Некоторые особенности спектрально-кинетических характеристик люминофоров на основе ZnS:Cu

Электролюминесценция кристаллофосфоров на основе сульфида цинка. Механизмы возбуждения электролюминесценции. Механизмы свечения цинк-сульфидных электролюминофоров. Зависимость интегральной яркости электролюминесценции от частоты.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 26.04.2007
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Одним из наиболее известных методов математического разделения сложного спектрального контура на индивидуальные составляющие является метод Аленцева-Фока [71,72]. Основным преимуществом данного метода, по-видимому, является то, что последний не требует никаких предположений о форме отдельных полос и положении их максимумов. Вместе с тем, если исследуемое вещество содержит n различных видов центров свечения, активных в разных, пусть и частично перекрывающихся, спектральных областях, то суммарный спектр люминесценции исследуемого вещества будет состоять из n полос. Таким образом, для полного разложения спектральной зависимости свечения образца методом Аленцева-Фока необходимо возбудить его люминесценцию n различными способами, чтобы получить n экспериментальных зависимостей, отличающихся вкладами элементарных пиков. Эта задача легко разрешима при использовании динамического метода возбуждения люминесценции, позволяющего за счет изменения частоты возбуждающего воздействия (потока квантов высокой энергии или электрического поля) разделить вклады различных центров в их послесвечении. Например, на рис.3.2.1 представлены спектры фотолюминесценции образца ZnS:Mn:Cu (концентрация марганца 0,17% масс, концентрация меди 0,0124% масс), записанные с использованием модуляционной методики в стационарном (f = 0) и динамическом (f = 1350 Гц) режиме.

Рис.3.2.1 Спектр фотолюминесценции образца ZnS:Mn:Cu в стационарном (1) и динамическом (2) режиме возбуждения.

Из приведенного рисунка следует, что спектр люминесценции исследуемого образца является сложным и состоит из двух основных полос с максимумами при 460 и 580нм. Главная полоса с максимумом в длинноволновой области, безусловно, отвечает желто-оранжевому свечению марганца в ZnS [7]. Полоса, локализованная в коротковолновой области спектра вызвана, видимо, центрами свечения, образованными ионами примесной меди и собственными дефектами основы [73]. Так как описываемые центры различны по своей природе, то изменение относительной полос при переходе от стационарного к динамическому возбуждению вполне логично, и позволяет провести разделение спектра люминесценции образца на две главные составляющие (коротковолновую и длинноволновую) методом Аленцева-Фока. Результаты такого разложения представлены на рис.3.2.2.

430 460 490 510 540 570 600 630

Длина волны, нм

Рис.3.2.2. Разложение сложной спектральной характеристики люминесценции образца ZnS:Mn:Cu на две составляющие методом Аленцева-Фока.

Из данного рисунка следует, что полоса с максимумом при 460нм (контур «А» на рис.3.2.2) в спектральном распределении люминесценции ZnS:Mn:Cu, очевидно, носит сложный характер, и состоит из нескольких подполос. Вместе с тем, из литературных источников известно, что желто-оранжевая полоса излучения Мп в ZnS (контур «В» на рис.3.2.2) также неэлементарна. Исследование тонкой структуры основных полос спектра (т.е. разделение их на элементарные подполосы) представляет большой интерес, так как дает возможность судить непосредственно о центрах свечения. Однако произвести разделение методом Аленцева-Фока в данном случае достаточно трудно. Для этого необходимо целый ряд образцов, отличающихся условиями синтеза, например, концентрациями активаторов и коактиваторов. Кроме того, из-за большого числа и сильного перекрывания элементарных составляющих определение количества компонентов по числу горизонтальных площадок может быть очень неточным [67].

Для анализа структуры полос «А» и «В» в спектральном распределении люминесценции ZnS:Mn:Cu использовался метод, предложенный в работе [67]. Этот метод основан на предварительном анализе структуры спектра по второй производной для отыскания количества компонентов и положения их максимумов. Так на рис.3.2.3 представлены результаты математического разложения сложного контура «А» на элементарные гауссовы составляющие.

430 460 49O 52O 550

Длина волны, нм

Рис.3.2.3. Разложение контура А на элементарные составляющие.

Как видно из рис.3.2.3, контур «А» можно разделить на шесть элементарных подполос с лmax = 447нм для полосы №1, 457нм - для полосы №2, 472нм - для полосы №3, 495нм - для полосы №4, 506нм - для полосы №5 и 526нм - для полосы №6 (см. табл.3.2.1).

Табл.3.2.1

Характеристики элементарных полос в контуре «А» спектра ZnS:Mn:Cu

№ полосы

лmax

Отн. интенсивность

1

448нм (б)

7,8

2

457нм (д)

7,6

3

472нм(г)

8

4

495нм (а)

4,8

5

506нм (II зеленая)

3,1

6

526нм

3

Здесь необходимо отметить, что разложение спектра фотолюминесценции не содержащего Мn исследуемого промышленного образца ZnS:Cu (электролюминофор Э-455-115) приводит к похожим результатам (рис.3.2.4). При анализе спектра излучения ZnS:Cu проявляются пять элементарных составляющих, максимумы которых приходятся на 434нм для полосы №1', 447нм - для полосы №2', 459нм - №3', 473нм- №4', 495нм - для №5' (табл.3.2.2).

Табл.3.2.2

Характеристики элементарных полос в спектре ZnS:Cu

№ полосы

лmax

Отн. интенсивность

1'

434 нм (в)

3,9

2'

448 нм (б)

5

3'

459 нм (д)

4,3

4'

472 нм (г)

3,2

5'

495 нм (а)

4,5

Рис.3.2.4 Результаты разложения спектров фотолюминесценции образца ZnS:Cu:Cl (Э-455-115).

Как видно из приведенных выше таблиц 3.2.1 и 3.2.2 максимум полосы №1 в спектральном распределении ZnS:Mn:Cu совпадает с максимумом для полосы №2' в спектре люминесценции ZnS:Cu, Вместе с тем, максимум полосы №4 (табл. 3.2.1) соответствует максимуму полосы №5'(табл.3.2.2), а значение максимума полосы №3 - полосе №4'. На основании экспериментальных данных можно сделать предположение, что за эти полосы в образцах ZnS:Mn:Cu и ZnS:Cu ответственны центры одного и того же типа. Полосу №2 с лmax = 457нм в контуре «А» спектра ZnS:Mn:Cu можно с большой степенью вероятности отождествить полосе №3' с лmax = 459нм в спектре образца ZnS:Cu. Незначительные расхождения в положениях максимумов здесь можно объяснить различными условиями синтеза исследуемых образцов, различными концентрациями активатора (Си) и некоторой погрешностью эксперимента.

Далее возникает необходимость в построении зонной диаграммы рассматриваемых люминесцентных структур, т.к. возможность идентификации и отождествления центров люминесценции с определенными дефектами структуры фосфора весьма важна для дальнейшей обработки результатов.

Рис. 3.2.5. а - зонная схема люминофора ZnS:Cu с указанием положения возможных точечных дефектов относительно валентной зоны и зоны проводимости; б - схема возможных электронных переходов, ответственных за люминесценцию образца.

Природа дефектов кристаллической решетки цинксульфидных структур изучена достаточно хорошо. Ширина запрещенной зоны исследуемых люминофоров, рассчитанная по стандартной методике из спектров диффузного отражения, составила величину около 3,7 эВ, что соответствует литературным данным [73]. Поэтому имеется возможность на основе полученных результатов и анализе литературных данных построить модели основных оптических переходов в исследуемых ZnS:Cu фосфорах. Итак, анализируя работы [1,74], можно представить зонную диаграмму люминофора ZnS:Cu следующим образом (рис.3.2.5а). Сопоставление расчетных энергий возможных электронных переходов со значениями в максимумах элементарных полос излучения приводит к следующему результату -- рис.3.2.5б (соответствующие переходы обозначены буквами в таблицах). Абсолютная погрешность при этом составляет величину 0,05 эВ.

Наиболее интенсивные полосы №2' и 5' в спектре люминесценции образца ZnS:Cu(Cl) (Э-455-115) (рис.3.2.4) принадлежат, вероятно, примесным центрам свечения, т.е. центрам, образовавшимся при растворении активатора (Си) в решетке основы. Так известно [73], что рекомбинация на уровнях примесной меди в ZnS сопровождается появлением зеленой полосы излучения света с максимумом при hv = 2,5эВ (495нм). Данная энергия соответствует переходу электрона с уровня вакансии серы на уровень примесной меди Cu'Zn, однократно отрицательно заряженный атом меди в подрешетке цинка (переход а на рис.3.2.5б). Т.е. образуется комплекс Vs*-Cu'Zn. Подобные центры, очевидно, отвечают за элементарную полосу №4 (рис.3.2.3, табл.3.2.1) в контуре «А» излучения образца ZnS:Mn:Cu и, соответственно, полосу №5 (рис.3.2.4, табл.3.2.2) в спектре люминесценции исследуемого образца ZnS:Cu, что подтверждается анализом дефектной ситуации. Основными типами дефектов для этого образца должны быть вакансии серы и медь на месте цинка. Здесь необходимо заметить, что согласно данным [1] в результате проведения высокотемпературного синтеза приповерхностный слой кристаллофосфора оказывается сильно обогащен как VS, так и Cu'Zn- На расположение "зеленых" центров свечения меди в приповерхностных слоях зерен ZnS прямо указывается в работе [46].

Однако медь, внедряясь в сульфид цинка, образует как зеленые, так и голубые центры свечения с длиной волны излучаемого света порядка 450нм [73]. В работе [2] высказано предположение, что такие центры представляют собой более сложные образования с участием ионов меди. Например, возможно формирование какого-либо ассоциата [1]. Но расчетная энергия кванта, излучаемого электроном при переходе со дна зоны проводимости на уровень Cu'zn составляет величину 2,75эВ (длина волны кванта 449нм), что позволяет связать тождественные полосы №1 в спектре излучения образца ZnS:Mn:Cu (табл. 3.2.1) и №2' для образца ZnS:Cu (табл.3.2.2) именно с таким переходом (переход б на рис.3.2.5 б).

Эксперимент и теоретический анализ [75] показывают, что собственные атомные дефекты в значительной степени определяют свойства сульфида цинка, в частности спектры излучения и поглощения. Изучая экспериментальные данные, можно сделать вывод, что за элементарные полосы № 1' и 4' в спектральном распределении исследуемых образцов ZnS:Cu (рис.3.2.4) ответственны центры, образованные собственными дефектами в ZnS. Причем в состав каждого из них входит V'Zn. Сравнение максимальных значений энергий hv элементарных полос, характеризующих люминесценцию образцов, с возможными электронными переходами на зонной диаграмме (рис.3.2.5б) приводит к следующим результатам. Центр VS-V'Zn должен излучать кванты с длиной волны лmax = 474нм (переход г на рис.3.2.5б), а максимум полос №4' и №3 приходится на 472нм. Здесь необходимо отметить, что согласно литературным данным [76] в области твердого раствора ZnO в ZnS (ZnS-xZnO) могут образовываться центры люминесценции, способные излучать с длиной волны лmax = 470нм. Таким образом, природа полосы №4' и №3 в спектральном распределении исследуемого образца может оказаться сложной и включать как люминесценцию самоактивированного, так и окисленного ZnS, однако разделение этих полос практически неосуществимо из-за их сильного перекрытия. Полосе №1' (рис.3.2.4) в спектральном распределении излучения образца ZnS:Сu очевидно соответствует переход электрона со дна валентной зоны на уровень V"Zn (переход в на рис.3.2.5б). Расчетная энергия кванта, излучаемого при таком переходе равна 2,86эВ, а максимум элементарной полосы №1' приходится на длину волны 434нм, т.е. около 2,85эВ.

Центр №3'(для ZnS:Cu) и №2 (для ZnS:Mn:Cu) образован, вероятно, атомом меди в интерстиции и V'zn (переход д на рис.3.2.5б). Энергия такого перехода равна 2,71 эВ.

Как видно из приведенных рисунков, аналогов полосы излучения ZnS:Mn:Cu №5 с лmax = 506 нм в спектре исследуемого образца ZnS:Cu {Э-455-115} не наблюдается. Однако, из литературных данных известно [77], что у ряда ZnS:Cu люминофоров с небольшой добавкой С1 и А1 при 508нм наблюдается так называемая вторая зеленая полоса меди. Доказательством этого предположения может служить разложение спектра люминесценции образца ZnS:Cu:Al {Э-515- 115}, основу которого составляет, по-видимому, именно эта полоса (№3" на рис.3.2.6, табл. 3.2.3).

Рис. 3.2.6. Результаты разложения спектров фотолюминесценции образца ZnS:Cu:Al (Э-515-115).

Полосы №1" и №2" с максимумами при 479нм (2,59эВ) и 495нм (2,5эВ) в спектральном распределении образца ZnS:Cu;Al (рис. 3.2.6) можно соотнести с переходами а и е (рис.3.2.5б), обусловленными центрами (Cls-V'Zn) с hv1'=2,58эВ, и (Vs - Cu'Zn); hv2' = 2,5эВ, соответственно. Таким образом, полоса №2" в спектре люминесценции образца ZnS:Cu:Al с лmax =495нм (рис.3.2.6) соответствует полосе №5' у образца ZnS:Cu (рис 3.2.4). Элементарная составляющая №3", являющаяся в данном случае характеристической для люминофора Э-515-115, имеет максимум при 507нм и, вероятно, соответствует второй зеленой полосе меди. Механизм люминесценции здесь, является сложным и не изображен переходами на зонной диаграмме. Более подробно он рассмотрен ниже.

Табл. 3.2.3 Характеристики элементарных полос в спектре ZnS:Cu:Al

№ полосы

лmax

Отн. интенсивность

1"

479нм (е)

2,2

2"

495нм (а)

2,3

3"

507нм (II зеленая)

7,6

Возвращаясь к люминесценции ZnS:Mn:Cu в коротковолновой части спектра (табл. 3.2.1), необходимо отметить, что еще одной характеристической составляющей излучения данного образца является полоса №6 с лmax = 526нм. Подобные полосы отсутствуют в спектрах люминесценции других исследуемых структур, однако известно [78], что максимум второй зеленой полосы излучения меди в ZnS может сдвигаться в длинноволновую область спектра до значения 530нм при переходе от вюрцита к сфалериту.

Рис. 3.2.7. Результат разложения контура В излучения образца ZnS:Mn:Cu на элементарные составляющие.

Разложение спектра люминесценции образца ZnS:Mn:Cu в длинноволновой области (контур «В» на рис. 3.2.2) приводит к результату, изображенному на рис. 3.2.7. Характеристики элементарных составляющих указаны в таблице 3.2.4.

Табл. 3.2.4

Характеристики элементарных полос в контуре «В» спектра ZnS:Mn:Cu

№ полосы

лmax

Отн. интенсивность

7

558нм

2,9

8

570нм

4

9

580нм

4,8

10

599нм

8,5

Необходимо отметить, что разложение спектра люминесценции исследуемого образца ZnS:Mn не содержащего Си также приводит к, аналогичному результату. Как видно из данной схемы (рис.3.2.8), сложный контур спектрального распределения люминесценции можно разбить на четыре полосы: №7' с максимумом при 556нм (2,23эВ), №8' - при 569нм (2,17эВ), №9' - при 577нм (2,14эВ) и №10' - при 595нм (2,07эВ) - табл.3.2.5.

Рис.3.2.8. Результаты разложения спектров фотолюминесценции исходного образца ZnS:Mn.

Табл. 3.2.4 Характеристики элементарных полос в спектре образца ZnS:Mn

№ полосы

лmax

Отн. интенсивность

7'

556нм

4

8'

5б9нм

1,5

9'

577нм

7,5

10'

595нм

5,5

Люминесценция ZnS:Mn носит внутрицентровый характер, что подтверждается, например, затуханием ее яркости при фотовозбуждении по экспоненциальному закону [69]. Процесс люминесценции ZnS:Mn связан с переходом 4Т1 - 6А, в ионах Мn2+ [79]. Вместе с тем, как показывают результаты экспериментов, характеристическая желто-оранжевая полоса излучения структур данного типа не элементарна. Энергия между энергетическими уровням в ионе марганца должна зависеть от величины Dq (фактора внутрикристаллического поля), который в свою очередь определяется симметрией внутрикристаллического поля, числом ионов, образующих это поле, расстоянием между ними и химической связью [79]. Большое количество дефектов упаковки основы люминофора и хорошая растворимость Мn в ее решетке предопределяют наличие нескольких основных центров свечения, связанных с различным расположением ионов Мn2+ в реальной кристаллической решетке сульфида цинка [69,79-81]. В работе [69], относящейся к исследованию монокристаллических образцов, отмечаются три основные полосы излучения ZnS:Mn с лmax = 557, 578 и 600 нм.

Первая связывается с излучением ионов Мn2+, расположенных в тетраэдрах кубической решетки (при фотолюминесценции она должна иметь наименьшую интенсивность [69]). Полоса с лmax =578 нм обуславливается ионами Мn2+, которые расположены в дефектных местах решетки (например, вблизи дислокаций) с искаженным внутрикристаллическим полем. Полосу с максимумом при 600 нм связывают с марганцем, который располагается в кубической решетке с октаэдрическим окружением.

Элементарная составляющая №7 в спектре фотолюминесценции образца ZnS:Mn:Cu (рис.3.2.7) с максимумом при 558нм и полоса №7' в спектре излучения ZnS:Mn (рис.3.2.8) с максимумом при 556нм, очевидно, соответствуют центру, образованному ионами Мn2+, расположенными в тетраэдрах кубической решетки с лmax = 557нм по данным [69]. Полосы №9 (580нм) и 9'(577нм) можно идентифицировать как обусловленные марганцем, расположенным в дефектных местах решетки с искаженным внутрикристаллическим полем, т.е. отождествить с пиком лmax =578нм. Максимумы полос №10 (599нм) и 10' (595нм) блики к значению лmax =600нм, данному в работе [69] для марганца, который располагается в кубической решетке с октаэдрическим окружением.

Рис. 3.2.9. Зависимость яркости элементарных полос излучения ZnS:Mn с лmax = 578 (1) и 600 нм (2) от концентрации марганца по данным [69]. Пунктирными линиями на рисунке обозначены значения концентраций марганца в изучаемых образцах ZnS:Mn (1,1% масс.) и ZnS:Mn:Cu (0,17% масс).

Об адекватности предложенного разложения можно судить по сравнению отношения интенсивностей элементарных полос №9/№10 и №9'/№10' с отношением, приведенным для соответствующих пиков в работе [69] (рис. 3.2.9).

У образца ZnS:Mn:Cu интенсивности полос №9 и 10 относятся как 4,8/8,5 (табл. 3.2.4). Так как концентрация Мn в исследуемом ZnS:Mn:Cu составляет 0,17% масс, что соответствует значению 2,6·10-3 гMnS/гZnS, no литературным данным это соотношение должно составлять 4,9/8,5 (рис.3.2.8). Концентрация марганца в образце ZnS:Mn равна 1,1% масс. Пересчет этой величины в предложенные единицы дает значение около 1,7-10-2 гMnS/гZnS. Согласно приведенному рисунку, интенсивности полос №9' и №10' должны относиться как 8,1/5,5. Экспериментальное отношение интенсивностей этих полос в спектральном распределении образца - 7,5/5,5. Небольшое различие в отношении интенсивностей соответствующих полос может быть объяснено различием в методах регистрации и разложения спектров люминесценции, а также тем, что в работе [69] изучались свойства монокристаллического ZnS:Mn, а все наши образцы являются мелкодисперсными порошками.

Аналогов полосы №8'(569нм) в литературе не приводится. Возможно, эта полоса связана с различными дефектами в основе люминофора, в частности, с присутствием кислорода.

Сравнивая спектры электролюминофоров ZnS:Cu,Mn, изготовленных про стандартной технологии (рис.3.2.1) и с изменением условий прокалки (рис.3.1.1 и рис.3.1.2) можно отметить их несоответствие, заключающиеся в присутствии полосы с максимумом в 2 = 515 нм. Учитывая, что каждую из полос можно разложить на ряд более элементарных составляющих с соответствующими максимумами, как было показано выше (рис.3.2.2), можно обнаружить присутствие составляющей в области 515 нм в спектре стандартного образца. Эту полосу, в том числе и с max = 460 нм, авторы относят к ионам меди. Однако, интенсивность полосы с max = 515 нм намного меньше, чем с max = 460 нм и она перекрывается крылом полосы марганца высокой интенсивности с максимумом 580 нм. Поэтому ее присутствие в спектре практически не обнаруживается. На основании этих данных можно предположить, что данная полоса принадлежит Cu+, но при этом неясен механизм перераспределения интенсивности в спектре, относящемся к Cu+, после изменения условий прокалки.

С другой стороны, на основании рассмотрения зонной схемы электролюминофора с примесями марганца, представленной в монографии Верещагина [2] (рис.2.1.2) было отмечено, что основной уровень Mn2+ находится внутри валентной зоны, а первый возбужденный отстоит от него на расстоянии 2,4 эВ, что соответствует переходу с = 515 нм. Таким образом, остается невыясненным, какие центры (Cu+ или Mn2+) ответственны за полосу с max = 515 нм. Однако именно ее наличие, причем достаточно высокой интенсивности (наряду с максимальной), обуславливает отличие спектров образцов, изготовленных по разным технологиям.

Хотя тот факт, что при изменении частоты электрического поля наблюдается перераспределение между крайними максимумами, принадлежащими различным центрам, а интенсивность среднего практически не изменяется, можно интерпретировать следующим образом. Полоса с max = 515 нм принадлежит как к одним, так и к другим центрам излучения. Уменьшение вклада в интенсивность люминесценции одного центра при изменении частоты возбуждения компенсируется увеличением вклада другого центра. При этом результирующая интегральная интенсивность средней полосы практически не изменяется.

Обсуждая причины изменения вклада различных центров свечения в интегральную интенсивность люминесценции при изменении частоты электрического поля, можно отметить следующее. Как было показано выше, при увеличении частоты до 4000 Гц, интенсивность максимума с 1 = 460 нм, обусловленного люминесценцией Cu+, значительно увеличивается, а с 3 = 572 нм, обусловленного люминесценцией Mn2+, падает. Из литературных источников [2] известно, что в основе люминесценции ZnS:Cu лежит рекомбинационный механизм свечения, а в основе люминесценции ZnS:Mn - внутрицентровый [52]. Выше было показано, что яркость рекомбинационной люминесценции в зависимости от частоты носит сложный характер. На начальном этапе до достижения некоторой предельной частоты (определяемой значением приложенного напряжения и температурой) обычно наблюдается увеличение яркости, что объясняется увеличением числа рекомбинаций в единицу времени. Можно предположить, что таким же образом будет изменяться интегральная интенсивность полос, представленных данным механизмом свечения.

Внутрицентровое свечение происходит несколько по-другому. Если рассматривать условия стационарного возбуждения, то сначала под действием приложенного поля происходит переход из основного в возбужденное состояние до установления некоторого стационарного равновесия, характеризуемого временем разгорания люминесценции. Это время определяется природой самих центров и окружения. В случае синусоидального напряжения дело обстоит более сложным образом, однако характерное время центров остается определяющей величиной. Если частота возбуждения будет настолько большой, что при этом не будет успевать разгораться внутрицентровая люминесценция, то вполне очевидно, что при увеличении частоты должен наблюдаться спад ее интегральной интенсивности.

3.3 Обсуждение кинетики свечения электролюминофора ZnS:Cu,Mn

Исследования кинетики процессов нарастания и спада интенсивности, возникающих в результате возбуждения переменными электрическими сигналами, производились при частотах 400 и 4000 Гц для каждого из максимумов в отдельности. Выдвигалось предположение, что если за максимумы ответственны центры свечения различной природы, то кинетика процессов должна быть различна. Пример изменения интенсивности со временем приведен на рис. 3.3.1 для 2 = 515 нм и частоте возбуждения 400Гц. Однако выявить различий в кинетике для различных длин волн в пределах спектра не удалось. Более того, кроме того, что частота периодичности процесса равна 800 Гц, что и должно соответствовать удвоенной частоте возбуждения, определить закон возрастания и спада импульса не удалось. Это связано, как упоминалось выше, что зерна люминофора расположены в диэлектрике хаотически, поэтому поле по-разному расположено по отношению к светящимся областям. В силу этого кинетика процесса сильно усреднена. Поэтому для решения данного вопроса необходимо усовершенствование методики по пути создания упорядоченно расположенных по отношению к полю зерен.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

Итак, на основании произведенных экспериментальных исследований можно сформулировать следующие выводы:

1. Спектр люминесценции электролюминофора ZnS:Cu,Mn, изготовленного по новой технологии, лежит в области от 420 до 620 нм, имеет широкополосный бесструктурный характер, состоит из трех перекрывающихся полос с максимумами 460, 515, 572 нм. Отличие от спектра, изготовленного по стандартной технологии, состоит в наличии полосы с максимумом 515 нм.

2. При изменении частоты переменного электрического поля от 400 до 4000 Гц изменение цвета люминофора обусловлено перераспределением между интенсивностями полос, при этом интенсивность полосы с = 572 нм уменьшается, с = 515 нм практически не изменяется, а с = 460 нм - увеличивается.

3. Произведена идентификация полос, выявившая, что полоса с = 460 нм относится к ионам меди, механизм свечения - рекомбинационный, с = 572 нм относится к ионам меди, механизм свечения - внутрицентровый, а полоса с = 515 нм является суммарным наложением спектров люминесценции ионов марганца и меди.

4. Перераспределение интенсивностей в спектре при изменении частоты возбуждения обусловлено различием механизмов люминесценции и характерных времен процессов.

5. Анализ кинетики процесса электролюминесценции показал необходимость усовершенствования методики для решения данного вопроса.

ЛИТЕРАТУРА

1. Фок М. В., Введеиие в кинетику люминесценции кристаллофосфоров, изд. «Наука», 1964.

2. Верещагин И.К. Электролюминесценция кристаллов. М.: Наука. Главная редакция физико-математической литературы. 1974. 272 с.

3. Верещагин И.К. Введение в оптоэлектронику: учебное пособие для ВТУЗов. - М.: Высшая школа, 1991. -200с.

4. Павлов П.В., Хохлов А.Ф. Физика твердого тела. М.: Высшая школа. 2000. 494с.

5. Lеvеrеnz Н. W., An Introduction to Luminescence of Solids, New York; 1950.

6. Studer F. I., Rosenbaum А., JOSA, 39, 685 (1949).

7. Толстой Н. А., Феофилов П. П., УФН, 16, 44 (1950).

8. Левшин В. Л., Фотолюминесценция жидких и твердых веществ, Гостехтеориздат, 1951.

9. Адирович Э. И., Некоторые вопросы теории люминесценции кристаллов, Гостехиздат, 1951.

11. Антонов-Романовский В. В., ЖФХ, 6, 1022 (1935).

12. Лущик Ч. Б., Труды ин-та физики и астрономии АН ЭССР, вып. 3, 1955, стр. 3.

13. Жуков Г. В., Исследование влияния препаративных условий на формирование электронных ловушек в цинксулъфидных люминофорах. Автореф. канд. дисс.,: МХТИ, 1965.

14. Левшин В. Л., Туницкая В. Ф., Черелаев А. А., Опт. и спектр., 1, 259 (1956) .

15. Бундель А. А., Жyков Г. В., Опт. и спектр.: 19, 247 (1965).

16. Нооgеnstrааtеn W., J. Electrochem. Soc., 100, 356 (1953).

17. Destriau G.,Phil. Mag.,38, 700, 774, 880 (1947).

18. Curie D., J. Phys. Radium, 14, 510 (1953).

19. Piper W. W., Williams F. E., Brit. J. Appl. Phys., Suppl. № 4, 39 (1955).

20. Zalm, Philips Res. Repts.,11, 353 (1956)

21. Фок M. В., Георгобиани А. Н., УФН, 72, 467 (1960).

22. Георгобиани A. Н., Труды ФИАН им. Лебедева т. 23, Изд. АН СССР, 1963.

23. Thornton W. A., J. Electrochem. Soc., 108, 7 (1961).

24. Gilson I. L., Darnell F. I., Phys. Rev., 125, 149 (1962).

25. Бонч-Бруевич A.M., Карисс Я.Э., Молчанов В.А. и спектр., 11, 87 (1961).

26. Fischer A. G., J. Electrochem. Soc., 110, 733 (1963).

27. Букке E. E., Винокуров Л. А., Фок М. В., Инж.-физ. журн., 113 (1958).

28. Mattler J., J. Phys. Radium, 17, 725 (1956).

29. Ребане К. С., Риттас В. И. Ж. Прикл. Спектр., 2, 350 (1965).

30. Urbach F. Hemmendinger H. Pearlman D. Preparation and Charakteristik of solid Luminescent Materials. SHCU, New York, 1948, 280 c.

31. Левшин В. Л. Орлов Б. М. Опт. и спектр., 7, 530 (1959)

32. Steinberger I.T., Low W., Alexander E., Влияние переменного электрического поля на излучение света в некоторых. Phys.Rev.,99,1217.

33. Destriau G., Ivey H.F., Электролюминесценция и связанные с ней вопросы. Proc. I. R. E., 43, 1911.

34. Matrossi F., Electroluminescence and Electro - Photo luminescence, Braunschweig. Электролюминесценция и электрофотолюминесценция.

35. Steinberger I. J., Braun E.A., Alexauder E., Эффект Гуддена - Поля и эффекты запоминанияв фосфорах, возбуждаемых ИК - излучением. Joun. Phys. Chem. Solids, 3, 133.

36. Destriau G., Mattler J., Destriau M., Усиление свечения некоторых фосфоров, возбуждаемых рентгеновскими лучами, под действием электрических полей. Journ. Electrochem. Soc., 102. 682.

37. Gobrecht H., Gumlich H.E., Влияние длины волны возбуждающего света на электрофотолюминесценцию. Zs. f. Phys. 158. 226.

38. Bleil C.E., Snyder D.D., Некоторые эффекты, вызываемые слабыми полями при люминесценции в CdS. Journ. Appl. Phys. 30, 1699.

39. Ivey H.F., Библиография по электролюминесценции и связанным с ней вопросом. I. R. E. Trans. of Prof. Group on Electron Dev., ED - 6, № 2.

40. Верещагин И. К., Серов Е. А. ЖПС, 1981, т 35, 3, -С 450-453.

41. Верещагин И. К., Серов Е. А. Резюме докладов международного совещания по фотоэлектрическим и оптическим явлениям в твердом теле. Варна, 1980, с.54.

42. Верещагин И. К., Серов Е. А. ЖПС, 1985, т.43., №5. С.843-845.

43. Верещагин И. К., Хавруняк В. Г., Хомяк И. В., в сб. «Электролюминесценция твердых тел», «Наукова думка», Киев, 1971, -С 148.

44. Верещагин И. К., Серов Г. А., Хомяк И. В. Журн. прикл. спектр. 17, 81 (1972).

45. Верещагин И. К., Серов Г. А ., Хомяк И. В., Тр. V совещания по электролюминесценции, Ставрополь, 1973, -С 24.

46. Верещагин И.К., Колсяченко Л.А., Кокин С.М. Электролюминесцентные источники света. М.: Энергоатомиздат, 1990.

47. ВерещагинИ.К. Введение в оптоэлектронику: учебное пособие для ВТУЗов. - М.: Высшая школа, 1991. -200с.

48. Верещагин И. К., Изв. АН СССР, cep. физ. 30, 559 (1966).

49. Marti С., Acta phys., Роlоn. 26, 727 (l964).

50. Федюшин Б. Т., Oпт. и спектр. 13, 558 (1962); Оптика и спектр., сб. «JIюминесценция» 1, 312 (1963).

51. Patek K., Czech. J. Phys. 9. 161 (1959).

52. Волькенштейн Ф. Ф., Пека Г. П., в сб. «Электролюминесци-рующие пленки», Тарту, 1972, -С 88.

53. Давыдов А.С. Электронные возбуждения и колебания решётки в молекулярных кристаллах// Изв. АН СССР. - 1970. -Т. 24. - № 3. - С. 483-489.

54. Спектроскопия внутри- и межмолекулярных взаимодействий. / Под ред. Н. Г. Бахшиева. - вып. 2. - Л.: Изд. ЛГУ, 1978г. - 212 с.

55. Сверчков С.Е., Сверчков Ю.Е. Влияние структуры матрицы на скорость тушения люминесценции примесных центров в теории прыжковой миграции // Опт. и спектр. - 1992. - Т. 73. - № 3. - С. 488-492.

56. Стромберг А.Г., Семенчкенко Д.П. Физическая химия. - М.: Высшая школа, 1999. - 528 с.

Люминофоры и особо чистые вещества. / Информационно-технический
бюллетень. Ставрополь. НИИТЭХИМ. 1990. 4.1 318 с.

Кривошеева Л.В. Синтез и физико-химические исследования порошковых электролюминесцентных материалов на основе халькогенидов цинка /Диссертация на соискание ученой степени канд. хим. наук. Ставрополь, 1999. 113 с.

Акт о внедрении технологии производства электролюминофора марки Э-455-115, разработанной предприятием ВНИИ Люминофоров. Ставрополь. 1982.

Акт о внедрении технологии производства электролюминофора марки Э-515-115, разработанной предприятием ВНИИ Люминофоров. Ставрополь. 1982.

61. Отчет по теме Б04808500045: Разработка электролюминофоров различных цветов свечения для ЭЛИ на 115В, 400Гц. Ставрополь. ВНИИ Люминофоров. 1981.

Голубева Н.П., Фок М.В. Связанная с кислородом люминесценция сульфида цинка, активированного медью и серебром//ЖПС. 1987. Т. 47. №1. С. 35-40.

Голубева Н.П., Фок М.В. О природе центров зеленой люминесценции ZnS-О:Сu//ЖПС. 1981. Т. 35. №3. С. 551-553.

64. Нефедов В.И. Рентгеновская спектроскопия химических соединений (справочник). М. Химия. 1984. 256с.

Hand book of X-ray photoelectron spectroscopy / A reference book of standard data for use in x-ray (by Wagner) // Physical Electronics Division. 1978.

Синельников Б.М., Каргин Н.И., Михнев Л.В., Немешаев А.Ю., Гусев А-С. Установка для исследования спектров люминесценции динамическим методом при фотовозбуждении / Тез. док. XXX научно-технической конференции. Ставрополь. 2000.

67. Кучеров А.П., Кочубей СМ. Метод разложения сложного контура на элементарные составляющие с использованием предварительного анализа его структуры.//ЖПС. 1983. Т.38. Вып. 1.С.145-150.

Корнева Н.Н., Кривунченко В.А., Ваксман Ю.Ф. и др. Люминесценция и фотопроводимость монокристаллов селенида цинка, легированных медью. // ЖПС.1980. Т.ЗЗ. Вып. 4. С.661-667.

Борисенко Н.Д., Полежаев Б.А. Время жизни возбужденного состояния марганцевого центра в сульфиде цинка. // ЖПС. 1990. Т. 53. Вып. 6. С.1020-1022.

70. Проскура А.И., Дегота В.Я., Кияк Б.Р. О природе свечения керамики ZnS-Cu. // ЖПС. 1988. Т. 49. Вып. 4. С.684-686.

71. Фок М.В. Разделение сложных спектров на индивидуальные полосы при помощи обобщенного метода Аленцева. // Труды ордена Ленина физического института им. ПН. Лебедева. 1972. Т. 59. С. 3 - 24.

72. Букке Е.Е., Вознесенская Т.И., Голубева Н.П., Горбачева Н.А., Илюхина З.П., Панасюк Е.И., Фок М.В. Применение обобщенного метода Аленцева для анализа спектра сине-голубой люминесценции ZnS. // Труды ордена Ленина физического института им. П.Н. Лебедева. 1972. Т. 59. С. 25 - 37.

73. Верещагин И.К., Ковалев А.Б., Косяченко Л.А., Кокин С.В. Электролюминесцентные источники света. / Под ред. И.К. Верещагина. М.:Энергоиздат. 1990.

Веревкин Ю.Н. Деградационные процессы в электролюминесценции твердых тел. Л.: Наука, 1983.

Георгобиани А.Н., Шейнкман М.К. Физика Соединений А2В6. М.: Наука. 1986.

Голубева Н.П., Фок М.В. Кислород в активаторных центрах сульфида цинка // ЖПС. 1985. Т. XLIII. Вып. 5. С. 793-798

Медведев С. А. Физика и химия соединений А2В6. М.: Мир, 1970. 525 с.

78. Королько Б.Н. Электронные и дырочные энергетические переходы при инфракрасной электролюминесценции соединений AnBVI // Обзор литературы по хозтеме 3-76-17. Киев, 1976. 103 с.

79. Борисенко Н.Д., Буланый М.Ф., Кождеспиров Ф.Ф., Полежаев Б.А. Свойства центров свечения в монокристаллах сульфида цинка с примесью марганца. // ЖПС. 1991. Т. 55. Вып. 3. С. 452 - 456.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.