4

Системы сил, показанные на рис. 2 и 4, ничем друг от друга не отличаются. Поэтому уравнение (1') остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, располоденной левее скользящей заделки С (рис. 5).

Рис. 5

Составим уравнение равновесия:

и из уравнения (1') находим:

Следовательно, модуль реакции при скользящей заделке в шарнире С равен:

кН.

Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении (? 13%). Найдем составляющие реакции опоры В и скользящей заделки.

Для левой от С части (рис. 5а)

,

кН.

Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.

кН*м

кН

; кН

Результаты расчета приведены в таблице 1.

Таблица 1.

Силы, кН

Момент, кН*м

XA

YA

RA

XC

XB

YB

MC

Для схемы на рис. 2

-7,5

-18,4

19,9

-

-

-

-

Для схемы на рис. 4

-14,36

-11,09

17,35

-28,8

28,8

12,0

-17,2

2. Определение реакций опор твердого тела

Задание: Найти реакции опор конструкции. Схема конструкции показана на рисунке 1. Необходимые данные для расчета приведены в таблице 1.

Табл. 1

Силы, кН

Размеры, см

a

b

c

R

r

2

1

15

10

20

20

5

Рис. 1. Здесь: , , , .

Решение: К конструкции приложены сила тяжести , силы и реакции опор шарниров и : (рис. 2)

Рис. 2.

Из этих сил пять неизвестных. Для их определения можно составить пять уравнений равновесия.

Уравнения моментов сил относительно координатных осей:

;

;

; кН.

;

; кН.

;

; кН.

Уравнения проекций сли на оси координат:

;

кН

;

кН.

Результаты измерений сведены в табл. 2.

0,43 кН

1,16 кН

3,13 кН

-0,59 кН

3,6 кН

3. Интегрирование дифференциальных уравнений

Дано

=45 ; Vв=2Va ; ф=1c; L=3 м ; h=6

Найти ?=? d=?

Решение

mX=Xi 1 Fтр=fN

mX=Gsin-Fcoпр N=Gcos

mX=Gsin-fGcos
X=gsin-fgcos

X=(g(sin-fcos) t+ C1

X=(g(sin-fcos)/2) t2+ C1t+ C2

При нормальных условиях : t=0 x=0

X=C1 X= C2=> C1=0

X=g(sin-fcos) t+ 1 X=(g(sin-fcos)/2) t2

X=Vв X=L

Vв=g(sinб-?*cosб)ф

L=((g(sinб-ѓ*cosб)ф)/2)ф

ѓ=tgб-(2L/ф *g*cosб)=1-0,8=0,2

Vв=2l/ф=6/1=6м/с

Рассмотрим движение тела от точки В до точки С показав силу тяжести действующую на тело , составим дифференциальное уравнение его движения . mx=0 my=0

Начальные условия задачи: при t=0

X0=0 Y0=0

X0=Vв*cosб ; Y0=Vв*sinб

Интегрируем уравнения дважды

Х=C3 Y=gt+C4

X= C3t+ C5

Y=gt /2+C4t+C6, при t=0

X=C3; Y0=C4

X=C5; Y0=C6

Получим уравнения проекций скоростей тела.

X=Vв*cosб , Y=gt+Vв*sinб

и уравнения его движения

X=Vв*cosб*t Y=gt /2+Vв*sinб*t

Уравнение траектории тела найдем , исключив параметр t из уравнения движения. Получим уравнение параболы.

Y=gx /2(2Vв*cosб) + xtgб

В момент падения y=h x=d

d=h/tgв=6/1=6м

Ответ: ?=0,2 d=6 м

4. Определение реакций опор составной конструкции (система двух тел)

Задание: Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С.

Дано: = 9,0 кН; = 12,0 кН; = 26,0 кНм; = 4,0 кН/м.

Схема конструкции представлена на рис.1.

Рис.1. Схема исследуемой конструкции.

Решение:

1) Определение реакции опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.2.). Составим уравнение моментов сил относительно точки B.

Рис.2.

(1)

где кН.

После подстановки данных и вычислений уравнение (1) получает вид:

кН (1')

Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 3):

Рис. 3.

.

Отсюда находим, что

кН.

Подставив найденное значение в уравнение (1') найдем значение :

кН.

Модуль реакции опоры А при шарнирном соединении в точке С равен:

кН.

2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 4.

Рис. 4

Системы сил, показанные на рис. 2 и 4, ничем друг от друга не отличаются. Поэтому уравнение (1') остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, располоденной левее скользящей заделки С (рис. 5).

Рис. 5

Составим уравнение равновесия:

и из уравнения (1') находим:

Следовательно, модуль реакции при скользящей заделке в шарнире С равен:

кН.

Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении (? 13%). Найдем составляющие реакции опоры В и скользящей заделки.

Для левой от С части (рис. 5а)

,

кН.

Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.

кН*м

кН

; кН

Результаты расчета приведены в таблице 1.

Таблица 1.

Силы, кН

Момент, кН*м

XA

YA

RA

XC

XB

YB

MC

Для схемы на рис. 2

-7,5

-18,4

19,9

-

-

-

-

Для схемы на рис. 4

-14,36

-11,09

17,35

-28,8

28,8

12,0

-17,2

Дано :

R2=15; r2=10; R3=20; r3=20

X=C2t2+C1t+C0

При t=0 x0=8 =4

t2=2 x2=44 см

X0=2C2t+C1

C0=8

C1=4

44=C2 *22+4*2+8

4C2=44-8-8=28

C2=7

X=7t2+4t+8

=V=14t+4

a==14

V=r22

R22=R33

3=V*R2/(r2*R3)=(14t+4)*15/10*20=1,05t+0,3

3=3=1,05

Vm=r3*3=20*(1,05t+0,3)=21t+6

atm=r3

=1,05t

atm=R3=20*1,05t=21t

anm=R323=20*(1,05t+0,3)2=20*(1,05(t+0,28)2

a=

5. Применение теоремы об изменении кинетической энергии к изучению движения механической системы

Исходные данные.

Механическая система под действием сил тяжести приходит в движение из состояния покоя. Трение скольжения тела 1 и сопротивление качению тела 3 отсутствует. Массой водила пренебречь.

Массы тел - m1, m2, m3, m4; R2, R3, R4 - радиусы окружностей.

m1, кг

m2, кг

m3, кг

m4, кг

R2, см

R3, см

s, м

m

m/10

m/20

m/10

10

12

0.05р

Найти.

Пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определит скорость тела 1 в тот момент, когда пройденный им путь станет равным s.

Решение.

1. Применим к механической системе теорему об изменении кинетической энергии.

,

где T0 и T - кинетическая энергия системы в начальном и конечном положениях; - сумма работ внешних сил, приложенных к системе, на перемещении из начального положения в конечное; - сумма работ внутренних сил системы на том же перемещении.

Для рассматриваемых систем, состоящих из абсолютно твёрдых тел, соединённых нерастяжимыми нитями и стержнями . Так как в начальном положении система находится в покое, то T0=0.

Следовательно, уравнение (1) принимает вид:

.

2. Определим угол, на который повернётся водило, когда груз 1 пройдёт расстояние s.

.

То есть когда груз 1 пройдёт путь s, система повернётся на угол 90?.

3. Вычислим кинетическую энергию системы в конечном положении как сумму кинетических энергий тел 1, 2, 3, 4.

T = T1 + T2 + T3 + T4.

а) Кинетическая энергия груза 1, движущегося поступательно равна:

.

б) Кинетическая энергия катка 2, вращающегося вокруг своей оси равна:

,

где - момент инерции катка 2, - угловая скорость катка 2.

Отсюда получаем, что

.

в) Кинетическая энергия катка 3, совершающего плоско-параллельное движение, равна:

,

где - скорость центра масс катка 3,

-угловая скорость мгновенного центра скоростей катка 3

момент инерции катка 3 относительно мгновенного центра скоростей.

Отсюда получаем, что

г) Кинетическая энергия катка 4, совершающего плоскопараллельное движение, равна:

где - угловая скорость мгновенного центра скоростей,

- скорость центра масс катка 4,

- момент инерции катка 4 относительно мгновенного центра скоростей.

Отсюда получаем, что

Таким образом, кинетическая энергия всей механической системы равна:

4. Найдём работу всех внешних сил, приложенных к системе на заданном перемещении.

а) Работа силы тяжести G1: AG1=m1•g•s=m•980•5=15386•m1.

б) Работа силы тяжести G2: AG2=0.

в) Работа силы тяжести G3: AG3=-m3•g•(OA)=-0.05•m•980•36=-1764•m.

г) Работа силы тяжести G4: AG4=-m4•g•OC=-0.1•m•980•72=-7056•m.

Таким образом, работа всех внешних сил, приложенных к системе равна:

= AG1+AG3+AG4=15386•m-1764•m-7056•m=6566•m.

5. Согласно теореме об изменении кинетической энергии механической системы приравниваем значения T и .

=6566•m;

=6566.

Отсюда скорость тела 1 равна:

= 0.31 м/с.

Результаты расчётов.

V1, м/c

0.31

Дано: Q=4kH, G=2kH, a=50см, b=30см.

Определить: реакции опор А, В, С.

Решение:

1) ?FKX=XA+XB-RC•cos30°+Q?sin45°=0;

2) ?FKY=YA=0;

3) ?FKZ=ZA+ZB+RC·sin30°-G-Q·cos45°=0;

4) ?MKX=ZB·AB-G·AB/2-Q·cos45°·AB=0;

5) ?MKY=G·AC/2·cos30°-RC·AC·sin60°+Q·AC·sin75°=0;

6) ?MKZ=-XB·АВ-Q·AB·cos45°=0.

Из (6) XB=(-Q·AB·cos45°)/АВ=-4·50·0,7/50=-2,8кН

Из (5) RC=(G·AC/2·cos30°+Q·AC·sin75°)/AC·sin60°=

=(2·30/2·0,87+4·30·0,96)/30·0,87=(26,1+115,2)/26,1=5,4кН

Из (4) ZB=(G·AB/2+Q·cos45°·AB)/AB=(50+141,4)/50=3,8kH

Из (3) ZA=-ZB-RC·sin30°+G+Q·cos45°=-3,8-2,7+2+2,8=-1,7кН

Из (1) XA=-XB+RC•cos30°-Q?sin45°=2,8+4,7-2,8=4,7кН

Результаты вычислений:

Силы, кН

RC

XA

YA

ZA

XB

ZB

5,4

4,7

0

-1,7

-2,8

3,8


Подобные документы

  • Реакция опор и давление в промежуточном шарнире составной конструкции. Система уравновешивающихся сил и равновесия по частям воздействия. Применение теоремы об изменении кинетической энергии к изучению движения механической системы под действием тяжести.

    контрольная работа [1,1 M], добавлен 23.11.2009

  • Определение реакций опор твердого тела, скорости и ускорения точки. Интегрирование дифференциальных уравнений движения материальной точки. Теоремы об изменении кинетической энергии механической системы. Уравнение Лагранжа второго рода и его применение.

    курсовая работа [1,3 M], добавлен 15.10.2011

  • Решение задачи на нахождение скорости тела в заданный момент времени, на заданном пройденном пути. Теорема об изменении кинетической энергии системы. Определение скорости и ускорения точки по уравнениям ее движения. Определение реакций опор твердого тела.

    контрольная работа [162,2 K], добавлен 23.11.2009

  • Рассчётно-графическая работа по определению реакции опор твёрдого тела. Определение скорости и ускорения точки по заданным уравнениям её траектории. Решение по теореме об изменении кинетической энергии системы. Интегрирование дифференциальных уравнений.

    контрольная работа [317,3 K], добавлен 23.11.2009

  • Порядок определения реакции опор твердого тела, используя теорему об изменении кинетической энергии системы. Вычисление угла и дальности полета лыжника по заданным параметрам его движения. Исследование колебательного движения материальной точки.

    задача [505,2 K], добавлен 23.11.2009

  • Определение поступательного и вращательного движения твердого тела. Кинематический анализ плоского механизма. Применение теоремы об изменении кинетической энергии к изучению движения механической системы. Применение общего управления динамики к движению.

    контрольная работа [415,5 K], добавлен 21.03.2011

  • Использование теоремы об изменении кинетической энергии при интегрировании системы уравнений движения. Получение дифференциальных уравнений движения диска. Анализ динамики ускорения движения стержня при падении. Расчет начальных давлений на стену и пол.

    презентация [597,5 K], добавлен 02.10.2013

  • Применение дифференциальных уравнений к изучению движения механической системы. Описание теоремы об изменении кинетической энергии, принципа Лагранжа–Даламбера (общего уравнения динамики), уравнения Лагранжа второго рода, теоремы о движении центра масс.

    курсовая работа [701,6 K], добавлен 15.10.2014

  • Определение реакций опор плоской составной конструкции, плоских ферм аналитическим способом. Определение скоростей и ускорений точек твердого тела при плоском движении, усилий в стержнях методом вырезания узлов. Расчет главного вектора и главного момента.

    курсовая работа [1,6 M], добавлен 14.11.2017

  • Составление и решение уравнения движения груза по заданным параметрам, расчет скорости тела в заданной точке с помощью диффенциальных уравнений. Определение реакций опор твердого тела для определенного способа закрепления, уравнение равновесия.

    контрольная работа [526,2 K], добавлен 23.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.