Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты

Некоторые аспекты развития методов расчётов температурных и концентрационных полей в пластах. Физические процессы при фильтрации жидкости в глубоко залегающих пластах. Уравнение конвективной диффузии с учетом радиоактивного распада и обмена жидкости.

Рубрика Физика и энергетика
Вид диссертация
Язык русский
Дата добавления 06.07.2008
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отсюда с учетом следует, что средние по толщине пласта значения коэффициентов разложения первого и более высоких порядков равны нулю

.

(1.5.101)

Установление равенства нулевого приближения и средних значений исходной и параметризованной задачи имеет принципиальное значение для решения температурной задачи, поскольку входящую в правую часть уравнения (1.4.43) среднюю плотность можно заменить на равное ей нулевое приближение. Это использовано при решении задачи теплопереноса в пункте 3.1.

При решении задачи массопереноса в первом приближении (1.5.73) - (1.5.79), возникает необходимость использования дополнительного интегрального условия (1.5.101), поскольку условие (1.5.79) является избыточным и должно быть заменено (1.5.101). Если потребовать выполнения этого интегрального условия при любых значениях r, то оно также оказывается избыточным. Для построения аналитического решения достаточно заданий интегрального условия на одной поверхности для заданного значения r. Ранее показано, что наилучшим первое приближение является в случае, когда поверхность осреднения совпадает с поверхностью, на которой заданы граничные условия.

1.6. Выводы

В главе I на основе уравнения конвективной диффузии для несжимаемой жидкости с учетом радиоактивного распада и обмена загрязнителя со скелетом, осуществлена постановка термодиффузионной задачи о взаимосвязанных полях концентрации и температуры в глубокозалегающих горизонтах, возникающих при закачке в пористый пласт растворенных радиоактивных веществ. С использованием параметра асимптотического разложения температурная и диффузионная задачи представлены в виде бесконечной последовательности краевых задач для коэффициентов разложения искомого решения в асимптотический ряд. Произведено «расцепление» соответствующей цепочки уравнений и на этой основе осуществлена постановка краевых задач смешанного типа со следами производных из внешних областей для нулевого и первого коэффициентов разложения.

При построении решения задачи для первого коэффициента использовано нелокальное граничное условие, заключающееся в том, что средние значения температуры и плотности примесей по толщине пласта на оси скважины равны нулю.

Глава II. РЕШЕНИЕ ЗАДАЧИ МАССОПЕРЕНОСА В НУЛЕВОМ
И ПЕРВОМ ПРИБЛИЖЕНИЯХ, СТАЦИОНАРНОЕ РЕШЕНИЕ

2.1. Решение задачи массопереноса в нулевом приближении

В пространстве изображений Лапласа - Карсона

,

для нулевого приближения вместо (1.5.51) - (1.5.57) получим следующую задачу:

, z > 1, >0,

(2.1.1)

,

|z| < 1, >0,

(2.1.2)

, z < - 1, >0,

(2.1.3)

,

(2.1.4)

,

(2.1.5)

,

(2.1.6)

, , .

(2.1.7)

Решение уравнения (2.1.1) имеет вид

.

(2.1.8)

Учитывая второе из граничных условий (2.1.5), получим . Тогда

.

(2.1.9)

Аналогично, для подстилающего пласта в пространстве изображений из (2.1.3) и (2.1.5) получим

.

(2.1.10)

Учитывая граничные условия (2.1.4), а также то, что в нулевом приближении плотность загрязнителя в пористом пласте не зависит от z и является функцией только от r и t, эти решения можно переписать в виде

,

(2.1.11)

.

(2.1.12)

Эти выражения позволяют определить значения следов производных из внешних областей, входящих в уравнение для пласта, через плотность примеси в нем

, .

(2.1.13)

Подставляя найденные значения производных (2.1.11), (2.1.12) в уравнение (2.1.2), соответствующее (1.5.52) в пространстве изображений, получим

.

(2.1.14)

Группируя слагаемые и учитывая, что в последнем уравнении производная берётся только по одной переменной, перепишем (2.1.2) в виде

.

(2.1.15)

Решение уравнения (2.1.15)

.

(2.1.16)

Граничное условие (2.1.6) позволяет получить значение постоянной интегрирования . Окончательно в пространстве изображений в нулевом приближении для пористого пласта получим

.

(2.1.17)

Введём обозначение для выражения, стоящего в квадратных скобках

,

(2.1.18)

при этом

.

(2.1.19)

С учетом (2.1.11) и (2.1.12) полное решение задачи в пространстве изображений представляется как

,

(2.1.20)

,

(2.1.21)

.

(2.1.22)

Для удобства перехода в пространство оригиналов, полученные решения с учётом (2.1.18) представим в форме

,

(2.1.23)

,

(2.1.24)

.

(2.1.25)

Переход в пространство оригиналов осуществим, используя формулы обратного преобразования Лапласа - Карсона [23]:

,

где единичная функция Хевисайда

(2.1.26)

(2.1.27)

В нашем случае, совершив обратное преобразование Лапласа - Карсона, и перейдя в пространство оригиналов, решение задачи в нулевом приближении представим в виде

(2.1.28)

(2.1.29)

(2.1.30)

соответственно для пористого, настилающего и подстилающего пластов.

Первый сомножитель в решении (2.1.28) - (2.1.30) описывает уменьшение плотности загрязнителя в результате радиоактивного распада, второй - функция Хевисайда, определяет радиус распространения зоны заражения и третий (выражение в фигурных скобках) учитывает изменение плотности из-за диффузии загрязнителя и радиоактивного распада продиффузирующего нуклида.

Рассмотрим упрощённую модель в которой не учитывается радиоактивный распад в накрывающем и подстилающем пластах. В этом случае в правых частях уравнений (1.5.51), (1.5.53) будет стоять нуль, граничные условия и условия сопряжения не изменятся. Аналогично, в пространстве изображений равны нулю правые части (2.1.1) и (2.1.3). Математическая постановка соответствующей задачи в пространстве изображений

, z > 1, >0,

(2.1.31)

,

|z| < 1, >0,

(2.1.32)

, z < - 1, >0,

(2.1.33)

,

(2.1.34)

,

(2.1.35)

,

(2.1.36)

, , .

(2.1.37)

Ход решения идентичен решению задачи с учётом распада в «кровле» и «подошве».

Учитывая граничные условия (2.1.34) и то, что в нулевом приближении плотность загрязнителя в пористом пласте не зависит от z и является функцией только от r и t, решения уравнений (2.2.31), (2.1.33) можно записать в виде

,

(2.1.38)

.

(2.1.39)

Тогда для следов производных, входящих в (2.1.32)

, .

(2.1.40)

Подставляя найденные значения производных в уравнение (2.1.32), получим

.

(2.1.41)

Решение уравнения (2.1.41) с учётом граничного условия (2.1.36) имеет вид

.

(2.1.42)

Введём обозначение

.

(2.1.43)

Тогда полное решение задачи в пространстве изображений

.

(2.1.44)

,

(2.1.45)

.

(2.1.46)

Для удобства перехода в пространство оригиналов, решения с учётом (2.1.43) запишем в виде

,

(2.1.47)

,

(2.1.48)

.

(2.1.49)

Перейдем в пространство оригиналов, используя формулы обратного преобразования Лапласа - Карсона [23]

,

.

(2.1.50)

В нашем случае имеем

.

(2.1.51)

Совершив обратное преобразование Лапласа - Карсона, и перейдя в пространство оригиналов, решение задачи в нулевом приближении представим в виде

(2.1.52)

(2.1.53)

(2.1.54)

Учтём, что наиболее важные физические результаты обусловливаются нулевым приближением асимптотического разложения, первый и последующий коэффициенты определяют «поправки». Кроме того, в силу малости коэффициента диффузии (10-9ч10-11) распространение загрязнителя в водоупорных пластах в вертикальном направлении ничтожно (по сравнению с конвективном переносом в пористом пласте) и слабо влияет на размеры зоны заражения, поэтому проведём сравнение полученных результатов только для пористого пласта (2.1.28), (2.1.52).

На рис. 2.1 показана зависимость разности между плотностями загрязнителя в пористом пласте без учёта и с учетом радиоактивного распада в водоупорных пластах от координаты r. График 1 соответствует периоду полураспада Т1/2=100 лет, 2 - 10 лет, 3 - 1 год. Вычисления проведены для времени =30 лет, интенсивность закачки - 100 м3/сут.

Рис. 2.1. Зависимость разности (для нулевого приближения) между плотностями загрязнителя в пористом пласте без учёта и с учетом радиоактивного распада в водоупорных пластах от координаты r при различных постоянных распада 1 - At = 0.1, 2 - 1, 3 - 10. Другие расчётные параметры t = 10, , , Pd = 102

Из рис. 2.2 следует, что возникающая при замене (2.1.28) на (2.1.52) относительная разность , возрастает при увеличении постоянной распада (уменьшении периода полураспада) и для короткоживущих нуклидов (T1/2  100 сут.) на фронте загрязнителя составляет более 0,4. Однако, абсолютная разность плотностей при этом уменьшается с ростом At и для тех же короткоживущих нуклидов становится ничтожно малой (рис. 2.1). Расчёты приведены для безразмерного времени t = 10, что соответствует размерному времени  30 лет. При уменьшении расчётного времени погрешности также уменьшаются.

Рис. 2.2. Зависимость относительной разности (для нулевого приближения) между плотностями загрязнителя в пористом пласте без учёта и с учетом радиоактивного распада в водоупорных пластах от координаты r при различных постоянных распада 1 - At = 0.1, 2 - 1, 3 - 10. Другие расчётные параметры t = 10, , , Pd = 102

На рис. 2.3 видно, что и сами абсолютные значения плотностей короткоживущих загрязнителей для указанного момента времени на границе зоны загрязнения практически обращаются в ноль. При увеличении периода полураспада нуклида до  30 лет абсолютное значение плотности его на границе зоны загрязнения остаётся весьма значительным (рис. 2.3), но относительная разность между результатами (2.1.28) и (2.1.52) составляет несколько процентов (рис. 2.2). Уменьшение при расчётах коэффициента д на порядок () приводит к уменьшению абсолютной и относительной разности ещё примерно вдвое.

Рис. 2.3 Зависимость нулевого приближения плотности радиоактивного загрязнителя в пористом пласте от координаты r без учёта распада в окружающих пластах. при различных постоянных распада 1 - At = 0.1, 2 - 1, 3 - 10. Другие расчётные параметры t = 10, , , Pd = 102

Всё это позволяет для практических расчётов пренебречь радиоактивным распадом в водоупорных пластах, что существенно упрощает расчётные формулы. Поэтому в дальнейшем мы и в массо- и в теплообменной задаче будем игнорировать этот распад.

Поскольку вклад радиоактивного распада описывается сомножителем , то можно утверждать, что концентрация радиоактивного загрязнителя уменьшается в е раз за счет распада на расстояниях, определяемых простым соотношением Re=h=. Отсюда следует, что для короткоживущих изотопов зона загрязнения невелика. С другой стороны, для уменьшения зоны влияния долгоживущих радиоактивных изотопов следует уменьшать скорость фильтрации.

Полученное решение содержит функцию Хевисайда, которая позволяет указать, что плотность радиоактивных изотопов обращается в ноль при r ?. Это соотношение позволяет определить радиус зоны радиоактивного заражения

Rp=h=.

(2.1.55)

При Аt = 0 из (2.1.52) - (2.1.54) следуют решения без учета радиоактивного распада

(2.1.56)

(2.1.57)

(2.1.58)

Пренебрежение влиянием массообмена с окружающей средой на плотность примесей в пласте в (2.1.52) - (2.1.54), позволяет получить приближение, которое можно с высокой точностью использовать для расчета тепловых полей в подземных горизонтах

(2.1.59)

(2.1.60)

(2.1.61)

Устремляя д > 0 в (2.1.59) - (2.1.61), получим так называемое «бездиффузионное приближение»

(2.1.62)

(2.1.63)

(2.1.64)

границы применимости которого обсуждается в 2.3.

2.2. Анализ результатов расчетов в нулевом приближении

На рис.2.4 показаны расчёты зависимости в нулевом приближении плотности радиоактивного загрязнителя от расстояния до оси скважины. С увеличением времени возрастает радиус зоны загрязнения.

Рис 2.4. Зависимость плотности радиоактивных примесей (нулевое приближение) от расстояния до оси скважины для различных моментов времени: 1 = 1, 2 - 10, 3 - 100. Другие расчётные параметры At = 0.1, , , Pd = 102

На рис. 2.5 приведены результаты расчётов плотности радиоактивных примесей в нулевом приближении в зависимости от безразмерной пространственной координаты, отнесённой к радиусу зоны загрязнения (). Как видно из сопоставления кривых уменьшение концентрации загрязнителя определяется не только диффузионными процессами (кривая 1), но и, в значительной степени, радиоактивным распадом (кривые 2 - 4).

Рис 2.5. Зависимость плотности радиоактивных примесей (нулевое приближение) от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, для различных постоянных распада 1 - At = 0, 2 - 0.01, 3 - 0.1, 4 - 1. Другие расчётные параметры t = 10, , , Pd = 102

Несмотря на то, что обычно вклад диффузионных процессов очень мал, в рассматриваемом случае происходят значительные изменения концентрации на фронте зоны возмущений (кривая 1 на обоих рисунках). Главными причинами этого эффекта являются повышенные градиенты концентрации между пластом и окружающими породами и большие времена закачки, которая осуществляется обычно десятки лет. При постоянных распада At >0.01 становится существенным вклад радиоактивного распада. При At > 0.1 процесс радиоактивного распада является преобладающим и практически полностью определяет распределение концентрации радиоактивных примесей. Отметим, что при больших временах в пласте устанавливается стационарное поле, определяемое соотношением , следующим из (2.1.52).

Графики, представленные на рис. 2.6 аналогичны предыдущим (рис. 2.5). однако вклад диффузионных процессов в данном случае становится меньшим в силу уменьшения . При этом общие тенденции остаются прежними.

Рис 2.6. Зависимость плотности радиоактивных примесей (нулевое приближение) от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, для различных постоянных распада 1 - At = 0, 2 - 0.01, 3 - 0.1, 4 - 1. Другие расчётные параметры t = 10, , , Pd = 102

На рис 2.7 представлена зависимость вклада диффузионного массообмена с окружающей средой от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения Rd. Из рисунка следует, что влияние диффузионного массообмена для больших времён (10 лет) вблизи фронта загрязнения является весьма существенным. В расчетах приято Pd = 100, д = 10-3, At = 0. Последнее соответствует пренебрежению радиоактивным распадом.

Рис. 2.7. Вклад диффузионного массообмена с окружающей средой от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, при различных временах закачки: 1 t = 0.1, 2 - 1, 3 - 10. At = 0, , , Pd = 102

На рис 2.8 приведена зависимость плотности радиоактивного загрязнителя в нулевом приближении от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения Rd для различных времён закачки и постоянных распада. Причём, значения t и At выбраны таким образом, что t•At=1. При этом графики плотностей оказываются весьма близкими друг к другу. Различие между ними определяется лишь наличием диффузионных процессов. Это подчёркивает физическую разумность выбранной системы обезразмеривания.

Рис. 2.8. зависимость плотности загрязнителя (нулевое приближение) от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, при различных временах закачки и постоянных распада 1 t = 0.1, At = 10, 2 t = 10, At = 0.1, 3 t = 100, At = 0.01, , , Pd = 102

Если строить зависимость , то заметить «близость» графиков затруднительно, поскольку радиус зоны загрязнения растёт, согласно (2.1.55) пропорционально .

2.3. Бездиффузионное приближение в задаче массообмена

В силу того, что отношение коэффициентов диффузии () и температуропроводности () является малой величиной порядка  ч (см. (1.5.12)), появляется возможность упростить взаимосвязанную задачу тепломассопереноса, рассмотрев бездиффузионное приближение, суть которого заключается в пренебрежении диффузионными слагаемыми в соответствующей задаче массопереноса.

Преимущество такого подхода в значительном упрощении процедуры построения решения тепломассообменной задачи. Однако, при использовании бездиффузионного приближения необходимо разрешение вопросов, связанных с оценкой его применимости.

Рассматривая найденное нами выражение для (2.1.52) как функцию от , разложим его в ряд Маклорена по малому параметру , причём ограничимся первыми двумя членами разложения

.

(2.3.1)

Из (2.2.1), учитывая, что , получим

.

(2.3.2)

Далее, вычислив производную

(2.3.3)

и подставляя (2.3.2) и (2.3.3) в (2.3.1), окончательно получим

.

(2.3.4)

В случае бездиффузионного приближения в уравнении (1.5.41) сразу пренебрегаем диффузионной составляющей, и оно принимает вид

(2.3.5)

или, проведя преобразование Лапласа - Карсона, в пространстве изображений

.

(2.3.6)

Решение этого уравнения (в пространстве оригиналов)

,

(2.3.7)

что совпадает с нулевым приближением (по ) для задачи массопереноса с учётом вертикальной диффузии.

Относительная погрешность, возникающая при пренебрежении вторым слагаемым в квадратных скобках в выражении (2.3.4), и определяет погрешность бездиффузионного приближения

.

(2.3.8)

Анализ рис.2.9, на котором показана зависимость относительной погрешности бездиффузионного приближения от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, показывает, что за время 30 лет погрешность данного приближения на расстояниях до 0,9Rd не превышает нескольких процентов и лишь для значительных времён 300 лет, на расстояниях бульших 0,7Rd становится существенной. Причём данные результаты не зависят от среднего времени жизни нуклида.

Рис. 2.9. Зависимость относительной погрешности бездиффузионного приближения от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, при различных временах закачки 1 t = 0.1, 2 - 1, 3 - 10, 4 - 100. Pd = 102,

Если при расчётах полагать, что , то на расстояниях до 0,9Rd для ф 300 лет погрешность бездиффузионного приближения не превышает 5%. Это позволяет во многих практических задачах использовать бездиффузионное приближение.

Расстояние от скважины, на котором можно пользоваться бездиффузионным приближением, естественно назвать «радиусом бездиффузионного приближения». Аналогично можно ввести понятие «время бездиффузионного приближения».

На рис. 2.10 приведены результаты расчётов плотности радиоактивных примесей для бездиффузионного приближения в зависимости от относительного расстояния до скважины. Параметр Pd при расчётах принимался равным 102.

Рис. 2.10. Зависимость относительной погрешности бездиффузионного приближения от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, при различных временах закачки 1 t = 0.1, 2 - 1, 3 - 10, 4 - 100. Pd = 102,

Кривые, приведённые на рис. 2.11 рассчитаны для значения безразмерного времени = 10. При отсутствии диффузии уменьшение концентрации загрязнителя происходит только в результате радиоактивного распада. Поэтому в случае Аt = 0 плотность постоянна па всём участке вплоть до фронта загрязнителя (положение которого задаётся функцией Хевисайда), где скачком падает до нуля (кривая 1). Вид кривых 2 - 4 определяется радиоактивным распадом.

Рис. 2.11. Зависимость плотности радиоактивных примесей от расстояния до оси скважины, отнесённого к радиусу зоны загрязнения для безразмерного времени t = 10 при различных постоянных распада: 1 - At = 0, 2 - 0.01, 3 - 0.1, 4 - 1.

Pd = 102,

2.4. Решение задачи массообмена в первом приближении

Выпишем ещё раз полученную в разделе 1.5.4 математическую постановку задачи массообмена для коэффициентов первого приближения, пренебрегая радиоактивным распадом в водоупорных пластах

(2.4.1)

,

(2.4.2)

,

(2.4.3)

начальные условия, условия сопряжения и граничные условия

,

(2.4.4)

, ,

(2.4.5)

, , ,

(2.4.6)

.

(2.4.7)

Напомним, что решение отыскивается в форме квадратного многочлена относительно z

,

(2.4.8)

где

,

(2.4.9)

.

(2.4.10)

Определение сводится к решению уравнения

,

(2.4.11)

где введён оператор

.

(2.4.12)

Перейдём далее к пространству изображений (преобразование Лапласа - Карсона). При этом оператор принимает вид

.

(2.4.13)

Выражение (2.4.11) в пространстве изображений

.

(2.4.14)

Имеет смысл сначала найти в пространстве изображений выражения и . Воспользовавшись аналогами (2.4.9) и (2.4.10) в пространстве изображений, а также (2.1.48), (2.1.49), получим

,

(2.4.15)

.

(2.4.16)

Далее

,

(2.4.17)

.

(2.4.18)

Выражение (1.10.7), в пространстве изображений представляется как

.

(2.4.19)

Решения уравнений (2.4.2) и (2.4.3) почти ничем не отличаются от решений соответствующих уравнений в нулевом приближении, поэтому в пространстве изображений справедливы соотношения

, .

(2.4.20)

Заметим, что в первом приближении зависит от z. Это же справедливо и для изображений.

Из (2.4.19) получим для первого коэффициента разложения

,

(2.4.21)

.

(2.4.22)

Подставляя в (2.4.14) выражения (2.4.15) - (2.4.18) и (2.4.20) - (2.4.22), после упрощений получим

.

(2.4.23)

Общее решение соответствующего однородного уравнения имеет вид

.

(2.4.24)

Подставляя найденное значение в (2.4.23) и считая, что , получим дифференциальное уравнение

,

(2.4.25)

решение которого

.

(2.4.26)

Из (2.4.24) и (2.4.26) выражение для

.

(2.4.27)

Для нахождения воспользуемся дополнительным интегральным условием (1.5.101) которое для коэффициентов разложения первого порядка в пространстве изображений имеет вид

.

(2.4.28)

Здесь - среднее по z значение , определяемое с помощью (2.4.19) стандартным образом:

(2.4.29)

Тогда в пространстве изображений получим

,

(2.4.30)

или, с учётом (2.4.15)

.

(2.4.31)

Сравнивая с (2.4.27), определим

.

(2.4.32)

окончательно для имеем в пространстве изображений

.

(2.4.33)

Наконец, подставив (2.4.15), (2.4.16) и (2.4.33) в (2.4.19) получим выражение для первого коэффициента в пространстве изображений

(2.4.34)

Скомпонуем последнее выражение удобным образом (учитывая необходимость перехода в пространство оригиналов)

(2.4.35)

Раскрывая в соответствии с (2.1.43), перейдем в пространство оригиналов, используя формулы обратного преобразования Лапласа - Карсона [23]

,

.

(2.4.36)

В нашем случае

,

(2.4.37)

.

(2.4.38)

Наконец, справедливо следующее соотношение

.

(2.4.39)

Воспользовавшись (2.3.36) - (2.3.39), из (2.3.35) получим выражение для первого коэффициента разложения в форме

(2.4.40)

При этом в первом приближении плотность загрязнителя представится как

,

(2.4.41)

где и определяются выражениями (2.1.52) и (2.4.40).

Оценим теперь вклад второго слагаемого в фигурных скобках выражения (2.4.40) по сравнению с первым. Полагая коэффициенты диффузии надстилающего и подстилающего пластов равными, для отношения этих слагаемых получим

.

(2.4.42)

Анализ рис. 2.12 позволяет сделать вывод о возможности пренебрежения вторым слагаемым в фигурных скобках (2.4.40) по сравнению с первым для всех практически значимых времён на расстояниях до 0.95Rd. Графики на рис. 2.12 построены для z = 0, но аналогичные результаты получаются и при других z, за исключением точек , в которых (2.4.42) обращается в бесконечность.

Рис. 2.12. Зависимость от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, при различных временах закачки 1 t = 10, 2 - 30, 3 - 100. Графики построены для z = 0. Другие расчётные параметры Pd = 102,

Однако из рис. 2.13 видно, что и в этом случае (в силу абсолютной малости соответствующего слагаемого) им можно пренебречь для расстояний меньших 0.98Rd. поэтому в дальнейшем при рассмотрении первого коэффициента асимптотического разложения будем полагать, что

Рис. 2.13. Зависимость второго слагаемого по раскрытии всех скобок в (2.4.40) от расстояния до оси скважины, отнесенного к радиусу зоны загрязнения, при различных временах закачки 1 t = 10, 2 - 30, 3 - 100. Графики построены для . Другие расчётные параметры Pd = 102,

(2.4.43)

Выражение (2.4.43) с высокой степенью точности определяет первый коэффициент модифицированного асимптотического разложения плотности радиоактивного загрязнителя.

2.5. Анализ результатов расчетов в первом приближении

На рис. 2.14 и 2.15 представлены графики зависимости первого коэффициента разложения от расстояния до оси скважины. Вид графиков для z = 0 и z = 1 оказывается похожим, но «опрокинутым». При этом наиболее существенный вклад первого приближения наблюдается на границе зоны заражения.

Рис. 2.14. Зависимость плотности радиоактивных примесей для коэффициента первого приближения от расстояния до оси скважины, отнесённого к радиусу зоны загрязнения для безразмерного времени t = 10 при различных постоянных распада: 1 - At = 0, 2 - 0.1, 3 - 1, 4 - 10. Графики построены для z = 1. Другие расчётные параметры Pd = 102, , ,

Сравнивая графики, представленные на рис. 2.15 и 2.16, приходим к выводу, что с увеличением времени, прошедшего с момента закачки, вклад уменьшается.

Рис. 2.15. Зависимость плотности радиоактивных примесей для коэффициента первого приближения от расстояния до оси скважины, отнесённого к радиусу зоны загрязнения для безразмерного времени t = 10 при различных постоянных распада: 1 - At = 0, 2 - 0.1, 3 - 1, 4 - 10. Графики построены для z = 0. Другие расчётные параметры Pd = 102, , ,

Рис. 2.16. Зависимость плотности радиоактивных примесей для коэффициента первого приближения от расстояния до оси скважины, отнесённого к радиусу зоны загрязнения для безразмерного времени t = 30 при различных постоянных распада: 1 - At = 0, 2 - 0.1, 3 - 1, 4 - 10. Графики построены для z = 0. Другие расчётные параметры Pd = 102, , ,

Об этом же говорит и анализ рис. 2.17, на котором приведена зависимость первого коэффициента плотности радиоактивного загрязнителя от времени закачки на различных расстояниях от оси скважины. Причём, на бульших расстояниях от оси уменьшение происходит быстрее.

Рис. 2.17. Зависимость плотности радиоактивных примесей от времени закачки на «относительных расстояниях» от оси скважины: 1 = 0.2, 2 - 0.4, 3 - 0.6, 4 - 0.8. Графики построены для At = 0.3. Другие расчётные параметры Pd = 102, , ,

Однако из рис. 2.18 следует, что для нерадиоактивных примесей имеет большое значение и на бульших расстояниях от скважины. Следовательно, наблюдавшееся на рис. 2.17 различие в быстроте уменьшения определяется не столько диффузионными характеристиками, сколько радиоактивным распадом.

Рис. 2.18. Зависимость плотности радиоактивных примесей от времени закачки на «относительных расстояниях» от оси скважины: 1 = 0.2, 2 - 0.4; 0.6, 3 - 0.8. Графики построены для At = 0. Другие расчётные параметры Pd = 102, , ,

На рис. 2.19 представлена зависимость от расстояния до оси скважины, отнесённого к максимальному радиусу загрязнения. Различные кривые соответствуют разным расстояниям вдоль вертикальной координаты в пласте. Графики построены для безразмерного времени t = 3. При этом данное отношение не зависит от параметра At радиоактивного распада. Видно, что для столь незначительного времени на расстояниях вклад первого коэффициента приближения является весьма существенным.

Рис. 2.19. Зависимость отношения к от «относительного расстояния» для различных z: 1 z = 0, 2 - 0.4, 3 - 0.6, 4 - 1. Графики построены для t = 3. Другие расчётные параметры Pd = 102, , ,

Анализ рис. 2.20, определяющего зависимость от расстояния до оси скважины, отнесённого к максимальному радиусу загрязнения, в сравнении с рис. 2.19, позволяет сделать вывод об уменьшении роли с ростом времени закачки. Графики построены для безразмерного времени t = 30, что соответствует размерному времени 100 лет. При этом на расстояниях до вклад по сравнению с для горизонтов -0.6 < z < 0.6 весьма мал и составляет 3 - 5%.

Рис. 2.20. Зависимость отношения к от «относительного расстояния» для различных z: 1 z = 0, 2 - 0.4, 3 - 0.6, 4 - 1. Графики построены для t = 30. Другие расчётные параметры Pd = 102, , ,

Этот вывод подтверждается и анализом рис. 2.21, на котором представлена зависимость от времени. При увеличении времени закачки уменьшается относительный вклад . Следовательно, при значительных расчётных временах, распределение плотности загрязнителя описывается с высокой степенью точности нулевым приближением.

Рис. 2.21. Зависимость отношения к от времени закачки на «относительных расстояниях» от оси скважины: 1 = 0, 2 - 0.4, 3 - 0.6, 4 - 1. Другие расчётные параметры Pd = 102, , ,

На рис. 2.22 представлена картина зависимости от вертикальной координаты. Коэффициенты диффузии надстилающего и подстилающего пластов полагаются одинаковыми. Картина симметрична относительно z = 0. при этом с увеличением расстояния до оси скважины происходит «сглаживание» значений .

Рис. 2.22. Зависимость коэффициента первого приближения плотности радиоактивных примесей от z для безразмерного времени t = 10 на «относительных расстояниях» от оси скважины: 1 = 0.2, 2 - 0.4, 3 - 0.6, 4 - 0.8. Графики построены для At = 0.3. Другие расчётные параметры Pd = 102, , ,

Рисунок 2.23 показывает зависимость от вертикальной координаты в случае различия коэффициентов диффузии надстилающего и подстилающего пластов. Симметрия относительно z = 0 нарушается, более высокий коэффициент определяет и большее абсолютное значение . С увеличением расстояния до оси скважины происходит «сглаживание» .

Из рис. 2.24 следует, что при малых постоянных распада различие между первым и нулевым приближениями остаётся практически постоянным, в то время, как при больших At уменьшение плотности загрязнителя за счёт распада становится преобладающим и разница между нулевым и первым приближениями уменьшается.

Рис. 2.23. Зависимость коэффициента первого приближения плотности радиоактивных примесей от z для безразмерного времени t = 10 на «относительных расстояниях» от оси скважины: 1 = 0.2, 2 - 0.4, 3 - 0.6, 4 - 0.8. Графики построены для At = 0.3. Другие расчётные параметры Pd = 102, , , ,

Рис. 2.24. Зависимость плотности радиоактивного загрязнителя в нулевом (1, 3) и первом (2, 4) приближениях от «относительного расстояния» для различных постоянных распада 1,2 - At = 0.1, 3,4 - 1. Графики построены для t = 10. Другие расчётные параметры Pd = 102, , ,

Анализ рис. 2.25 показывает, что с увеличением времени кривые, отвечающие плотности загрязнителя в различных горизонтальных плоскостях, приближаются друг к другу, что вызвано, прежде всего, уменьшением в результате радиоактивного распада.

На рис. 2.26 представлена зависимость плотности загрязнителя при отсутствии радиоактивного распада от времени. При этом уменьшение определяется только процессами диффузии. Чем больше величина , т.е. чем ближе по абсолютной величине коэффициент диффузии к коэффициенту температуропроводности, тем быстрее уменьшается плотность, и наоборот.

Рис. 2.25. Зависимость плотности радиоактивного загрязнителя в первом приближении от времени для различных z: 1 z = 0.5, 2 - 0.7, 3 - 0.9, 4 - 1. Графики построены для R = 0.5. Другие расчётные параметры At = 0.3, Pd = 102, , ,

Рис. 2.26. Зависимость плотности нерадиоактивного загрязнителя в первом приближении от времени для различных : 1, 2 - , 3 - . Графики построены для R = 0.9 и z = 0.5. Другие расчётные параметры At = 0, Pd = 102, ,

При наличии радиоактивного загрязнителя картина в большей степени определяется процессами радиоактивного распада, что хорошо видно на рис. 2.27. Особенно существенна разница в масштабе оси времени между 2.26 и 2.27, что вызвано большим временем «диффузионной релаксации» в сравнении со средним временем жизни нуклида.

Из рис. 2.28, 2.29 следует, что увеличение времени закачки приводит к «сглаживанию» плотности загрязнителя в первом приближении на границе зоны загрязнения, что позволяет в этом приближении получать хорошие результаты для всех постоянных распада и на всех расстояниях.

Рис. 2.27. Зависимость плотности нерадиоактивного загрязнителя в первом приближении от времени для различных постоянных распада: 1 - At = 0.1, 2 - 0.3, 3 - 1, 4 - 3. Графики построены для R = 0.9 и z = 0.5. Другие расчётные параметры Pd = 102, , ,

Рис. 2.28. Зависимость плотности радиоактивного загрязнителя в первом приближении от расстояния до оси скважины, отнесённого к максимальному радиусу зоны загрязнения для безразмерного времени t = 1. При различных постоянных распада: 1 - At = 0.1, 2 - 0.3, 3 - 1, 4 - 3. Графики построены для z = 0.5. Другие расчётные параметры Pd = 102, , ,

Рис. 2.29. Зависимость плотности радиоактивного загрязнителя в первом приближении от расстояния до оси скважины, отнесённого к максимальному радиусу зоны загрязнения для безразмерного времени t = 10. При различных постоянных распада: 1 - At = 0.1, 2 - 0.3, 3 - 1, 4 - 3. Графики построены для z = 0.5. Другие расчётные параметры Pd = 102, , ,

Как видно из рис. 2.30 и 2.31, увеличение времени закачки уменьшает вертикальную составляющую градиента плотности радиоактивного загрязнителя в первом приближении.

Рис. 2.30. Зависимость плотности радиоактивных примесей в первом приближении от z для безразмерного времени t = 3 на «относительных расстояниях» от оси скважины: 1 = 0.2, 2 - 0.4, 3 - 0.6, 4 - 0.8. Графики построены для At = 0.3. Другие расчётные параметры Pd = 102, , ,

Рис. 2.31. Зависимость плотности радиоактивных примесей в первом приближении от z для безразмерного времени t = 10 на «относительных расстояниях» от оси скважины: 1 = 0.2, 2 - 0.4, 3 - 0.6, 4 - 0.8. Графики построены для At = 0.3. Другие расчётные параметры Pd = 102, , ,

Существенное влияние на распределение загрязнения вдоль вертикальной оси оказывает д - увеличение коэффициента диффузии несущего пласта (или уменьшение его коэффициента температуропроводности) приводят к более значительному изменению плотности загрязнителя по высоте пласта.

Рис. 2.32. Зависимость плотности радиоактивных примесей в первом приближении от z для безразмерного времени t = 10 на расстоянии 0.9Rd от оси скважины для различных : 1, 2 - , 3 - , 4 - . Другие расчётные параметры At = 0.1, Pd = 102, ,

Рис. 2.33. Зависимость плотности радиоактивных примесей в первом приближении от z для безразмерного времени t = 3 на «относительных расстояниях» от оси скважины: 1 = 0.2, 2 - 0.4, 3 - 0.6, 4 - 0.8. Графики построены для At = 0.3. Другие расчётные параметры Pd = 102, , , ,

Различия в физических свойствах «кровли» и «подошвы» приводит к смещению максимума графика в сторону пласта, обладающего меньшим коэффициентом диффузии.

Итак, на основе асимптотического метода создана методика расчетов концентрации примесей радиоактивных и химически активных веществ при их захоронении в подземных горизонтах.

2.6. Стационарное решение задачи массопереноса в нулевом и первом приближении

Отметим, что чрезвычайно важным является нахождение стационарного решения, позволяющего установить максимальные размеры зоны загрязнения. Положим в уравнениях (1.5.14) - (1.5.16), описывающих распространение загрязнителя в пластах, первое слагаемое равным нулю. При этом уравнения принимают вид

,

(2.6.1)

,

(2.6.2)

.

(2.6.3)

Поделив левые и правые части всех уравнений на , значение которого определяется выражением (1.5.12), запишем стационарную задачу вместе с граничными условиями и условиями сопряжения

,

(2.6.4)

,

(2.6.5)

,

(2.6.6)

,

(2.6.7)

,

(2.6.8)

,

(2.6.9)

, , .

(2.6.10)

Будем искать решение задачи (2.6.4) - (2.6.10) в виде асимптотического ряда по параметру , появляющемуся при формальной замене коэффициента диффузии на частное . В соответствии с принятыми обозначениями это соответствует следующим заменам:, а .

, , .

(2.6.11)

Подставив выражения (2.6.11) в (2.6.4) - (2.6.10) и сгруппировав слагаемые по степеням параметра разложения , получим следующую постановку параметризованной задачи (вместе с граничными условиями)

,

(2.6.12)

,

(2.6.13)

(2.6.14)

(2.6.15)

, ,

(2.6.16)

,

(2.6.17)

, ,

(2.6.18)

Приравнивая коэффициенты при в уравнении (2.6.14) и учитывая условие (2.6.15), получим, что в нулевом приближении плотность загрязнителя является функцией только от r, т.е. в каждом вертикальном сечении одинакова по высоте несущего пласта . Далее, приравняв к нулю коэффициенты при в уравнении (2.6.14), получим

.

(2.6.19)

Левую часть этого уравнения, не зависящую от z, обозначим через :

.

(2.6.20)

Тогда , следовательно

,

(2.6.21)

.

(2.6.22)

Здесь , - неизвестные пока функции.

Из условий сопряжения (2.6.15) при сомножителе получим

,

(2.6.23)

.

(2.6.24)

Тогда уравнение (2.6.20) примет вид

.

(2.6.25)

Для нулевого приближения из (2.6.12) и (2.6.13) с учётом условий сопряжения (2.6.16)

, .

(2.6.26)

Продифференцировав последние выражения и подставив результат в (2.4.25), получим

.

(2.6.27)

Решение этого уравнения представим как

,

(2.6.28)

где

.

(2.6.29)

Полученные уравнения (2.6.26), (2.6.28) и определяют решение стационарной задачи в нулевом приближении.

Найдём теперь коэффициенты при в асимптотическом разложении стационарной задачи массопереноса. Уравнения (2.6.12) - (2.6.14) для слагаемых, содержащих имеют вид

,

(2.6.30)

,

(2.6.31)

.

(2.6.32)

Условия сопряжения представляются как

, ,

(2.6.33)

, ,

(2.6.34)

причем, решение отыскивается в форме квадратного многочлена (2.6.22) относительно z, где и определены выражениями (2.6.20) и (2.6.21), а неизвестно. Для его определения перепишем (2.6.32) в виде

,

(2.6.35)

где оператор . Учитывая соотношение (2.6.22), а также линейность оператора , получим

.

(2.6.36)

Интегрируя последнее выражение и используя условия сопряжения (2.6.34), перейдём к уравнению

.

(2.6.37)

Решения уравнений для первых коэффициентов асимптотического разложения для настилающего и подстилающего пластов почти не отличаются от решений соответствующих уравнений в нулевом приближении, поэтому справедливы соотношения

, .

(2.6.38)

Воспользовавшись (2.6.23), (2.6.26) и (2.6.28), получим

,

(2.6.39)

,

(2.6.40)

,

(2.6.41)

.

(2.6.42)

Уравнение (2.6.37) с учетом (2.6.38) - (2.6.42), запишется как

.

(2.6.43)

Решение этого уравнения

.

(2.6.44)

Для нахождения постоянной интегрирования С необходимо воспользоваться граничным условием (2.6.17) для коэффициента при : . Однако, как следует из (2.6.22), удовлетворить ему не представляется возможным. Это вынуждает ослабить условие (2.6.17). Для того, чтобы прояснить возможное “ослабление”, рассмотрим задачу для остаточного члена . Подставляя

, ,

(2.6.45)

в параметризованную задачу, получим

,

(2.6.46)

(2.6.47)

,

(2.6.48)

с граничными условиями и условиями сопряжения

, ,

(2.6.49)

,

(2.6.50)

, , ,

(2.6.51)

,

(2.6.52)

, ,

(2.6.53)

Усредним задачу по толщине пласта. При усреднении второй производной по вертикальной координате воспользуемся условиями сопряжения (2.6.49)

(2.6.54)

Окончательно постановка усредненной задачи для остаточного члена с учетом (2.6.54) представится как

,

(2.6.55)

(2.6.56)

,

(2.6.57)

с граничными условиями и условиями сопряжения

,

(2.6.58)

, , ,

(2.6.59)

,

(2.6.60)

, , .

(2.6.61)

Усредненная задача для остаточного члена (2.6.55) - (2.6.61) имеет тривиальное решение тогда и только тогда, когда

,

(2.6.62)

и

,

(2.6.63)

то есть, когда в усредненной задаче для остаточного члена отсутствует источник и средние значения нулевого коэффициента разложения на поверхности задания граничных условий обращается в нуль.

В справедливости последнего уравнения легко убедиться, усреднив (2.6.35) с учетом условий сопряжения (2.6.34). Следовательно, если заменить граничное условие для на среднеинтегральное

,

(2.6.64)

то рассматриваемый метод решения обеспечивает возможность обращения в нуль решения усреднённой задачи для остаточного члена асимптотического разложения. Это, естественно, повышает ценность решения для практических приложений. В силу этого целесообразно в асимптотических решениях выделить соответствующий класс решений. Асимптотическое приближение параметризованной задачи, полученной из (2.6.4) - (2.6.10), построенное при условии, что решение усредненной задачи для остаточного члена является тривиальным, назовем точным в среднем асимптотическим решением.

Для точного в среднем решения из дополнительного граничного условия (2.6.64) и выражения для первого коэффициента разложения (2.6.22) получим

.

(2.6.65)

Откуда

.

(2.6.66)

Подставляя полученное таким образом выражение в (2.6.22), для первого коэффициента разложения получим

(2.6.67)

, .

(2.6.68)

В первом приближении решение стационарной задачи имеет вид

, , ,

(2.3.69)

где и определяются выражениями (2.4.26), (2.4.28) и (2.4.67), (2.4.68)

2.7. Анализ результатов расчёта стационарной задачи

На рис.2.34 представлены графики зависимости стационарного распределения примесей в нулевом приближении от расстояния до оси скважины. Нулевое приближение в данном случае является наиболее значимым, оно определяет общий вид зависимости . При этом величина плотности загрязнителя спадает по экспоненциальному закону и, как следует из графиков, даже для среднеживущих и наиболее опасных радионуклидов (90Sr, 137Cs) на расстояниях 200 h оказывается порядка процентов от максимальной, наблюдающейся в зоне закачки.

Рис. 2.34. Зависимость плотности радиоактивных примесей в пористом пласте для стационарного случая (нулевое приближение) от расстояния до скважины при различных постоянных распада: 1 - At = 0.01, 2 - 0.1, 3 - 1. Другие расчётные параметры Pd = 102, ,

На рис 2.35 отражена картина распределения поля радиоактивного загрязнителя в стационарном случае вдоль вертикальной координаты (нулевое приближение). «Срезы» приведены для расстояний 0, 100h и 200h от оси скважины. Видно, что для среднеживущих нуклидов (Т1/2 30 лет) в настилающем и подстилающем пластах плотности загрязнителя быстро спадают, и уже на расстояниях 0,5h становятся ничтожно малыми.

Рис. 2.35. Зависимость плотности радиоактивных примесей для стационарного случая (нулевое приближение) от координаты z при различных расстояниях до скважины: 1 r = 0, 2 - 100, 3 - 200. Другие расчётные параметры At = 0.01, Pd = 102, ,

В общем случае, увеличение параметра Pd приводит к «вытянутости» графика вдоль радиального направления, уменьшение At (что соответствует увеличению среднего времени жизни нуклида) - к «расширению» графика вдоль осей r и z. При этом поле загрязнителя остаётся ограниченным в пространстве.

2.8. Сравнение результатов аналитического решения

с численными и с экспериментом

На рис. 2.36 приведены результаты, полученные с помощью модифицированного метода асимптотического разложения и результаты решения задачи массопереноса методом сеток. При этом численным методом решалась задача (1.5.14) - (1.5.21), т.е. также в пренебрежении радиальной диффузией.

Разностные схемы задачи:

,

,

,

.

Рис. 2.36. Зависимость плотности радиоактивного загрязнителя от расстояния до оси скважины. Графики построены (для безразмерного времени t = 100): методом сеток - 1 и методом асимптотического разложения - 2. Другие расчётные параметры At = 0.1, Pd = 102, ,

Сравнения кривых, приведённых на рис. 2.36 позволяет сделать вывод о хорошем соответствии результатов, полученных численными методами и аналитическими вычислениями.

На рис. 2.37 приведено сравнение теоретических результатов (сплошные линии) и экспериментальных данных (из кн. Рыбальченко А.И. и др. [64] Глубинное захоронение жидких радиоактивных отходов. - М.: ИздАТ, 1994; пунктирные линии).

Рис. 2.37. Сопоставление зависимости плотности радиоактивных нуклидов от интенсивности закачки на расстоянии 200 м до оси скважины для момента времени t = 5 лет. V - интенсивность закачки

Сравнение экспериментальных и теоретических кривых позволяет сделать вывод о неплохом качественном совпадении имеющихся результатов.

2.9. Выводы

Во второй главе нами найдены решения задачи массопереноса в нулевом и первом приближениях. Анализ результатов расчётов пространственно-временных зависимостей полей концентраций вредных примесей и температур в глубоко залегающих пластах позволяет установить следующее: нулевое приближение может быть успешно использовано для расчёта средних значений концентраций вредных веществ и температуры в проницаемых пластах и с достаточной точностью описывает поля концентраций и температур в окружающих породах и зону возмущений концентрации и температуры в среде; первое приближение удовлетворительно описывает поля концентраций как в пласте, так и в окружающих породах и позволяет устранить главный недостаток нулевого приближения, то есть учесть зависимость от в интервале пласта.

Построенные решения для полей концентрации загрязнителя в нулевом и первом приближениях свидетельствуют о наличии погранслоев на малых расстояниях от оси скважины и малых времен, откуда возникает задача построения соответствующих погранслойных функций. Решение стационарной задачи позволило установить соотношения для предельных размеров зоны заражения.


Подобные документы

  • Законы фильтрации газированной жидкости, фазовые проницаемости. Методы расчета плоскорадиальной фильтрации с использованием функции Христиановича. Определение дебитов скважин при установившейся фильтрации газированной жидкости различными методами.

    контрольная работа [586,5 K], добавлен 22.09.2013

  • Реальное течение капельных жидкостей и газов на удалении от омываемых твердых поверхностей. Уравнение движения идеальной жидкости. Уравнение Бернулли для несжимаемой жидкости. Истечение жидкости через отверстия. Геометрические характеристики карбюратора.

    презентация [224,8 K], добавлен 14.10.2013

  • Гидродинамическая и тепловая стабилизация потока жидкости в трубе. Уравнение подобия для конвективной теплоотдачи. Теплоотдача к жидкости в кольцевом канале. Критические значения чисел Рейнольдса для изогнутых труб. Поправка на шероховатость трубы.

    презентация [162,4 K], добавлен 18.10.2013

  • Физические свойства жидкости и уравнение гидростатики. Пьезометрическая высота и вакуум. Приборы для измерения давления. Давление жидкости на плоскую наклонную стенку и цилиндрическую поверхность. Уравнение Бернулли и гидравлические сопротивления.

    курсовая работа [1,2 M], добавлен 30.11.2014

  • Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

    презентация [220,4 K], добавлен 28.09.2013

  • Виды вещества. Реакция твердого тела, газа и жидкости на действие сил. Силы, действующие в жидкостях. Основное уравнение гидростатики. Дифференциальное уравнение равновесия жидкости. Определение силы давления столба жидкости на плоскую поверхность.

    презентация [352,9 K], добавлен 28.12.2013

  • Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.

    курсовая работа [531,8 K], добавлен 24.12.2013

  • Физические свойства жидкости, постановка задачи конвективного теплообмена. Гидродинамический и тепловой пограничные слои. Однородные разностные схемы для уравнения теплопроводности. Расчет стационарно-двумерного температурного поля при течении в трубе.

    дипломная работа [1,4 M], добавлен 22.04.2013

  • Теория температурных полей: пространственно-временные распределения температуры и концентрации растворов. Модель физико-химического процесса взаимодействия соляной кислоты и карбонатной составляющей скелета. Методы расчётов полей температуры и плотности.

    автореферат [1,3 M], добавлен 06.07.2008

  • Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.

    реферат [310,4 K], добавлен 18.05.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.