Основные положения теории переходных процессов

Анализ электрической цепи при переходе от одного стационарного состояния к другому. Возникновение переходных колебаний в электрических цепях. Законы коммутации и начальные условия. Классический метод анализа переходных колебаний в электрических цепях.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.03.2009
Размер файла 62,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

11

Академия России

Кафедра Физики

Реферат на тему:

«Основные положения теории переходных процессов в электрических цепях»

Орел 2009

Содержание

Условия возникновения переходных колебаний в электрических цепях

Законы коммутации и начальные условия

Сущность классического метода анализа переходных колебаний в электрических цепях

Литература

Условия возникновения переходных колебаний в электрических цепях

На практике часто возникает необходимость анализа электрической цепи при переходе от одного стационарного состояния к другому.

Если цепь содержит только элементы активного сопротивления, то такой переход происходит мгновенно, так как эти элементы на запасают энергии.

При наличии в цепи реактивных элементов L и С для перехода от одного состояния к другому требуется некоторое конечное время. Это объясняется тем, что реактивные элементы могут запасать энергию, а затем отдавать ее.

Процесс перехода электрической цепи от одного установившегося состояния к другому установившемуся состоянию называется переходным (нестационарным) процессом.

Колебания, существующие при этом в цепи, называют переходными (нестационарными).

Частным случаем переходных колебаний являются свободные колебания. Они существуют в электрической цепи после прекращения внешнего воздействия за счет энергии, запасенной в реактивных элементах.

Таким образом, условиями возникновения переходных колебаний в электрической цепи являются:

- наличие в цепи реактивных элементов;

- наличие коммутации.

При этом под коммутацией понимают любые действия в цепи, приводящие к возникновению переходных процессов.

Приведем примеры коммутаций:

а) механическое соединение или разъединение на отдельных участках цепи. В теории считают, что такое действие осуществляется с помощью идеального ключа. На рисунке 1, а показан случай, когда идеальный ключ замыкается, а на рисунке 1, б - когда размыкается;

а) б)

Рис. 1

б) включение или выключение ЭДС или задающего тока источников.

а) Включение б) Выключение

Рис. 2

На рисунке 2, а показано схемное обозначение включения постоянной ЭДС и постоянного тока, а на рисунке 2, б их выключение.

Такое воздействие принято называть ступенчатым (перепадом, или скачком напряжения или тока). В случае 2,б иногда говорят, что "гасится" источник постоянной ЭДС или источник постоянного тока. При этом сам источник (его внутреннее сопротивление) механически из схемы не исключается. Отметим, что ступенчатое воздействие является простейшей функцией. Нахождение реакции на такое воздействие является одной из важных задач в теории переходных процессов (аналогично задаче нахождения реакции цепи на гармоническое воздействие в стационарном режиме).

в) другие воздействия, например, в виде импульсов различной формы, включение и выключение источников гармонических колебаний и др.

Переходные процессы играют важную роль в технике связи.

Они используются для получения напряжения или тока специальной формы (остроконечные импульсы, пилообразное напряжение и т. п.).

С другой стороны, за счет переходных процессов могут возникать искажения формы сигналов, что является нежелательным. Анализ переходных процессов позволяет оценить эти искажения, а также другие характеристики, составляющие основу методов синтеза устройств, предназначенных для оптимальной обработки сигналов.

В технике связи переходные процессы учитывают при расчете усилителей дискретных сигналов, фазосдвигающих цепочек, линий задержки и других устройств.

При анализе переходных процессов необходимо применять особые правила - законы коммутации и начальные условия.

Законы коммутации и начальные условия

Будем считать, что коммутация происходит в момент , а все переходные процессы в цепи начинаются с момента , т. е. непосредственно после коммутации. Состояние цепи до коммутации оценивается в момент .

Законы коммутации относятся к энергоемким (реактивным) элементам, т. е. к емкости и индуктивности. Они гласят: напряжение на емкости и ток в индуктивности при конечных по величине воздействиях являются непрерывными функциями времени, т. е. не могут изменяться скачком.

Математически эта формулировка может быть записана следующим образом

для емкости;

для индуктивности.

Законы коммутации являются следствием определений элементов емкости и индуктивности.

Так для емкости

,

а для индуктивности

.

Полученные интегралы с переменными верхними пределами являются непрерывными функциями их пределов (времени ) при ограниченных значениях и , которые являются именно таковыми.

Физически закон коммутации для индуктивности объясняется противодействием ЭДС самоиндукции изменению тока, а закон коммутации для емкости - противодействием напряженности электрического поля конденсатора изменению внешнего напряжения.

При количественном анализе переходных колебаний в условия каждой конкретной задачи должны входить значения напряжений на емкостях и токов в индуктивностях цепи в момент коммутации, т. е. в начальный момент. Эти значения образуют начальные условия задачи. Ими, в силу законов коммутации, задаются те напряжения и токи в цепи, которые сохраняют свои значения в момент времени непосредственно после коммутации. Если в момент коммутации напряжение на всех емкостях цепи и токи во всех индуктивностях цепи равны нулю, то соответствующие начальные условия называются нулевыми.

Если же это не выполняется хотя бы в одном реактивном элементе цепи, то задача решается при ненулевых начальных условиях.

На практике при решении задач важное значение имеет умение находить начальные и конечные значения реакций.

Безошибочно это сделать можно только при твердом знании законов коммутации и их правильном применении. Проиллюстрируем это на примере.

Пусть в цепи, изображенной на схеме (рис. 3) и находящейся при нулевых начальных условиях в момент включается источник постоянного напряжения путем замыкания ключа. Требуется определить начальные (для ) и конечные (для ) значения реакций.

Рис. 3

Решение.

Изобразим схему для (рис. 4) с учетом законов коммутации (КЗ); обрыв (ХХ),

Рис. 4

откуда

; ; ; .

Теперь определим реакции для с учетом того, что режим установился. Емкость при этом уже зарядится, и будет представлять собой обрыв. Следовательно, все реакции будут равны нулю, за исключением напряжения на емкости, которое будет равно .

При анализе переходных колебаний в электрических цепях применяются следующие методы для нахождения реакций:

- классический, основанный на составлении и решении дифференциальных уравнений;

- операторный, основанный на применении преобразования Лапласа;

- временной, использующий переходные и импульсные характеристики;

- частотный, базирующийся на спектральном представлении воздействия (преобразование Фурье).

Укажем, что последних три метода применимы только для линейных электрических цепей, поскольку в их основе лежит метод наложения (суперпозиции).

Сущность классического метода анализа переходных колебаний в электрических цепях

Переходные процессы в электрических цепях описываются уравнениями, составленными на основании законов Кирхгофа для мгновенных значений напряжений и токов. Эти уравнения для различных цепей после соответствующих преобразований могут быть приведены к какому-либо из следующих видов:

;

;

.

Первое уравнение - линейное, с постоянными коэффициентами характеризует линейную цепь.

Второе, в котором, по крайней мере, один из коэффициентов (в данном случае ) является функцией времени, описывает линейную цепь с переменными параметрами (т. е. параметрические цепи).

Третье, в котором хотя бы один из коэффициентов (в данном случае ) является функцией , описывает нелинейную цепь и является, в отличие от первых двух, нелинейным дифференциальным уравнением.

Рассмотрим пример.

Пусть на последовательный контур (рис. 5), находящийся при нулевых начальных условиях в момент посредством замыкания ключа начинает действовать источник напряжения величиной . Требуется определить реакции.

Рис. 5

Составим уравнение по второму закону Кирхгофа:

или

. (1)

Пусть все элементы цепи линейны. Тогда уравнение (1) преобразуется к виду:

или

,

где: ;

;

; .

Получено линейное, в общем случае неоднородное дифференциальное уравнение второго порядка, которое решается относительно известными из математики методами.

Аналогичное уравнение получается и для параметрической цепи. Пусть теперь цепь является нелинейной, например, допустим, что индуктивность является функцией тока, т.е. .

Тогда

и уравнение (1) будет иметь вид

.

Оно может быть преобразовано в нелинейное уравнение второго порядка. Решение нелинейных дифференциальных уравнений, даже первого порядка, является весьма сложной, а иногда и неразрешимой задачей.

Литература

1. Белецкий А. Ф. Теория линейных электрических цепей. - М.: Радио и связь, 1986


Подобные документы

  • Характеристика переходных процессов в электрических цепях. Классический и операторный метод расчета. Определение начальных и конечных условий в цепях с ненулевыми начальными условиями. Расчет графиков переходного процесса. Обобщенные характеристики цепи.

    курсовая работа [713,8 K], добавлен 21.03.2011

  • Характеристика методов анализа нестационарных режимов работы цепи. Особенности изучения переходных процессов в линейных электрических цепях. Расчет переходных процессов, закона изменения напряжения с применением классического и операторного метода.

    контрольная работа [538,0 K], добавлен 07.08.2013

  • Расчет источника гармонических колебаний. Определение резонансных режимов электрической цепи. Расчет переходных процессов классическим методом. Определение установившихся значений напряжений и токов в электрических цепях при несинусоидальном воздействии.

    курсовая работа [1,8 M], добавлен 18.11.2012

  • Расчет источника гармонических колебаний. Составление и расчет баланса мощностей. Расчёт четырёхполюсника, установившихся значений напряжений и токов в электрических цепях при несинусоидальном воздействии, переходных процессов классическим методом.

    контрольная работа [1,0 M], добавлен 11.12.2012

  • Исследование линейной электрической цепи. Расчет источника гармонических колебаний, тока, напряжения, баланса мощностей электромагнитной системы. Реактивное сопротивление выходных зажимов четырехполюсника. Расчет переходных процессов классическим методом.

    курсовая работа [830,6 K], добавлен 11.12.2012

  • Основные свойства преобразования Лапласа. Законы Кирхгофа и Ома в операторной форме. Соотношения в элементах электрических цепей. Операторные схемы замещения элементов при ненулевых начальных условиях. Нахождение реакций при ненулевых начальных условиях.

    реферат [126,1 K], добавлен 25.04.2009

  • Содержание классического метода анализа переходных процессов в линейных цепях: непосредственное интегрирование дифференциальных уравнений, описывающих электромагнитное состояние цепи. Два закона коммутации при конечных по величине воздействиях в цепи.

    презентация [679,0 K], добавлен 28.10.2013

  • Расчёт переходных процессов в электрических цепях классическим и операторным методами, с помощью интеграла Дюамеля. Премущества и недостатки методов. Изображение тока через катушку индуктивности. Аналитическое описание функции входного напряжения.

    курсовая работа [2,1 M], добавлен 16.06.2011

  • Сущность расчета переходных процессов в электрических цепях первого и второго порядков. Построение временных диаграмм токов и напряжений. Составление и решение характеристических уравнений. Расчет форм и спектров сигналов при нелинейных преобразованиях.

    курсовая работа [1,2 M], добавлен 14.07.2012

  • Расчёт переходных процессов в электрической цепи по заданным схемам: для определения начальных условий; определения характеристического сопротивления; нахождения принужденной составляющей; и временным диаграммам токов и напряжений в электрической цепи.

    курсовая работа [324,9 K], добавлен 24.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.