Электродинамический цикл тепловой электростанции

Принцип работы тепловой электростанции. Идеальный и реальный термодинамический цикл. Изменение давления в зависимости от времени в камере сгорания. Обратимые термодинамические циклы газотурбинных двигателей. ГТУ с подводом теплоты при постоянном объеме.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 30.11.2011
Размер файла 754,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Электроэнергетика - составляющая часть энергетики, обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии. Она имеет очень важное преимущество перед энергией других видов - относительную легкость передачи на большие расстояния, распределения между потребителями, преобразования в другие виды энергии (механическую, химическую, тепловую, свет).

Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и во времени, и по количеству (с учетом потерь).

Основными источниками получения электроэнергии являются тепловые электростанции, атомные и гидроэлектростанции.

Тепловая электростанция (ТЭС) - электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива.

В данном реферате рассмотрены принципы работы тепловой электрической станции, а также её термодинамические аспекты.

1. Электродинамический цикл тепловой электростанции

1.1 Принцип работы тепловой электростанции

Тепловые электростанции работают на органическом топливе, и их строят обычно вблизи мест добычи топлива. Тепловые электростанции используют в качестве топлива сравнительно дешевые уголь и мазут. Но эти виды топлива - невосполнимые природные ресурсы. Основные энергетические ресурсы в мире сегодня - уголь (40%), нефть (27%), газ (21%). Этих запасов, по некоторым оценкам, хватит, соответственно, на 270, 50 и 70 лет, и то при условии, что человечество будет расходовать их с той же скоростью, с какой расходует сегодня.

Рис. 1 - Принципиальная тепловая схема ТЭС: 1 - паровой котёл; 2 - турбина; 3 - электрогенератор; 4 - конденсатор; 5 - конденсатный насос; 6 - подогреватели низкого давления; 7 - деаэратор; 8 - питательный насос; 9 - подогреватели высокого давления; 10 - дренажный насос

Рассмотрим принципы работы ТЭС. Топливо и окислитель, которым обычно служит подогретый воздух, непрерывно поступают в топку котла (1). В качестве топлива используется уголь, торф, газ, горючие сланцы или мазут. Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. За счёт тепла, образующегося в результате сжигания топлива, вода в паровом котле нагревается, испаряется, а образовавшийся насыщенный пар поступает по паропроводу в паровую турбину (2), назначение которой превращать тепловую энергию пара в механическую энергию.

Все движущиеся части турбины жёстко связаны с валом и вращаются вместе с ним. В турбине кинетическая энергия струй пара передается ротору следующим образом. Пар высокого давления и температуры, имеющий большую внутреннюю энергию, из котла поступает в сопла (каналы) турбины. Струя пара с высокой скоростью, чаще выше звуковой, непрерывно вытекает из сопел и поступает на рабочие лопатки турбины, укрепленные на диске, жёстко связанном с валом. При этом механическая энергия потока пара превращается в механическую энергию ротора турбины, а точнее говоря, в механическую энергию ротора турбогенератора, так как валы турбины и электрического генератора (3) соединены между собой. В электрическом генераторе механическая энергия преобразуется в электрическую энергию.

После паровой турбины водяной пар, имея уже низкое давление и температуру, поступает в конденсатор (4). Здесь пар с помощью охлаждающей воды, прокачиваемой по расположенным внутри конденсатора трубкам, превращается в воду, которая конденсатным насосом (5) через регенеративные подогреватели (6) подаётся в деаэратор (7).

Деаэратор служит для удаления из воды растворённых в ней газов; одновременно в нём, так же как в регенеративных подогревателях, питательная вода подогревается паром, отбираемым для этого из отбора турбины. Деаэрация проводится для того, чтобы довести до допустимых значений содержание кислорода и углекислого газа в ней и тем самым понизить скорость коррозии в трактах воды и пара.

Деаэрированная вода питательным насосом (8) через подогреватели (9) подаётся в котельную установку. Конденсат греющего пара, образующийся в подогревателях (9), перепускается каскадно в деаэратор, а конденсат греющего пара подогревателей (6) подаётся дренажным насосом (10) в линию, по которой протекает конденсат из конденсатора (4).

1.2 Термодинамика теплового двигателя

В настоящий момент для двигателей с внешним подводом теплоты наиболее известен термодинамический цикл Стирлинга, состоящий из двух изотерм и двух изохор. Но возможно применение и других термодинамических циклов в подобных двигателях.

Рассмотрим идеальный термодинамический цикл с изотермическим сжатием и адиабатическим расширением некого гипотетического двигателя. На рис. 1 приведен такой идеальный термодинамический цикл, показанный в pV координатах.

Рис. 2 - Идеальный термодинамический цикл

В цикле принят изохорический процесс подвода теплоты так как, его термический КПД больше изобарического. Для упрощения расчетов, изохорический процесс 2-3 показан прямой линией.

Термический КПД цикла по pV-диаграмме рис. 2:

где: P - степень повышения давления; Q - показатель адиабаты; T - степень сжатия.

Как видно из формулы (1) термический КПД такого цикла зависит от отношения температур холодильника и нагревателя. Например, при T3 = 1173K; T1 = 337K; ? = 6,5; ? = 1,6 и ? = 3,5 термический КПД цикла составит 0,55. Что, при прочих равных условиях, сопоставимо с термическим КПД цикла Стирлинга. Но в реальном двигателе добиться, чтобы он работал по такому циклу конечно трудно, поэтому обобщенный термодинамический цикл реального двигателя будет выглядеть так, как показано на рис. 3.

Рис. 3 - Реальный термодинамический цикл

1.3 Цикл Карно

К 1824, когда Карно опубликовал свой трактат Размышления о движущей силе огня, было уже хорошо известно, что за счет теплоты можно получать механическую энергию, но ни у кого не было ни малейшего представления о том, каким может быть КПД тепловой машины, и были не совсем ясны термодинамические основы ее действия. Прошло десять лет, прежде чем Б. Клапейрон, который первым по достоинству оценил трактат Карно, повторно опубликовал его, снабдив важными дополнениями. Карно представлял тепловую машину в виде идеально теплоизолированного цилиндра, наполненного фиксированным количеством рабочего тела (газа) и снабженного движущимся без трения поршнем. Машину можно без энергетических потерь переносить с одной подставки на другую. Одна подставка, поддерживаемая при температуре T1, служит нагревателем. Другую, поддерживаемую при более низкой температуре T2, назовем холодильником. Сначала цилиндр стоит на нагревателе, и газообразное рабочее тело изотермически (т.е. поглощая теплоту так, что его температура не изменяется) расширяется от точки 1 до точки 2 на графике зависимости объем - давление (рис. 3,а). Затем, машину переносят на теплоизолированную подставку, и газ адиабатически расширяется от точки 2 до точки 3, совершая работу - поднимая поршень. В результате он охлаждается до температуры T2. После этого машину переставляют на холодильник, и газ изотермически сжимается от точки 3 до точки 4, отдавая теплоту холодильнику. Переставив затем машину снова на теплоизолированную подставку, можно теперь адиабатически сжать газ от точки 4 до точки 1 и вернуть его в исходное состояние (к прежним значениям температуры, объема и давления), так что цикл может начаться снова.

Мерой полезной работы, совершенной машиной, является разность площадей (рис. 3,а и б), показанная на рис. 3,в. Нетрудно сообразить, что при заданном изменении объема эту разность площадей можно увеличить либо повысив T1, либо понизив T2. Если же температура T1 фиксирована (а это значит, что фиксировано полное количество подводимой теплоты), то работу, производимую машиной, можно увеличить, только понизив T2. Таким образом, какова бы ни была температура T1, отличная от абсолютного нуля, какая-то часть подводимой теплоты не может быть превращена в работу.

Процесс изменения с течением времени давления в камере за весь цикл показан на рис. 4.

 

Рис. 4 - Изменение давления в зависимости от времени в камере сгорания

тепловой электростанция газотурбинный двигатель

Здесь АВ - вспышка; ВС - расширение; СД - продувка и ДА - зарядка. По данным Хольцварта весь цикл совершается приблизительно за 1,5 с. В этих опытах давление в начале вспышки (т. А) было равно (3...4) 105 Па, а в конце вспышки (т. В) оно возрастало приблизительно до 15 105 Па.

1.4 Показатели эффективности циклов ГТУ

Циклом теплового двигателя называют круговой термодинамический процесс, в котором теплота превращается в работу. Все термодинамические процессы действительного цикла, осуществляемого в реальном двигателе, в той или иной степени необратимы. Необратимость процессов вызывается наличием трения в потоке рабочего тела, теплоотдачей от рабочего тела в стенки и т.п. Необратимость процессов снижает эффективность преобразования теплоты в работу. В анализе эффективности циклов двигателей решают две задачи:

1) определяют, от каких факторов зависит к.п.д. обратимого термодинамического цикла и какими должны быть процессы цикла, чтобы его к.п.д. имел наибольшее значение при заданных конкретных ограничительных условиях;

2) находят степень необратимости процессов действительного цикла и устанавливают, какие процессе целесообразно совершенствовать о целью уменьшения необратимых потерь и повышения к.п.д. цикла.

Основным показателем, достаточным для суждения о термодинамической эффективности обратимого цикла, служит термический к.п.д. цикла:

(2.1)

где: - полезная работа цикла;

- подведенная за цикл теплота;

- отведанная за цикл теплота.

Степень совершенства необратимых действительных циклов характеризуется величиной индикаторного к.п.д. цикла (двигателя):

 

(2.2)

где: - полезная внутренняя работа действительного цикла ГТУ;

- отведенная теплота в действительном цикле.

Необратимость процессов действительного цикла уменьшает его полезную работу () поэтому индикаторный к.п.д. всегда меньше термического к.п.д. (при сравнимых условиях).

Индикаторный к.п.д. сам по себе не дает возможности оценить степень необратимости цикла. Поэтому при анализа действительных циклов используют метод их сравнения с обратимым циклом. Величина отклонения от и показывает степень необратимости действительных циклов.

2. Термодинамический цикл тепловой электростанции

2.1 Обратимые термодинамические циклы газотурбинных двигателей

Термодинамические циклы представляют упрощенную тепловую схему и облегчают теоретическое исследование различных теплосиловых установок, а также дают возможность сопоставить экономичность циклов тепловых двигателей.

При рассмотрении термодинамических циклов тепловых двигателей делаются следующие допущения.

1. Химический состав рабочего тела в течение всего цикла не изменяется. Тем самым процесс сгорания топлива заменяется процессом подвода тепла q1, извне и, следовательно, не учитываются потери, Возникающие при сгорании топлива.

2. Процессы теплообмена и массообмена продуктов сгорания с окружающей средой заменены процессами отвода тепла q2 от рабочего тела.

3. Процесс сжатия и расширения протекает адиабатно, т.е. без теплообмена с окружающей средой.

4. Количество рабочего тела при протекании цикла не изменяется. Поэтому не учитываются потери, возникающие при замена отработавших газов свежим зарядом.

5. Теплоемкость рабочего тела не зависит от температуры, т.е. принимается, что рабочим телом является идеальный газ.

Изучение термодинамических циклов дает возможность установить относительное влияние основных факторов (степень сжатия, степень повышения давления и т.д.) на эффективность термодинамического цикла.

Имеются два основных типа ГТУ: с подводом теплоты при постоянной давлении и о подводом теплоты при постоянном объема.

ГТУ с подводом теплоты при постоянном давлении.

Схема установки приведена на рис. 4. на рис. 4 изображен термодинамический цикл ГТУ на PV- и TS-диаграммах.

 

Рис. 5 - Термодинамический цикл ГТУ с подводом теплоты при постоянном давлении на PV- и TS-диаграммах

Рабочее тело вначале сжимается в компрессоре по адиабате 3-4, затем к нему подводятся теплота q1 при постоянном давлении (изобара 4-1), после чего рабочее тело расширяется в турбине без теплообмена с внешней средой (адиабата 1-2) до давления окружающей среды. Изобарный процесс 2-3 является процессом отдачи теплоты холодному источнику теплоты (окружающей среде).

Основные характеристики цикла определяются отношением объемов и давлений в узловых точках цикла. К ним относятся степень адиабатного сжатия ; степень повышения давления в процессе адиабатного сжатия степень повышения температуры в цикле .

Основные показателем любого идеального цикла, характеризующим его экономичность, является термический к.п.д. (2.1).

Для установления характера и степени влияния параметров цикла на термический к.п.д. преобразуем уравнение (2.1), подставив в него значения:

  и

где: - теплоемкость рабочего тела при постоянном давлении.

Тогда получим:

(2.3)

Используя известные из термодинамики уравнения связи параметров в различных процессах, выразим все температуры в характерных точках через температуру Т3:

для процесса 3-4: (а)

где: ;

для процесса 4-1: (б)

для процесса 2-1:(в)

Подставив полученные значения температур (а), (б) и (в) в выражение (2.3), получим:

Произведя сокращения, окончательно получим:

(2.4)

Формула (2.4) показывает, что термический к.п.д. рассматриваемого цикла зависит от работы компрессора и от природы рабочего тела (показателя адиабаты К). Чем выше К и чем больше сжимается воздух компрессором, тем выше (рис. 5).

 

Рис. 6 - Зависимость термического к.п.д. цикла ГТУ с подводом теплоты при постоянном давлении от степени повышения давления и показателя адиабаты

Термический к.п.д. цикла можно определить по TS-диаграмме в виде отношения площади 34123 внутри цикла к площади под процессом 4-1 (рис. 6). При изменении нагрузки ГТУ, т.е. при изменении подводимого количества теплоты к рабочему телу (например, при уменьшении), процесс расширения новых циклов показан пунктирными кривыми на рис. 2.10. степень повышения давления и показатель адиабаты при этом не изменяются. Это свидетельствует о том, что изменение нагрузки на термический к.п.д. цикла не влияет.

2.2 ГТУ с подводом теплоты при постоянном объеме

На рис. 6 изображен термодинамический цикл ГТУ, показанной на рис. 2.1 (с учетом рис. 7) на PV- и TS-диаграммах. Данный цикл отличается от предыдущего цикла ГТУ только характером подвода теплоты.

 

Рис. 7 - Термодинамический цикл ГТУ с изохорным подводом теплоты на P\/- и TS-диаграммах

Рассуждая аналогично, получаем выражение для термического к.п.д. рассматриваемого цикла:

(2.5)

Из формулы (2.5) следует, что с увеличением степени повышения давления и в отношения абсолютных температур конца и начала подвода теплоты термический к.п.д цикла ГТУ с изохорным подводом теплоты увеличивается.

Зависимость при K = const (К = 1,4) показана на рис. 2.13.

Термический к.п.д. цикла можно определить, если воспользоваться изображением цикла ни TS-диаграмме, в виде отношения площади 34123 (внутри цикла) к площади под процессом 4-1 (рис. 6).

2.3 Циклы паротурбинных установок (ПТУ)

Паротурбинная установка является основой современных тепловых и атомных электростанций. Рабочим телом в таких установках является пар какой-либо жидкости (водяной пар). Основным циклом в паротурбинной установке является цикл Ренкина.

Принципиальная схема ПТУ показана на рис.7.1 и процесс получения работы происходит в следующим образом. В паровом котле (1) и в перегревателе (2) теплота горения топлива передается воде. Полученный пар поступает в турбину (3), где происходит преобразование теплоты в механическую работу, а затем в электрическую энергию в электрогенераторе (4). Отработанный пар поступает в конденсатор (5), где отдает теплоту охлаждающей воде. Полученный конденсат насосом (6) отправляется в питательный бак (7), откуда питательным насосом (8) сжимается до давления, равного в котле, и подается через подогреватель (10) в паровой котел (1).

Рис. 8

Рассмотрим цикл Ренкина на насыщенном паре. Схема установки отличается от предыдущей схемы тем, что в данном случае будет отсутствовать перегреватель. Поэтому на турбину будет поступать насыщенный пар. На рис.7.2,а изображен цикл Ренкина в TS-диаграмме.

Процессы:

3-1 - подвод теплоты от источника в воде q1, состоит из двух процессов: 3-3/ - кипение воды в котле;

3/-1 - испарение воды в пар при постоянном давлении;

1-2 - в турбине пар расширяется адиабатически;

2-2/ - пар конденсируется и отдает тепло q2 охлаждающей воде;

2/-3 - конденсат адиабатически сжимается.

Термический к.п.д. цикла Ренкина определяется по уравнению:

ht = (q1 - q2)/q1 (7.1)

Так как: q1 = h1 - h3; q2 = h2 - h2/,

то ht = [(h1 - h2) - (h3 - h2/)] /( h1 - h3) = l / q1. (7.2)

Полезная работа цикла равна разности работ турбины и насоса:

l = lт - lн,

где: lт = h1 - h2, lн = h3 - h2/.

В основном lт >> lн, тогда считая h3 = h2/, можно записать:

ht = (h1 - h2)/( h1 - h3). (7.3)

Теоретическая мощность турбины рассчитывают по формуле:

Nт = (h1 - h2)·D/3600, [Вт] (7.4)

где: D = 3600·m - часовой расход, [кг/ч]

m - секундный расход, [кг/с]

Цикл Ренкина на перегретом паре применяется для увеличения термического к.п.д. цикла ПТУ. Для этого перед турбиной ставят перегреватель 2 (Рис.7.1), который увеличивает температуру и давление пара. При этом возрастает средняя температура подвода теплоты в цикле. Диаграмма цикла показана на рис.7.2,б Формулы расчета l, ht, Nт остаются без изменений.

Рис. 9

Заключение

В реферате представлены основные позиции работы ТЭС и их принципиальная тепловая схема, основные циклы паротурбинных установок. Показаны технологические принципы производства электрической энергии и теплоты, а также показатели эффективности циклов газотурбинных установок. Рассмотрены обратимые и необратимые термодинамические циклы и идеальный цикл Карно.

Список литературы

1. Кабардин О.Ф. и др. Факультативный курс физики 9 1986 г.

2. Свитков Л.П. Термодинамика и молекулярная физика 1970 г.

3. Билимович Б.Ф. Тепловые явления в технике 1981 г.

Размещено на Allbest.ru


Подобные документы

  • Термодинамические циклы поршневых двигателей внутреннего сгорания. Прямые газовые изохорные и изобарные циклы неполного расширения. Термодинамические циклы газотурбинных установок и реактивных двигателей. Процессы, происходящие в поршневых компрессорах.

    реферат [1,5 M], добавлен 01.02.2012

  • Температура - параметр, характеризующий тепловое состояние вещества. Температурные шкалы, приборы для измерения температуры и их основные виды. Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом тепла при постоянном давления.

    контрольная работа [124,1 K], добавлен 25.03.2012

  • Технологическая схема электростанции. Показатели ее тепловой экономичности. Выбор начальных и конечных параметров пара. Регенеративный подогрев питательной воды. Системы технического водоснабжения. Тепловые схемы и генеральный план электростанции.

    реферат [387,0 K], добавлен 21.02.2011

  • Расчет параметров рабочего тела в цикле с подводом теплоты при постоянном объеме. Анализ результатов для процесса сжатия. Значения температуры рабочего тела в отдельно взятых точках термодинамического цикла. Температура в произвольном положении поршня.

    контрольная работа [36,2 K], добавлен 23.11.2013

  • Принцип работы атомной электростанции. Упрощённая принципиальная тепловая схема AЭС с реактором типа РБМК-1000. Необходимость конденсатора в тепловой схеме. Теплообмен в активной зоне реактора. Анализ контура многократной принудительной циркуляции.

    реферат [733,0 K], добавлен 01.02.2012

  • Характеристика парового котла тепловой электростанции ТП-42. Пересчет нормативного состава топлива и теплоты сгорания на заданную влажность и зольность. Расчет количества воздуха и объемов продуктов сгорания. Определение объема реконструкции котла.

    курсовая работа [452,0 K], добавлен 15.01.2015

  • Расчет тепловой схемы конденсационной электростанции высокого давления с промежуточным перегревом пара. Основные показатели тепловой экономичности при её общей мощности 35 МВт и мощности турбин типа К-300–240. Построение процесса расширения пара.

    курсовая работа [126,9 K], добавлен 24.02.2013

  • Свойства рабочего тела. Термодинамические циклы с использованием двух рабочих тел. Значение средних теплоемкостей. Параметры газовой смеси. Теплоемкость различных газов, свойства воды и водяного пара. Термодинамический цикл парогазовой установки.

    курсовая работа [282,2 K], добавлен 18.12.2012

  • Термодинамические основы регенеративного подогрева питательной воды на тепловой электростанции (ТЭС). Основные преимущества многоступенчатого регенеративного подогрева основного конденсата и питательной воды. Технические особенности системы регенерации.

    реферат [1,2 M], добавлен 24.03.2010

  • Нахождение работы в обратимых термодинамических процессах. Теоретический цикл поршневого двигателя внутреннего сгорания с комбинированным подводом теплоты. Работа расширения и сжатия. Уравнение состояния газа. Теплоотдача при свободной конвекции.

    контрольная работа [1,8 M], добавлен 22.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.