Пространственное вращение

Пространственное вращение - один из важнейших видов периодического движения в стационарных квантовых системах. Сферическая система координат. Преобразование оператора Лапласа. Аналогичное получение других слагаемых лапласиана. Радиальное слагаемое.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 29.01.2009
Размер файла 339,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- 11 -

Пространственное вращение

Пространственное вращение - один из важнейших видов периоди-ческого движения в стационарных квантовых системах. Напомним, что в классической механике наиболее рациональное описание такого дви-жения достигается при использовании сферической системы координат, с которой мы и начнём свой анализ.

Сферическая система координат

4.3.1.1. Сферическая система координат хорошо известна из географии и астрономии. Положение частица на сфере в этом случае определяется с помощью широты и долготы, которые задаются посредством двух углов и , отсчитываемых относительно фиксированных осей, например, декартовых, как это показано на рис. 4.2. Вводя рас-стояние от центра вращения, переменный радиус r , получаем третью координату, необходимую для описания пространственного вращатель-ного движения

Шаровые координаты:

Декартовы координаты:

(4.28)

Рис. 4.2. Сферическая система координат

При описании переменных данной задачи обязательно следует указать пределы их изменения

или

или

или

4.3.1.2. Вычисление элемента объема в сферической системе ко-ординат проиллюстрируем рис. 4.2. Величина dV понадобится нам в дальнейших расчётах.

(4.29)

4.3.2. Преобразование оператора Лапласа

4.3.2.1. Лапласиан - основа выражения оператора кинетической энергии и, следовательно, гамильтониана . Поэтому проследим подробно всю схему его преобразования при замене декартовой системы координат на сферическую. С подобной , но более простой процеду-рой мы уже имели дело при рассмотрении плоского ротатора.

4.3.2.2. В теории поля лапласиан является скалярным произве-дением вектор-оператора Гамильтона "набла" самого на себя- скаляр-ным "квадратом" : Поэтому вначале преобразуем оператор "набла"

. (4.30)

В соответствии с (4.28) x,y,z выражаются как функции сфе-рических координат, поэтому производные, составляющие оператор "набла", предстанут в следующем виде

(4.31)

4.3.2.3. Наборы частных производных в (4.30) образуют квадрат-ную матрицу коэффициентов, при умножении на которую происходит пе-реход от одного базисного вектор-столбца к другому:

(4.32)

Вычислим все производные, являющиеся элементами квадратной матрицы, дифференцируя выражения (4.28)

или

(4.33)

Напомним, что перемножение матриц подчиняется правилу "строка на столбец". В итоге элементы искомого вектор-столбца предстанут в виде суммы:

(4.34)

(4.35)

(4.36)

4.3.2.4. Следующий этап преобразований - построение оператора Лапласа в переменных .

(4.37)

Для этого, согласно уравнению (4.35), необходимо перемножить сами на себя выражения операторов однократного дифференцирования по координатам х,у,z через сферические переменные (4.32)-(.4.34) и затем взять сумму этих произведений. При этом следует учитывать, что перемножаются не числа, а операторы, и действие оператора из левой скобки на каждое слагаемое правой выполняется по правилам, аналогичным правилам дифференцирования произведения функций, т.е.

(4.38)

4.3.2.5. Ход преобразований продемонстрируем на примере одно-го из слагаемых лапласиана, например при этом, для сохранения упорядоченного характера записи выпишем новые слагаемые, получающиеся в результате дифференцирования, в столбец под каждым преобразуемым выражением. Это в некотором роде изменение привычного математического синтаксиса, цель которого - порядок и наглядность в записи

Cуммируя, получаем

. (4.37)

4.3.2.6. Аналогично получаются другие слагаемые лапласиана.

Результаты преобразований представлены в таблице 4.2. В её левом столбце перечислены слагаемые оператора Лапласа в декартовых координатах, а в верхней строчке - все операторы дифференцирования первого и второго порядков по всем сферическим переменным , включая перекрёстные, которые возникают в ходе преобразований. На пере-сечении строк и столбцов указаны коэффициенты перед последними - функции от , которые получаются при преобразовании слагаемых лапласиана, стоящих в левом столбце. Самая нижняя строчка представляет суммы по столбцам. Домножая эти суммы справа на соответствующие операторы верхней строки и суммируя результаты, получаем окончательное искомое выражение оператора Лапласа в сферической систе-ме координат:

(4.38)

4.3.2.7. Сгруппируем некоторые из слагаемых в (4.38) для более компактной записи

(4.39)

, (4.40)

В результате лапласиан приобретает вид

(4.41)

Таблица 4.2.

Коэффициенты преобразования оператора Лапласа.

0

1

0

Табл. 4.2.1. Продолжение.

0

0

4.3.2.8. Отдельные фрагменты лапласиана, построенные на раз-ных переменных, удобно обозначить самостоятельными символами. Для краткости переменные отметим в качестве индексов

(4.42)

(4.43)

. (4.44)

Вся чисто угловая часть лапласиана, заключенная в скобки в формуле (4.41) называется оператором Лежандра .

(4.45)

В целом же лапласиан оказывается такой комбинацией трёх операторов, которая обеспечивает далее разделение переменных во многих дифференциальных уравнениях, в том числе и в уравнении Шредингера, построенных на его основе:

(4.46)

4.3.2.9. Напомним, что с оператором (4.44) составляющим самую внутреннюю часть конструкции и оператора Лапласа, и опе-ратора Лежандра мы уже имели дело при рассмотрении одномерного вращения (раздел 3.2.). Были найдены его собственные волновые функции, которые далее войдут в качестве одного из сомножителей общих собственных функций этих операторов.

Присутствие радиального слагаемого в этом случае заставляет представить оператор кинетической энергии в виде суммы

(4.50)

4.3.3.3. В силу того, что оператор кинетической энергии частицы отличается от лапласиана только множителем (см. уравнение 2.15), домножив на него формулу (4.46), получим

(4.51)

Сравнивая формулы (4.50) и (4.51), приходим к фундаменталь-ному соотношению

, (4.52)

т.е. оператор квадрата момента импульса совпадает с оператором Лежандра с точностью до постоянного множителя . Заметим, что размерность собственных значений оператора совпадает с размер-ностью постоянной Планка .

4.3.3.4. Этот же результат можно получить и последовательными математическими преобразованиями компонент операторов и . Процедура перехода к сферическим координатам для компонент аналогична той, что была осуществлена в разделе 3.2.2. при перево-де к плоской полярной системе координат. Кстати говоря, в сфери-ческих координатах имеет тот же самый вид (3.24). Используя уравнения (4.52) и (4.34), читатель сам легко получит выражения

(4.53)

(4.54)

(3.24)

Суммируя результаты возведения в квадрат найденных выражений для операторов проекций момента импульса, получаем формулу (4.52), которая в развернутой форме с учетом (4.45) имеет вид

(4.55)


Подобные документы

  • Методы получения дифференциального уравнения теплопроводности при одномерном распространении тепла. Расчет температурного поля в стационарных условиях по формуле Лапласа. Изменение температуры в плоской однородной стене при стационарных условиях.

    контрольная работа [397,4 K], добавлен 22.01.2012

  • Вращение тела вокруг неподвижной точки. Углы Эйлера. Мгновенная ось вращения и угловая скорость. Ускорение точек тела, имеющего одну неподвижную точку. Расчет геометрической суммы ускорения полюса, а также точки в ее движении вокруг этого же полюса.

    презентация [2,1 M], добавлен 24.10.2013

  • Обратное преобразование Лапласа и теорема разложения Хевисайда. Операторные схемы замещения элементов: резистивного, индуктивного и емкостного. Законы Кирхгофа для изображений. Построение операторной схемы для цепи с учетом независимых начальных условий.

    презентация [187,3 K], добавлен 20.02.2014

  • Изучение основных задач динамики твердого тела: свободное движение и вращение вокруг оси и неподвижной точки. Уравнение Эйлера и порядок вычисления момента количества движения. Кинематика и условия совпадения динамических и статических реакций движения.

    лекция [1,2 M], добавлен 30.07.2013

  • Момент количества движения, пространственное квантование. Магнитный момент в магнитном поле. Спин и собственный магнитный момент электрона. G-фактор, принцип запрета Паули. Обменная энергия и обменное взаимодействие. Энергия обменного взаимодействия.

    реферат [2,2 M], добавлен 19.08.2015

  • Выражение для кинетического момента в ПСС. Динамические и кинематические уравнения Эйлера. Общая система уравнений Эйлера движения твердого тела вокруг неподвижной точки. Параметры устойчивости стационарного вращения. Понятие регулярной прецессии.

    презентация [650,1 K], добавлен 30.07.2013

  • Получение электричества с помощь магнитогидродинамического преобразования. Применение топливных элементов для получения электричества при низких температурах. Пространственное разделение ионных и электронных потоков. Использование топливных элементов.

    статья [342,2 K], добавлен 23.08.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.