Статика твердого тела

Составление и решение уравнения движения груза по заданным параметрам, расчет скорости тела в заданной точке с помощью диффенциальных уравнений. Определение реакций опор твердого тела для определенного способа закрепления, уравнение равновесия.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 23.11.2009
Размер файла 526,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задание С3

Дано:

P1=13,0 kH

M=30,0 kH*M ;

MB - ?

Решение:

I система

P2=9,0 kH Уx=0;

RA*cos30o - XIC=0;

q=3,0 kH/M Уy=0;

RA*cos60o - P1 - YIC=0

УMC=0;

M+P1*3-2,5*RA=0;

;

;

Проверка

УMA=0;

;

;

-26 - 4+30=0;

0=0; верно.

II система

Уx=0;

;

;

Уy=0;

;

;

;

УMB=0;

;

;

;

;

Проверка

УMC=0;

;

;

;

0=0; верно.

Дано:

R=20cм; r=10cм; R=30cм; ; x=6cм; ; x=356cм; t=2c; t=5c.

Определить

1) Уравнение движения груза;

2) -?

3) -?

Решение:

1) Уравнение движения груза 1 имеет вид:

(1)

Коэффициенты могут быть определены из следующих условий:

при t=0 x=6cм, (2)

при t=2c x=356cм. (3)

Скорость груза 1:

(4)

Подставляя (2) и (3) в формулы (1) и (4), находим коэффициенты

с=6см, с=5, с

Таким образом, уравнение движения груза

1

2) Скорость груза 1

(6)

Ускорение груза 1

3) Для определения скорости и ускорения точки М запишем уравнения, связывающие скорость груза и угловые скорости колёс и .

В соответствии со схемой механизма:

откуда

или с учетом (6) после подстановки данных:

Угловое ускорение колеса 3:

Скорость точки М, её вращательное, центростремительное и полное ускорения определяются по формулам:

Результаты вычислений для заданного момента времени приведены в табл. 1.

Скорости и ускорения тела 1 и точки М показаны на рис. 1.

Таблица 1

57

26

1.9

0.867

19

36.1

19

40.80

В 20. Д - 1

Дано: VA = 0, = 45, f = 0,3, d = 2 м, h = 4 м.

Найти: ? и .

Решение: Рассмотрим движение камня на участке ВС. На него действует только сила тяжести G. Составляем дифференциальные уравнения движения в проекции на оси X , Y: = 0 , = G ,

Дважды интегрируем уравнения: = С1 , = gt + C2 ,

x = C1t + C3 , y = gt2/2 + C2t + C4 ,

Для определения С1, C2 , C3, C4 , используем начальные условия (при t = 0): x0 = 0 , y0 = 0 , = VBcos, = VBsin ,

Отсюда находим:

= С1 , C1 = VBcos, = C2 , C2 = VBsin

x0 = C3 , C3 = 0 , y0 = C4 , C4 = 0

Получаем уравнения:

= VBcos , = gt + VBsin

x = VBcost, y = gt2/2 + VBsint

Исключаем параметр t :

y = gx2 + xtg ,

2V2Bcos2

В точке С x = d = 2 м , у = h = 4 м. Подставляя в уравнение d и h , находим VB :

V2B = gx2 = 9,814 = 19,62 , VB = 4,429 м/с

2cos2(y - xtg) 2cos245(4 - 2tg45)

Рассмотрим движение камня на участке АВ. На него действуют силы тяжести G, нормальная реакция N и сила трения F. Составляем дифференциальное уравнение движения в проекции на ось X1:

= Gsin - F , (F = fN = fGcos) = gsin - fgcos,

Дважды интегрируя уравнение, получаем:

= g(sin - fcos)t + C5 , x1 = g(sin - fcos)t2/2 + C5t + C6 ,

По начальным условиям (при t = 0 x10 = 0 и = VA = 0) находим С5 и С6:

C5 = 0 , C6 = 0,

Для определения ? и используем условия: в т.B (при t = ) , x1 = ? , = VB = 4,429 м/с. Решая систему уравнений находим:

= g(sin - fcos)t 4,429 = 9,81(sin45 - 0,3cos45) , = 0,912 с

x1 = g(sin - fcos)t2/2 ? = 9,81(sin45 - 0,3cos45)0,9122/2 = 2,02 м .

Дано:

АВ=20 см.

АС=6 см.

см/с

a=15 cм/c

Найти: , , a, a, ,

Решение:

ОА=ОВ=14,1 см.

=0,7=

СP=см.

=

=

см/с

a=15 см/,

т.к. ползуны двигаются по направляющим и совершают только поступательное движение.

см/

см/

9,85 см/

см/с

Ответ:

см/с

см/с

9,85 см/

=15 см/

Статика твердого тела

I. Плоская система сил система произвольно расположенных сил

Определение реакций опор твердого тела

На схеме показаны три способа закрепления бруса. Задаваемая нагрузка и размеры (м) во всех трех случаях одинаковы.

Р = 10 кН, q = 4 кН/м, исследуемая реакция YA

Определить реакции опор для того способа закрепления бруса, при котором исследуемая реакция Ya имеет наименьший модуль.

Дано: схемы закрепления бруса ( а, б, в): Р = 10 кН; q = 4 кН/м.

Определить реакции опор для того способа закрепления, при котором реакция YA имеет наименьшее числовое значение.

Решение

Рассмотрим систему уравновешивающихся сил, приложенных к конструкции. Действие связей на конструкцию заменяем их реакциями (рис. 2): в схеме а -- XА, YА, YВ в схеме б -- Y'А, Y'В и RC , в схеме в -- Y”А , RC , RD. Равномерно распределенную нагрузку интенсивностью q заменяем равнодействующей

Q = q * 4 = 16 кН.

Чтобы выяснить, в каком случае реакция YA является наименьшей, найдем ее для всех трех схем, не определяя пока остальных реакций

Для схемы а

Из первого уравнения подставляем YB во второе, получаем:

8,67 кH

Для схемы б

Из первого уравнения подставляем Y'B во второе, получаем:

13 кН

Для схемы в

Из первого уравнения подставляем RD во второе, получаем:

5 кН

Таким образом, реакция YA имеет наименьшее числовое значение, при закреплении бруса по схеме в.

Определим остальные опорные реакции для этой схемы.

В схеме а:

В схеме б:

8 кН

В схеме в:

Определить реакции опор для способа закрепления бруса, при котором Ма имеет наименьшее числовое значение.

Дано:

Р=20

М=10 кН* q М

q=2 кН/м

Ма = ?

Решение

1. Даны три исходные схемы закрепления бруса мысленно в схемах отбросим связи в точках опор, заменяя их реакциями связей.

2. Равномерно-распределённую нагрузку «q» заменяем равнодействующей «Q» и приложим её в центре действия нагрузки «q» , получим

Q=q*L

Q=2*2=4кН.

3. Для каждой схемы составим минимальное число уравнений равновесия для определения исследуемой реакции.

Cоставим уравнения равновесия:

Ma(fr)=0 ; Ma+M-4P*cos45-3Q=0

Отсюда Ma будет

Ma=-M+P*sin45-3Q=-10+56+12=58kH*м

Ya=.58kH*м

Мa(Fk)=0; Ма -4P*sin45+M-3Q-2Xв=0

F(кх)=0; - Хв+Р*cos45=0 Xв=14кН

Отсюда Ма будет:

Ма=4Р*sin45+3Q+2Xв-M=56+12+28=86кН*м

Ма=86кН

Ma(Fk)=0; Ма+М-4Р*cos45-3Q+4Rc*cos45+2Rc*cos45=0

F(кх)=0; Rc*cos45+Pcos45=0 Rc=20кН

Отсюда Ма будет:

Ма=-М+4P*cos45+3Q-6Rc*cos45=-10+56+12-84=26кН*м

Таким образом, исследуемая наименьшая реакция будет при закреплении бруса по схеме в). Найдём все реакции.

Составим для этой схемы три уравнения равновесия:

Fкх=0 Rc*cos45+Pcos45=0

Fкy=0 Ya-P*cos45-Q+Rc*cos45=0

Ма(Fк)=0 Ма+М-4Р*cos45-3Q+4Rc*cos45+2Rc*cos45=0

Rc=20кН

Yа= P*cos45+Q-Rc*cos45=7+4-14=3кН

Ма=-М+4P*cos45+3Q-6Rc*cos45=-10+56+12-84=26кН*м

Ответ: Ма=26кН.


Подобные документы

  • Порядок определения реакции опор твердого тела, используя теорему об изменении кинетической энергии системы. Вычисление угла и дальности полета лыжника по заданным параметрам его движения. Исследование колебательного движения материальной точки.

    задача [505,2 K], добавлен 23.11.2009

  • Момент инерции тела относительно неподвижной оси в случае непрерывного распределения масс однородных тел. Теорема Штейнера. Кинетическая энергия вращающегося твердого тела. Плоское движение твердого тела. Уравнение динамики вращательного движения.

    презентация [163,8 K], добавлен 28.07.2015

  • Решение задачи на нахождение скорости тела в заданный момент времени, на заданном пройденном пути. Теорема об изменении кинетической энергии системы. Определение скорости и ускорения точки по уравнениям ее движения. Определение реакций опор твердого тела.

    контрольная работа [162,2 K], добавлен 23.11.2009

  • Изучение механики материальной точки, твердого тела и сплошных сред. Характеристика плотности, давления, вязкости и скорости движения элементов жидкости. Закон Архимеда. Определение скорости истечения жидкости из отверстия. Деформация твердого тела.

    реферат [644,2 K], добавлен 21.03.2014

  • Методика определения скоростей и ускорений точек твердого тела при плоском движении, порядок расчетов. Графическое изображение реакции и момента силы. Расчет реакции опор для способа закрепления бруса, при котором Yа имеет наименьшее числовое значение.

    задача [345,9 K], добавлен 23.11.2009

  • Основы движения твердого тела. Сущность и законы, описывающие характер его поступательного перемещения. Описание вращения твердого тела вокруг неподвижной оси посредством формул. Особенности и базовые кинематические характеристики вращательного движения.

    презентация [2,1 M], добавлен 24.10.2013

  • Определение реакций опор составной конструкции по системе двух тел. Способы интегрирования дифференциальных уравнений. Определение реакций опор твердого тела. Применение теоремы об изменении кинетической энергии к изучению движения механической системы.

    задача [527,8 K], добавлен 23.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.