Операторный метод анализа переходных колебаний в электрических цепях

Основные свойства преобразования Лапласа. Законы Кирхгофа и Ома в операторной форме. Соотношения в элементах электрических цепей. Операторные схемы замещения элементов при ненулевых начальных условиях. Нахождение реакций при ненулевых начальных условиях.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.04.2009
Размер файла 126,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Академия России

Кафедра Физики

Реферат

ОПЕРАТОРНЫЙ МЕТОД АНАЛИЗА переходных КОЛЕБАНИЙ в электрических цепях

Орел 2009

Содержание

Вступление

Основные свойства преобразования Лапласа

Законы Кирхгофа и Ома в операторной форме

Операторные схемы замещения

Литература

ВСТУПЛЕНИЕ

Действия над многозначными числами, как известно, существенно упрощаются при использовании логарифмов. Так операция умножения сводится к сложению логарифмов, деление - к вычитанию логарифмов и т. д. Каждому числу соответствует свой логарифм и поэтому логарифм можно рассматривать как своего рода изображение числа.

Так, например, , следовательно, в этой системе 2 есть изображение числа 100.

В основе операторного метода также лежит понятие об изображении. Однако если в случае логарифмов речь шла об изображении числа, то в операторном методе используется изображение функций времени. Здесь каждой функции времени , определенной в области , соответствует некоторая функция новой переменной  и, наоборот, функции переменной соответствует определенная функция времени .

Функция называется оригиналом, функция - изображением, а переменная - оператором.

Фраза "функция имеет своим изображением" условно записывается так .

Знак называют знаком соответствия.

Основанный на таком представлении функций метод получил название операторного и используется для аналитического решения линейных дифференциальных и интегро-дифференциальных уравнений в теории электрических цепей. Решение задачи при этом как бы разбивается на 3 этапа.

На первом этапе осуществляется переход из временной области в операторную, на втором - решение задачи в операторной форме и на третьем - обратный переход в область реального времени.

Основные свойства преобразования Лапласа

Нахождение изображений функции времени (равно как и обратные переходы от изображений к оригиналу) выполняются с помощью специальных интегральных преобразований, приводимых в курсе высшей математики. В настоящее время в большей части современной технической литературы операторные методы связывают с применением преобразования Лапласа, в основе которого лежит соотношение:

.

Важно отметить, что функции, описывающие реально возможные воздействия и соответствующие им реакции, всегда преобразуемы по Лапласу. Полученную в результате такого преобразования функцию называют иногда лапласовым изображением функции или ее -изображением и обозначают:

.

Отыскание -изображения заданной функции называется прямым преобразованием Лапласа, а нахождение по известному - обратным преобразованием Лапласа.

Основные свойства и правила этих преобразований:

Свойство единственности. Каждому оригиналу (исходной функции) соответствует единственное изображение и наоборот, каждому изображению соответствует единственный оригинал.

Свойство линейности. Линейной комбинации оригиналов соответствует такая же линейная комбинация изображений:

- оригинал;

- изображение.

Преобразование операции дифференцирования. Если оригинал представляет производную от некоторой функции

,

то его изображение имеет вид:

.

При нулевых начальных условиях (ННУ) и , т. е. дифференцированию оригинала соответствует умножение его изображения на оператор  (при ННУ).

Преобразование операции интегрирования. Если оригинал представляет от некоторой функции интеграл:

,

то его изображение имеет вид: , т. е. интегрированию оригинала соответствует деление его изображения на оператор .

Теорема запаздывания (оригинала). Если , то , где -- время запаздывания, т. е. запаздыванию оригинала на время соответствует умножение его изображения на экспоненциальный множитель .

Теорема смещения (изображения). Если , то , т. е. умножению оригинала на экспоненциальный множитель соответствует смещение его изображения на величину .

Решение задач прямого и обратного преобразований Лапласа существенно упрощаются в тех случаях, когда удается использовать справочные таблицы, которые содержат пары оригинал - изображение. Эти таблицы приводятся в справочниках.

Следует учесть, что при обратном преобразовании Лапласа полученные функции иногда не подходят под табличные. В этом случае используется разложение этой функции на простые дроби или в ряд с последующим применением обратного преобразования Лапласа.

Законы Кирхгофа и Ома в операторной форме

Возможность существенного упрощения решения задачи анализа колебаний в электрических цепях операторным методом основывается на том, что для -изображений колебаний формально верны законы Кирхгофа и Ома.

Действительно, согласно первому закону Кирхгофа:

Если обе части этого равенства подвергнуть преобразованию Лапласа, то оно переходит в равенство:

,

и следовательно, алгебраическая сумма -изображений токов в любом узле цепи равна нулю. Аналогично доказывается справедливость второго закона Кирхгофа для операторных напряжений в контуре:

.

При выводе закона Ома в операторной форме будем полагать, что реактивные элементы находятся при ННУ (конденсатор разряжен, через катушку индуктивности не протекает ток).

Рассмотрим соотношения в элементах электрических цепей.

Элемент резистивного сопротивления.

- операторное резистивное сопротивление,

- резистивная операторная проводимость.

Таким образом, операторное напряжение на резистивном сопротивлении равно произведению сопротивления на величину операторного тока.

Элемент индуктивности.

- операторное индуктивное сопротивление,

- операторная индуктивная проводимость.

Следовательно, операторное напряжение на индуктивности равно произведению операторного индуктивного сопротивления на величину операторного тока.

Элемент емкости.

- операторное емкостное сопротивление,

- операторная емкостная проводимость.

Операторное напряжение на емкости равно произведению операторного емкостного сопротивления на величину операторного тока.

Выражения

представляют закон Ома в операторной форме.

Выводы:

- законы Кирхгофа и Ома справедливы и в операторной форме, причем закон Ома справедлив только при нулевых начальных условиях; 

- все ранее изученные методы анализа электрических цепей (метод контурных токов, метод узловых напряжений, метод эквивалентного генератора и др.) справедливы и в операторной форме.

Операторные схемы замещения реактивных элементов
при ненулевых начальных условиях

Часто коммутация осуществляется в момент времени, когда реактивные элементы обладают энергией. В этом случае они находятся при ненулевых начальных условиях и к ним нельзя применить закон Ома в операторной форме. Для устранения этого препятствия используют прием, суть которого состоит в том, что физически один реактивный элемент искусственно заменяют двумя: операторным источником, отражающим энергию реактивного элемента на момент коммутации, и самим реактивным элементом, но находящимся теперь уже при нулевых начальных условиях. Такое изображение называется схемой замещения. Ее можно получить, используя свойства преобразования Лапласа:

.

Так, для индуктивности с током схемы замещения имеют вид, показанный на рисунке 1.

а) б) в)

Рис. 1

Они являются следствием преобразования следующих выражений:

;

Здесь следует иметь в виду два обстоятельства: направление операторного тока должно совпадать с направлением тока через индуктивность в момент непосредственно предшествующий коммутации и второе, что реально существует один элемент, поэтому операторный ток через индуктивность в схеме замещения определяется в общей ветви (рис. 1б).

Заряженная емкость отображается схемами замещения, показанными на рисунке 2б, в.

а) б) в)

Рис. 2

Они являются следствием преобразования следующих выражений:

,

.

Здесь напряжение операторного источника совпадает с напряжением на емкости до коммутации, а операторное напряжение на емкости определяется между зажимами 1 - 1.

Применение операторных схем замещения реактивных элементов, находящихся при ненулевых начальных условиях, дает возможность применять закон Ома в операторной форме, что широко используется на практике и, в частности, при рассмотрении свободных колебаний в электрических цепях. Известно, что такие колебания возникают за счет энергии, запасенной реактивными элементами при отключении внешних источников. Следует иметь в виду, что указанная коммутация может осуществляться как путем механического отключения, так и путем гашения источников. В последнем случае источник напряжения заменяется коротким замыканием, а источник тока - обрывом.

При решении задач приходится осуществлять переход от обычной к операторной схеме. Если реактивные элементы находятся при ННУ, то такой переход не вызывает особых затруднений. Например, на рисунке 3, а показана исходная схема, а на рисунке 3, б - эквивалентная ей операторная.

а) б)

Рис. 3

Если же реактивные элементы находятся при ненулевых начальных условиях, то в операторной схеме они должны быть отображены схемами замещения.

Пример.

Пусть в цепи, изображенной на рисунке 4 в момент  замыкается ключ "К". Требуется определить эквивалентную ей операторную схему.

Рис. 4

Так как реактивные элементы в данном случае находятся при ненулевых начальных условиях, то предварительно следует определить и . Для этого изобразим эквивалентную схему цепи при (рис. 5).

Рис. 5

Видно, что ; .

Таким образом ; и соответствующая этому схема показана на рисунке 6.

Рис. 6

Далее находится требуемая реакция в операторной форме, а затем осуществляется переход в область реального времени.

Вывод: нахождение реакций при ненулевых начальных условиях требует применения схем замещения в операторной форме и является более сложной задачей, чем при ННУ.

Литература

1. Белецкий А. Ф. Теория линейных электрических цепей. - М.: Радио и связь, 1986.

2. Шалашов Г. В. Переходные процессы в электрических цепях. - Орел: ОВВКУС 1981.


Подобные документы

  • Основные свойства преобразования Лапласа. Нахождение изображений функции времени. Теорема смещения. Свойство линейности. Законы Кирхгофа и Ома в операторной форме. Операторные схемы замещения реактивных элементов при ненулевых начальных условиях.

    лекция [130,7 K], добавлен 23.03.2009

  • Использование электрических и магнитных явлений. Применение преобразования Лапласа и его свойств к расчету переходных процессов. Переход от изображения к оригиналу. Формулы разложения. Законы цепей в операторной форме. Операторные схемы замещения.

    реферат [111,9 K], добавлен 28.11.2010

  • Решение линейных дифференциальных уравнений, характеризующих переходные процессы в линейных цепях. Прямое преобразование Лапласа. Сущность теоремы разложения. Законы Ома и Кирхгофа в операторной форме. Схема замещения емкости. Метод контурных токов.

    презентация [441,7 K], добавлен 28.10.2013

  • Обратное преобразование Лапласа и теорема разложения Хевисайда. Операторные схемы замещения элементов: резистивного, индуктивного и емкостного. Законы Кирхгофа для изображений. Построение операторной схемы для цепи с учетом независимых начальных условий.

    презентация [187,3 K], добавлен 20.02.2014

  • Характеристика переходных процессов в электрических цепях. Классический и операторный метод расчета. Определение начальных и конечных условий в цепях с ненулевыми начальными условиями. Расчет графиков переходного процесса. Обобщенные характеристики цепи.

    курсовая работа [713,8 K], добавлен 21.03.2011

  • Анализ электрической цепи при переходе от одного стационарного состояния к другому. Возникновение переходных колебаний в электрических цепях. Законы коммутации и начальные условия. Классический метод анализа переходных колебаний в электрических цепях.

    реферат [62,1 K], добавлен 23.03.2009

  • Прямое преобразование Лапласа. Замена линейных дифференциальных уравнений алгебраическими уравнениями. Законы Ома и Кирхгофа в операторной форме. Метод переменных состояния. Особенности и порядок расчета переходных процессов операторным методом.

    презентация [269,1 K], добавлен 28.10.2013

  • Порядок определения независимых начальных условий. Отображение операторной схемы, которая рассчитывается любым методом в операторной форме. Методика и этапы вычисления напряжений и токов переходного процесса в функции времени по теореме разложения.

    презентация [233,1 K], добавлен 28.10.2013

  • Основные элементы и характеристики электрических цепей постоянного тока. Методы расчета электрических цепей. Схемы замещения источников энергии. Расчет сложных электрических цепей на основании законов Кирхгофа. Определение мощности источника тока.

    презентация [485,2 K], добавлен 17.04.2019

  • Основные законы электрических цепей. Освоение методов анализа электрических цепей постоянного тока. Исследование распределения токов и напряжений в разветвленных электрических цепях постоянного тока. Расчет цепи методом эквивалентных преобразований.

    лабораторная работа [212,5 K], добавлен 05.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.