Определение устойчивости равновесия. Расчет зависимости напряженности электрического поля от расстояния
Поиск местонахождения точки заряда, отвечающей за его устойчивое равновесие. Нахождение зависимости напряженности электрического поля, используя теорему Гаусса. Подбор напряжения и заряда на каждом из заданных конденсаторов. Расчет магнитной индукции.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.12.2010 |
Размер файла | 601,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
302
Два положительных точечных заряда и закреплены на расстоянии друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещение зарядов возможны только вдоль прямой, проходящей через закрепленные заряды.
Решение:
Определим знак заряда, при котором равновесие будет устойчивым.
Если заряд отрицательный, то при смещении его влево сила (направленная влево) возрастает, а сила (направленная вправо) возрастает. Под действием этой силы заряд удаляется от положения равновесия. То же происходит и при смещении заряда вправо. Равновесие будет неустойчивым.
Если заряд положителен, то при смещении его влево сила (направленная вправо) возрастает, а сила (направленная влево) убывает, следовательно, результирующая сила будет направлена вправо и заряд возвращается к положению равновесия. То же происходит и при смещении заряда вправо. Равновесие будет устойчивым.
Предположим, что заряд находится в точке . Тогда условие равновесия заряда запишется так:
Подставив в уравнение вместо сил их значения по закону Кулона, и произведя сокращения, получим:
Решая относительно , получаем:
Так как -эта точка расположена вне отрезка , что невозможно для равновесия заряда .
Произведем вычисления:
Ответ: положительный.
322
На двух концентрических сферах радиусом и равномерно распределены заряды с поверхностными плотностями и соответственно. Используя теорему Гаусса, найти зависимость напряженности электрического поля от расстояния для трех областей: и . Принять , . 2) вычислить напряженность в точке, удаленной от центра на расстояние и указать направление вектора для значений , . 3) построить график .
Решение:
1) Для определения напряженности в области проведем гауссову поверхность радиусом .
По теореме Остроградского -Гаусса имеем:
Для области : -заряда внутри сферы нет
Напряженность поля в области равна нулю.
Для области проведем гауссову поверхность радиуса :
Площадь гауссовой поверхности:
Площадь поверхности шара:
Для области проведем гауссову поверхность радиуса . Гауссова поверхность охватывает обе сферы:
2) Найдем напряженность для точки, удаленной от центра на расстояние :
3) Строим график :
3) Строим график Е(r):
332
Электрическое поле создано зарядами и , находящимися в точках и соответственно (). Точка находится на прямой (). Точка находится на продолжении отрезка (). Определить работу сил поля, совершаемую при перемещении заряда из точки в точку .
Решение:
Для определения работы А12 сил поля воспользуемся соотношением:
Расстояние между точкой, в которой расположен заряд и точкой по теореме Пифагора равно
Применяя принцип суперпозиции электрических полей, определим потенциалы и точек и поля:
Разность потенциалов:
Искомая работа:
Проверим единицы измерения:
Произведем вычисления:
Ответ: .
352
Конденсаторы емкостями , и соединены последовательно и находятся под напряжением . Определить напряжение и заряд на каждом из конденсаторов.
Решение:
Так как конденсаторы соединены последовательно, то:
Заряд:
Произведем вычисления:
Разности потенциалов:
Ответ: .
402
По двум скрещенным под прямым углом бесконечно длинным проводам текут токи и (). Определить магнитную индукцию в центре отрезка, перпендикулярного к обоим проводам, если длина его составляет . Указать направление вектора для выбранных направлений тока.
Решение:
В соответствии с принципом суперпозиции магнитных полей, магнитная индукция , создаваемая токами и определяется выражениями:
Направление векторов и найдем по правилу буравчика. Вектор , создаваемый 2-м проводом направлен перпендикулярно плоскости рисунка «от нас». Вектор , создаваемый 1-м проводом, направлен вверх от точки . Так как , скалярно получаем:
Магнитные индукции, создаваемые проводами определим по формулам расчета магнитной индукции для бесконечно длинного прямолинейного провода с током:
В нашем случае: ;
Получаем:
Искомая магнитная индукция:
Произведем вычисления:
Ответ:
412
Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. По рамке и проводу текут одинаковые токи . Определить силу , действующую на рамку, если ближайшая к проводу сторона рамки находится от него на расстоянии, равном ее длине.
Решение:
Сила, действующая на провод с током в магнитном поле:
где -угол между направлением тока в проводе и вектором магнитной индукции .
На стороны рамки, расположенные перпендикулярно проводу, действуют силы равные по модулю и противоположные по направлению, которые уравновешивают друг друга.
Магнитная индукция поля прямого тока:
Сила, действующая на ближайшую сторону рамки:
Сила, действующая на дальнюю сторону рамки:
Суммарная сила:
Проверим единицы измерения:
Произведем вычисления:
Ответ: .
442
Альфа-частица влетела в скрещенные под прямым углом магнитное () и электрическое поля. Определить ускорение альфа-частицы в начальный момент времени, если ее скорость перпендикулярна векторам и , причем силы, действующие со стороны этих полей, противоположно направлены.
Решение:
На движущуюся заряженную частицу в скрещенных магнитном и электрическом полях действуют две силы:
Сила Лоренца, направленная перпендикулярно скорости и вектору магнитной индукции и кулоновская сила , противоположно направленная вектору напряженности электростатического поля.
Ускорение можно найти по 2-му закону Ньютона:
Куловская сила:
Сила Лоренца:
Искомое ускорение электрона:
-масса альфа-частицы
- заряд -частицы
Проверим единицы измерения:
Произведем вычисления:
Ответ: .
462
В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. При этом по цепи прошел заряд . Определить изменение магнитного потока через кольцо; если сопротивление цепи гальванометра .
Решение:
В тот момент, когда вставили магнит, произошло изменение магнитного поля. В кольце возникнет ЭДС индукции, определяемая основным законом электромагнитной индукции:
Возникшая ЭДС индукции вызовет в рамке индукционный ток, мгновенное значение которого можно определить, воспользовавшись законом Ома для полной цепи:
где -сопротивление гальванометра
Проинтегрируем последнее равенство:
Откуда искомая величина:
Проверим единицы измерения:
Произведем вычисления:
Ответ: .
Литература
1. Трофимова Т.И. Курс физики. М. 2000
2. Савельев И.В. Курс общей физики, в 5 т. М. 2001
3. Чертов А.Г., Воробьев А.А. Задачник по физике. М., 1981
Подобные документы
Определение модуля и направления скорости меньшей части снаряда. Нахождение проекции скорости осколков. Расчет напряженности поля точечного заряда. Построение сквозного графика зависимости напряженности электрического поля от расстояния для трех областей.
контрольная работа [205,5 K], добавлен 06.06.2013Изучение электромагнитного взаимодействия, свойств электрического заряда, электростатического поля. Расчет напряженности для системы распределенного и точечных зарядов. Анализ потока напряженности электрического поля. Теорема Гаусса в интегральной форме.
курсовая работа [99,5 K], добавлен 25.04.2010Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.
презентация [1,1 M], добавлен 23.10.2013Силовые линии напряженности электрического поля для однородного электрического поля и точечных зарядов. Поток вектора напряженности. Закон Гаусса в интегральной форме, его применение для полей, созданных телами, обладающими геометрической симметрией.
презентация [342,6 K], добавлен 19.03.2013Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.
реферат [56,7 K], добавлен 15.02.2008Определение силы взаимодействия двух точечных тел. Расчет напряженности электрического поля плоского конденсатора при известных показателях площади его пластины и величины заряда. Нахождение напряжения на зажимах цепи по показателям сопротивления и тока.
контрольная работа [375,3 K], добавлен 06.06.2011Электромагнитное поле. Система дифференциальных уравнений Максвелла. Распределение потенциала электрического поля. Распределения потенциала и составляющих напряженности электрического поля и построение графиков для каждого расстояния. Закон Кулона.
курсовая работа [1,1 M], добавлен 12.05.2016Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.
реферат [61,6 K], добавлен 08.04.2011Сущность электростатического поля, определение его напряженности и графическое представление. Расчет объемной и линейной плотности электрического заряда. Формулировка теоремы Гаусса. Особенности поляризации диэлектриков. Уравнения Пуассона и Лапласа.
презентация [890,4 K], добавлен 13.08.2013Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.
контрольная работа [5,6 M], добавлен 14.12.2009