Розрахунок енергозберігаючих заходів

Загальні проблеми енергозбереження на залізничному транспорті. Газопостачання і опис парового котла. Розрахунок споживання палива для цехів локомотивного депо і променевого обігріву для цехів. Встановлення гідродинамічного нагрівача на мийну машину.

Рубрика Физика и энергетика
Вид дипломная работа
Язык украинский
Дата добавления 21.03.2011
Размер файла 897,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

УГД "Термери" дозволяють досягати температури 95 °С у системах теплопостачання за атмосферним тиском і 250 °С в замкнутих системах, що знаходяться під надлишковим тиском.

Нагрівання рідини в генераторі відбувається шляхом перетворення механічної енергії рухомої рідини в теплову енергію з використанням ефекту об'ємної кавітації. Зона кавітації знаходиться усередині потоку, що дозволяє уникнути руйнування робочих частин і не створює шумового ефекту.

Застосування УГД "Термер" вирішує проблему локального забезпечення низько і середньотемпературних циклічних теплових процесів, виключаючи втрати низкопотенційного тепла, що важливо як для промислового, так і для побутового секторів. При їхній роботі, на відміну від агрегатів прямого електричного нагріву, не виникають струми витоку і струми Фуко, які сприяють прискоренню електрохімічної корозії будівельних конструкцій і технологічного устаткування.

Використання високотемпературних агрегатів УГД "Термер" у технологічних процесах хімічної, нафтохімічної, переробної й інших галузях промисловості дає можливість:

відмовитися від парових котельних,

підвищити ефективність виробництва,

знизити енерговитрати,

зменшити собівартість продукції, що випускається,

скоротити терміни введення в експлуатацію.

УГД "Термер" практично миттєво нагріває рідину і самостійно здійснює її подачу в систему теплозабезпечення.

Гідродинамічні нагрівачі УГД "Термер" не є електронагрівальними приладами, а відносяться до технологічного устаткування.

Принцип дії

Робота УГД "Термер" заснована на перетворенні механічної енергії у теплову. В установці "Термер" використовується ефект гідродинамічного нагріву, що виникає в результаті різкого гальмування багатьох потоків рідини, що містять кавітаційні каверни. Механічна енергія обертання електричного двигуна передається на активатор, що має радіальні лопатки. Рідина всередині порожнин активатора розкручується, набуваючи запасу кінетичної енергії, відзеркалюється від нерухомих лопастей корпусу, після чого різко гальмується, нагріваючись усередині апарату.

Явище кавітації-- лавиноподібне зростання і схлопування нанопухирів пари, які виникають через тертя або різкої зміни швидкості потоку рідини за помірної температури. У зоні кавітації спостерігаються температури близько 10000--15000°С. Термін введений в 1894 році британським інженером Р. Фрудом. Якщо тиск у будь-якій точці рідини стає меншим тиску її насиченої пари, це призводить до її об'ємного випаровування з утворенням нанопухирів пари. Місцеве пониження тиску рідини відбувається, зокрема, при її різькому прискоренні. Витікаючі пухирі пари рухаються разом із рідиною. При різкому гальмуванні рідини її тиск стає більшим за тиск насиченої пари і парові пухирі з силою схлопуються. У об'ємі схлопування виділяється енергія випаровування рідини, кінетична енергія пари і енергія поверхневого натягнення рідини, що призводить до різкого місцевого підвищення температури. Схлопування пухирів створює шум, викликає вібрацію, а іноді й світіння рідини. Схлопування пухирів на твердій поверхні викликає їх швидке руйнування. Особливості процесу кавітації, використовуваного у УГД "Термер", полягають в тому, що зона схлопування кавітаційних пухирів організується у контрольованому внутрішньому об'ємі рідини, що унеможливлює руйнування робочих деталей установки, не призводить до виникнення шуму і вібрацій. Разом із тим, локальні ударні, хімічні і термічні ефекти кавітації призводять до руйнування механічних частинок, присутніх у рідині, зокрема, накипу, а також до гарантованої загибелі водної мікрофлори.

Рисунок 5.1 Принцип дії УГД "Термер"

Застосування низькотемпературних УГД "Термер"

Низькотемпературні УГД "Термер" (нагрів до 100 °С) застосовуються для забезпечення:

опалювання, вентиляції,

гарячого водопостачання,

як проточний нагрівач,

підігріву технологічних рідин.

Найбільша економія коштів досягається при використанні УГД у нічний час доби при розрахунках за електричну енергію за зонними диференційованими тарифами.

У години найменшої вартості електричної енергії здійснюється акумуляція теплової енергії у баці (утеплена ємність, об'єм якої розраховується, виходячи з особливостей об'єкту, клімату й інших параметрів). Мережні насоси подають теплоносій споживачу. Коли час пільгового тарифу закінчується, УГД "Термер" вимикається і мережні насоси роздають накопичену енергію з баку. Теплопостачання здійснюється за температурним графіком, що оптимізується у процесі експлуатації на конкретному об'єкті.

За узгодженням з енергетичною системою можливо короткочасне включення УГД "Термер" для підігріву рідини у баці акумуляції в години денних провалів електричного навантаження.

Система управління

Регулювання параметрів роботи УГД "Термер" здійснюється вентилями, розташованими на виході і вході теплоносія з установки. Оператор коригує роботу установки відкриттям або закриттям вентилів.

У ручній системі управління передбачений наступний захист агрегатів:

відключення УГД "Термер" при перевантаженні електричного двигуна;

світлова й звукова сигналізація, що оповіщає оператора про виникнення аварійних ситуацій.

Автоматизована система управління

Для автоматизації процесу нагріву УГД "Термер" додатково комплектується системою автоматизованого управління, що дозволяє обходитися без обслуговуючого персоналу. При цьому забезпечується доступність інформації, що одержується від підключених датчиків і контролерів на всіх інформаційних рівнях. Система автоматичного управління забезпечує:

збір інформації від її джерел (датчики температури, тиску, тепло-, водо-витрати, електролічильники і т.д.);

доступ до сучасних комунікаційних технологій (підключення до мережі ІМТЕМЕТ, передача інформації мережами стандарту GSМ), дистанційний моніторинг стану обладнання, диспетчеризацію об'єкта управління, посилання тривожних сповіщень у разі відмов і т.д.;

контроль усіх вихідних і вхідних функціональних параметрів системи;

контроль і встановлення нових значень усіх параметрів настройки;

перемикання будь-якого з виходів у режим ручного управління;

установку необхідних значень регульованих параметрів (температура приміщення),

установку часу включення і виключення УГД по часових зонах диференційованого обліку;

програмування графіку роботи;

контроль переліку відмов і параметрів таймерів.

Для кожного конкретного випадку вибирається найбільш близьке рішення з пропонованого набору типових проектів, оптимальна конфігурація обладнання, що усуває надмірність в апаратних і програмних рішеннях. Основна відмітна особливість установки -- простота експлуатації.

Таблиця 5.1 Технічні характеристики УГД "Термер"

Найменування

УГД-55

УГД-75

УГД-90

УГД-110

УГД-400

УГД-630

Установлена потужність, кВт

55

75

90

110

400

630

Максимальна теплова продуктивність, Гкал/год

0,045

0,063

0,074

0,090

0,325

0,53

Градієнт тиску, МПа

0,15...0,2

Опалювальний обсяг , м3

5180

7063

8450

10200

40300

60000

Габарити, мм

довжина

1405

2400

3200

ширина

1400

980

1600

висота

861

1500

1300

Повна маса, кг

1000

1245

1295

1825

2500

5.1 Розрахунок необхідної кількості тепла для мийної машини ММД -12

Розрахунок потреби палива зроблений відповідно до "Інструкції з нормування витрати тепла й палива для стаціонарних установок залізничного транспорту", затвердженої наказом Укрзалізниці № 117-Ц від 25.04.03р.

Питома витрата на мийні машини нормують на 1т деталей, що відчищаються. Норми витрати теплоти встановлюють у залежності від типу мийної машини, її допоміжного устаткування (головним чином вентиляційної установки) і режиму експлуатації кожної машини даного типу (цілодобово, одна чи дві зміни).

Витрата теплоти, Гкал/період (Гдж/період), на мийну машину розраховуеться за формулою:

Q річ.заг.= k*qG*G(5.1)

де Q -- витрата теплоти на мийну машину за місяць, квартал (у залежності від плану ремонту).

k -- коефіцієнт, що враховує зміну витрат теплоти в зимовий час. У літню пору k=1, під час опалювального сезону k=1,1;

qG -- питома витрата теплоти, яка приходиться на 1т деталей,що відчищаються, qG=0,08 Гкал/т (табл. Ж1)

G -- вага деталей, що підлягають очищенню в мийній машині з кожної ремонтуємої одиниці рухомого складу, т;

Таблиця 5.2 Деталі підлягаючі очистці

ТР-3

ел-з

ЧС 2,7

18од

986,4т

ТР-2

ел-з

ЧС 2,7

25од

70,0т

ТР-1

ел-з

ЧС 2,7

293од

293т

Згідно формули (5.1) розраховуемо необхідну кількість тепла:

Q річ.заг= k*qG*G=1,1*0,08*(986,4+70,0+293)=118,75 Гкал

6. РОЗРАХУНОК ПРОМЕНЕВОГО ОБІГРІВУ ДЛЯ ЦЕХІВ

В даному розділі пропонується зробити перевод виробничих цехів локомотивного депо з конвективного опалення на променеве опалення. Нище наведен опис променевого опалення.

Мета опалення - забезпечення приємного відчуття тепла, що по визначенню Бедфорда є: "суб'єктивне відчуття людини, що засновано на комплексному впливі".

Суб'єктивне відчуття складається з декількох, частково селективних і частково аддитивних ефектів. Такими є, наприклад, температура повітря, швидкість, одяг та ін. Серед домінуючих ефектів перебувають випромінювання навколишніх площин, що дає основу радіаційного опалення. Значення радіаційних умов з погляду опалення очевидно, якщо враховувати основні способи тепловіддачі тіла людини, тому що опалення повинне компенсувати ці тепловтрати, тобто підтримувати в рівновазі відчуття комфорту.

Основні шляхи тепловтрат людини: конвекція, кондукция, випромінювання й випар. Частка кондуктивных тепловтрат невелика, її можна розглядати одночасно з конвективними тепловтратами. Відношення трьох способів тепловіддачі в опалювальному просторі при нормальних обставинах звичайно таке:

- конвекція 30 - 35 %

- випромінювання 40 - 45%

- випар 20 - 25%

Видно, що найбільш характерний фактор тепловтрат - випромінювання. Тепловтрати випромінюванням виникають, коли оточення - у першу чергу контурні розміри будинку - більш холодні чим тіло людини. Якщо збільшити середню температуру оточення (напр., за рахунок випромінювачів високої температури), то тепловтрати за рахунок випромінювання падають і можна домогтися відчуття тепла, не збільшуючи температури повітря. У такий спосіб ефект опалення досягається так, що температура повітря, а значить і тепловтрати в просторі не міняються, у той час як по відчуттю людини, що перебуває в цьому просторі, температура в просторі перебування збільшилася.

Якщо тепловіддача опалювальних пристроїв містить компоненту випромінювання, то людині, що перебуває в просторі, здається, що температура оточення вище, ніж якби це ж корисне тепло передавалося конвекційним способом. Температура, що знаходиться в опалювальному просторі здається вище при опаленні за допомогою випромінювання, називається температурою відчуття або вихідною температурою або іноді результуючою температурою, а значення температури, обмірюване традиційним образом за допомогою термометра називається температурою повітря. Різниця двох значень температур визначає збільшення відчуття тепла за рахунок випромінюючого опалення. Цей ефект визначає принцип використання випромінюючих тіл для опалення.

Умова застосовності співвідношення: температура випромінюючого тіла повинна бути не менш 150°С (423К), а температура оточення - нормальна температура приміщення.

Принципи вибору розмірів

Температура відчуття

У випадку опалення випромінюванням, люди що перебувають в опалювальному просторі оцінюють температуру в цьому просторі (температуру відчуття) завжди вище температури повітря. Для визначення температури відчуття поряд з іншими методами застосовують наступне співвідношення:

tr = tl+0,072*i(6.1)

де tr -температура відчуття в °С,

tl - температура повітря в °С,

i - інтенсивність випромінювання у Вт/м2.

ККД випромінювання

Під відношенням випромінювання розуміють відношення переданого випромінюванням тепла до внесеного у випромінювач тепла. ККД - відсоткове вираження цього відношення. Якщо у випромінюючий прилад вноситься, наприклад, енергія еквівалентна 22 кВт, а прилад віддає у вигляді тепла випромінювання 14,3 кВт, то відношення випромінювання буде 14,3/22 = 0,65, а ККД випромінювання 65%.

ККД випромінювання можна визначити з відношення тепла випромінювання й корисного тепла (вихідного). Різниця між внесеним і корисним теплом - втрати на димові гази, які визначаються теплотехнічним (тепловим) ККД.

Абсорбційні втрати

Теплове випромінювання нагріває не повітря, а, проникаючи крізь нього, безпосередньо предмети й людину. Трьохатомні гази (СО2, Н2О), а також пил поглинають частину випромінювання, у першу чергу залежно від відстані до випромінювача. Це визначає втрати на абсорбцію, величина якої практично 3-6%.

Втрати на розсіювання

Випромінювання від випромінюючого тіла подібно світлу поширюється прямолінійно, тобто крапку, з якої спостерігач бачить випромінююче тіло, що випромінює тіло також "бачить" тобто опромінює спостерігача. Таким чином, якщо від обмежуючих площин конструкції будинку видно випромінююче тіло, мабуть, що певна частина випромінювання потрапить на ці площини.

Менш очевидна частка вторинного випромінювання, що падає на ці обмежуючі поверхні. Частина випромінювання відбивається від тіл, а відбите випромінювання знову потрапить на деяке тіло, звідки його частина знову відіб'ється. Процес нагадує загасаючу систему. Найбільш корисна частина тепла, що випромінюється, - тепло, поглинене підлогою (яке є причиною характерної "теплої" підлоги), людиною й навколишніми тілами. Втрати на розсіювання, у першу чергу - частка, що попадає на обмежуючі конструкції будинку випромінювання. Величина її залежить, в основному, від розташування випромінювачів, геометрії простору й емісійна, тобто відбивна здатність оточення.

Випромінювання, що попадає на обмежуючі поверхні, важається втратами з погляду випромінювання, але не з погляду конвекції. Це втрати на розсіювання. Втрати тим більше, чим менше емісійний фактор оточення.

Якщо відносна висота простору більша (висота більше 1/3 ширини в одному з напрямків), то це також збільшує втрати на розсіювання.

На практиці втрати на розсіювання становлять 15 - 20%. У крайніх випадках можливе відхилення на кілька відсотків. У більш низьких павільйонах втрати на розсіювання можуть опуститися до 10%, і навпаки - для високих і вузьких павільйонів -досягти 25%.

Добавки від оточення

При опаленні більших просторів потрібно окремо врахувати трансмісійні (крізь обмежуючі конструкції) і фільтраційні втрати, за рахунок циркуляції повітря (напр., відсмоктування машинами, ворота, що відкриваються часто, або вікна, отвори в конструкції, та ін.).

Несприятливі теплотехнічні обставини, як наприклад, необхідність швидкого розігріву, ефект тяги, більша внутрішня висота, низьке значення К (фактор передачі тепла) вимагають доповнень до розрахунків трансмісійних втрат конструкції будинку, що означає введення додаткових теплових потужностей.

Для традиційного конвекційного опалення значення добавок досягає значення 1,1 -1,6. Те ж саме для опалення випромінюванням з урахуванням обставин дорівнює половині цього значення. Таким чином, величина добавок залежно від місцевих умов 1,05 -1,3.

Добавки від розміщення випромінюючих тіл

Потужність установлюваних приладів випромінювання вибирається відповідно з розрахунками. Для висоти до 5 м це не вимагає обліку добавок. Для висоти більше 5 м внесену потужність потрібно збільшувати на 3-5% на кожний метр.

Причина цього складається в збільшенні втрат на розсіювання, а також у тім, що частка конвекції тіл випромінювання використовується все в меншому ступені для безпосереднього опалення робочого простору.

При визначенні добавок у першу чергу потрібно враховувати розташування приладу й ККД випромінювання. Якщо ККД випромінювання напр., 40-50%, а число апаратів поблизу обмежуючої стінки велике, то добавка може досягати 5%/м (вище 5 м).

Розташування темновых випромінювачів

Відстань між випромінювачами

Горизонтальне розташування

При горизонтальній підвісці добре опалювальну зону можна одержати так, випромінювач подумки покладемо на підлогу й від нього по обидва боки (тобто паралельно трубі) відміряємо 80% висоти підвіски, а потім на початку й наприкінці в напрямку труби відкладемо половину підвіски й намалюємо отриманий прямокутник. (Якщо вибрати 100% висоти підвіски, то й у цьому випадку одержимо задовільний результат. Для оцінки розмірів, що перевищують цей вибір, потрібний індивідуальний підхід.)

Принцип дії темнових випромінювачів, мета якого полягає в тому, що газ у трубі згоряє так (темновой випромінювач), що уздовж труби напрямок потоку поступово охолоджується, а тепло переважно віддається у вигляді випромінювання. Для U-подібних випромінювачів тепловіддача на половині довжини труби розвертається назад у напрямку пальника, а відвід димових газів відбувається в пальнику. У цьому прикладі маємо трубу з температурою 550°С и 160°С із боку пальника, а в точці повороту - "середня температура". Результат: тепловіддача практично наближається до рівномірного уздовж U-образного вигину, але з боку пальника завжди більше.

Підвіска з нахилом

Звичайно нахил в 30° уже забезпечує достатнє місце для теплотехнічного простору маневрування. Прилади, однак, можна встановлювати як під меншим, так і під більшим кутом. Гарним вибором може бути нахил для приладів, які монтуються на обмежуючу стінку (тут це бажано), а також якщо випромінювачі перебувають далеко друг від друга, тому що при цьому опромінення площадки між ними більш рівномірне.

Нахил можна застосовувати в деяких робочих місцях для "переважного" опалення, якщо труба випромінювання проходить не над робочим місцем. Напр., нахилом в 30° між двома випромінювачами добре опалювальна площадка: сума двох висот підвіски, помножена на 1,5. Однак площадка обігріву проникає за межі напрямку, протилежного нахилу приблизно на половині висоти підвіски. Установивши випромінювачі на більшій відстані друг від друга, розподіл стає неоднорідним, однак це може виявитися гарним рішенням (напр., для вирівнювання почуття холоду уздовж стінки, що прохолоджується, і ін.). При установці з нахилом варто враховувати, що мова йде тільки про відхилення екрана, тому що трубка випромінювання при цьому не міняється. Ефективність напрямку тепла не пропорційна величині відхилення. Надлишок тепла виходить відбиттям від екрана. Висоти розташування або монтажу

Опалення випромінюванням дає приємне фізіологічне відчуття тепла. Занадто сильне інтенсивність, однак, неприємна. Щоб уникнути цього, відстань між зоною перебування й випромінювачами потрібно обмежити залежно від властивостей випромінювача.

Рекомендована мінімальна висота підвіски: Н = а + b*Р, де

Н - мінімальна висота підвіски в метрах

а - фактор висоти

b - фактор потужності

Р - потужність випромінювання ( внесена потужності) у кВт.

Таблиця 6.1 - Значення а й b

Форма

U-подібна

Пряма

Підвіска

горизонтальна

30°

горизонтальна

30°

"а"

2,9

2,5

2,75

2,3

"b"

0,05

0,046

0,048

0,044

Застосуванням додаткових бічних відбивачів (смугове опалення) фактори "а" і "б" можуть мінятися. Для двостороннього відбивача "а" збільшується на 0,5, а "b" на 0,004. Для однобічного відбивача "а" збільшується на 0,25, а "b" на 0,002 щодо табличних значень.

Таблиця 6.2 Мінімальна висота підвіски в метрах

Варіант

Монтаж

Внесена потужність (кВт)

10

15

20

25

30

35

40

45

50

55

60

U-подібний

горизонтальний

3,4

3,7

3,9

4,2

4,4

4,7

4,9

5,2

5,4

5,7

5.9

30°

3

3,2

3,4

3,7

3,9

4.1

4,3

4,6

4,8

5

5,3

Прямий

Горизонтальний

3,2

3,5

3.7

4

4,2

4,4

4,7

4,

5,2

5,4

5,6

30°

2,7

3

3,2

3,4

3,6

3,8

4,1

4.3

4,5

4,7

4,9

Способи поліпшення ККД випромінювання й ефективності темнових випромінювачів

Ізоляція відбивача

Звичайно для темнових випромінювачів горіння відбувається в трубі. Труба випромінює тепло у всіх напрямках, у тому числі й нагору, що практично дорівнює 50%. Нагору спрямований також потік повітря, нагрітий у трубі. Якщо зверху труби є гарний відбивач, тобто з низьким фактором емісії, то більша частина з 50% спрямованого нагору випромінювання відіб'ється в робочий простір частиною безпосередньо, а частиною багаторазовим (вторинним) відбиттям.

Відбивач поглинає частину падаючого на нього випромінювання залежно від фактора емісії, тобто поглинає завжди більше тепла, чим це треба з розрахунку з урахуванням фактора емісії й величини поверхні. Тепло випромінювання, поглинене відбивачем, залежить від величини площі відбивача і його профілю, а також фактора емісії й відносин температур. Внесок конвективного тепла залежить від температури труби й умов тепловіддачі.

Розрахунок економії енергії радіаційного опалення

Поряд з багатьма принципами оцінки опалення (рівень достатності, безпека та ін.) один з найважливіших принципів оцінки- економія енергії. Щодо величини економії енергії різні способи опалення дають різні, часто суперечливі відповіді. У випадку радіаційного опалення можна зустрітися із самими різними оцінками від 20 до 80%. Завжди слід уточнювати, чи наведені дані величини економії енергії в природних одиницях або величиною витрат.

Економію енергії опалення в оцінках витрат можна досягти так, що при цьому сама енергія в природних одиницях росте. Потрібно з'ясувати також щодо чого береться це значення. Економія енергії може досягти 89% для природного газу, якщо, наприклад, у цеху замість загального опалення забезпечити місцеве опалення для обслуговуючого персоналу.

Збільшення температури відчуття

Щодо повітряного опалення економія визначається тим, що тепловтрати будинку пропорційні різниці (Дt) внутрішньої (tl) і зовнішньої температури повітря (tк). Для випромінювального опалення tl менше через збільшення температури відчуття (Дtr. = 0.072хi). Економія енергії буде дорівнювати Дtr/Дt.

ККД системи

При розрахунку реальної економії для забезпечення корисної продуктивності потрібно врахувати ту необхідну кількість енергії, що для темновых випромінювачів визначається з обліком корисної вбудованої потужності й теплотехнічного ККД. (наприклад, якщо зt= 90%, корисна потужність 200 Вт/м2, то потрібно 200/0,9 = 222 Вт/м2.)

Потреба в енергії розігріву й підтримки

Для експлуатації спорудження , тобто розігрів перед початком роботи. Для радіаційного опалення він більше короткий чим для інших типів опалення, а в передсезонний і перехідний період немає необхідності в розігріві взагалі. Економія на розігріві залежить від їхнього числа, теплової потреби будинку, тривалості перерв між змінами й іншими факторами. Незважаючи на це, оцінка робиться із прийнятною точністю. Щодо калориферів прямої дії помітної переваги немає, тому що ці пристрої також швидко розігрівають робочий простір. Проте, відмінність полягає в тому, що випромінювачі розігрівають більшою мірою підлогу, "нагромаджуючи в ньому тепло" і до початку роботи підлога буде теплою.

Зміна вертикального розподілу температури

При радіаційному опаленні у вертикальному напрямку збільшення температури на кожний метр (вертикальний температурний градієнт) буде менше на 0,2 - 0,7 оС/м. Ефект зниження вертикального температурного градієнта дуже істотний для економії енергії, тому що проявляється протягом усього опалювального сезону.

6.1 Опис і робота опалювача ОІТГ-20 "Геліос"

Опалювач ОІТГ-20 "Геліос" призначений для опалення виробничих та складських приміщень, або їх окремих зон, за виключенням таких приміщень віднесених за вибухопожежною небезпекою до категорій А і Б та будівель з ступенями вогнестійкості IVa і V згідно з НАПБ Б.07.005-86, з примусовим видаленням продуктів згоряння вентилятором через димохід в атмосферу.

Опалювач повинен працювати на природному газі номінальним тиском 1960Па.

Застосування опалювача в житлових будинках не допускається.

Опалювач встановлюються під стелею приміщення горизонтально підлозі, мінімальна висота розміщення над рівнем підлоги не менше 4,0 м.

Опалювач укомплектований автоматикою безпеки і регулювання з багатофункціональним газовим клапаном (далі - ГА) компанії SIT Group, Італія.

Опалювач за електробезпечністю відповідає класу 1 за ГОСТ 12.2.007.0.

Частини опалювача, що знаходяться під напругою, захищені від доторкання оболонками за ГОСТ 14254:

- ШДК та ШП зі ступенем захисту IР20;

- ШВ зі ступенем захисту IР10.

Електроживлення - однофазна мережа змінної напруги 220 В, 50 Гц.

Діапазон робочих температур - від "мінус" 10 С до 60 С.

Температура газів на виході з димоходу - 140 - 160 С.

Середній термін служби - не менше 10 років.

Опалювачі різних виконань конструктивно відрізняються поміж собою довжиною інфрачервоних випромінювачів, кількістю дзеркальних відбивачів, діаметрами отворів форсунок пальників, діаметрами отворів діафрагм для подавання повітря в пальники.

Таблиця 6.3 Технічні характеристики опалювача

Назва параметру та розміру

Один. вим.

ОІТГ-20

Номінальна теплопродуктивність

кВт

19,1

Номінальна споживана потужність

кВт

21,7

Встановлена електрична потужність

Вт

100

Номінальне споживання газу

м /год

2,26

Тиск газу на вході форсунки при номінальній теплопродуктивності

кПа

1,5

Коефіцієнт корисної дії

%

90,5

Габаритні розміри

довжина

ширина

висота

мм

мм

мм

5300

572

194

Маса

кг

101

Площа опромінення на висоті 1,5 м над підлогою при розміщені опалювача на мінімальній висоті

м

95

Рисунок 6.1 Будова опалювача

Опалювач складається з шафи дистанційного керування 1, інфрачервоних випромінювачів 2, та закріплених на випромінювачах: шафи пальника 3, шафи витяжної 4 та дзеркальних відбивачів 5. По типу випромінювання, довжині хвилі і температурі поверхні труби, що випромінює тепло, опалювач відноситься до категорії темних інфрачервоних випромінювачів. Активною поверхнею випромінювачів являються металеві труби, з'єднані у U - подібну конфігурацію, в середині яких відбувається спалення газу і вздовж яких продукти горіння проходять до витяжного вентилятора. Згоряння газу здійснюється атмосферним пальником з автоматичним керуванням.

Рисунку 6.2 Блок-схема опалювача, де ШВ - шафа витяжна; ШП - шафа пальника; ШДК - шафа дистанційного керування; ІВ - інфрачервоні випромінювачі; 1 - димохід; 2 - відбивач інфрачервоного випромінювання; 3,4 - кабелі електроживлення та керування.

Після підключення опалювача до електромережі і переведення перемикача РОБОТА ШДК у положення ВКЛ починає працювати ветилятор ШВ. Після створення витяжним вентилятором розрідження тиску повітря у камері згоряння ШП, вмикається диференцйний повітряний вимикач, і розпочинається процес провітрювання (тривалістью близько 40 секунд) труб ІВ і димоходу.

Після провітрювання відкривається електромагнітний здвоєний клапан газової автоматики і в пальник починає надходити газ. Плата автоматичного керування ГА включає систему запалення. Запалення газової суміші в пальнику реєструє іонізуючий електрод. Після початку роботи пальника і запалення газової суміші на передній панелі ШДК засвічується світлове табло НОРМА зеленого кольору.

Якщо на протязі 5 секунд газова суміш не зайнялася, опалювач переходить у аварійний режим - на передній панелі ШДК засвічується світлове табло ВІДМОВА червоного кольору та закривається клапан подачі газу.

Для здійснення повторного запуску необхідно перемикач РОБОТА ШДК перевести у положення ВИМК,а потім знову у положення ВКЛ.

Передбачено також два режими роботи опалювача щодо підтримання у приміщенні необхідної температури, які встановлюються перемикачем КОНТР.Т на ШДК:

а) РУЧ - ручний режим, коли температура у приміщенні контролюється зовнішнім термометром і підтримання температури здійснюється шляхом ручного включення та виключення процесу згоряння газу оператором з ШДК;

б) АВТ - автоматичний режим, коли температура у приміщенні контролюється спеціальним приладом - програмним термостатом, що підключається до ШДК, контактна група термостату автоматично, в залежності від встановленої температури, включає або відключає електроживлення опалювача і таким чином регулює процес згоряння газу.

6.2 Цех періодичного ремонту

Розрахуємо необхідну потужність інфрочервоного опалення для даного цеху.

Дані для розрахунку:

Площа будівлі по зовнішньому обміру - 1618 м2;

Об'єм будівлі по зовнішньому обміру - 13800м3;

Температура відчуття - 160С;

Зовнішня температура - -5,20С;

Трансмісійна необхідність тепла на 10С - 7,2 кВт (без урахування добавок);

Фільтраційні втрати на 10С - 1,6 кВт

Характеристика встанавлюємого приладу ККД - 90,5%;

Абсорбціоні втрати - 4%; Втрати на розсіювання - 18%;

Знайдемо вклад випромінювання:

1*0,905*(1-0,04)*(1-0,18)=0,71(71%)

Повні теплові втрати будівлі складаються з суми трансмісійних втрат помножених на добавки від оточення і фільтраційних втрат:

7,2*1,2+1,6=10,24 кВт/0С

Поскільки ще невідома температура повітря (t1) за бажаної температури відчуття, то для знаходження необхідного тепла використовуємо інтераційний метод так, що в нульовому приближені оцінюємо це значення.

?t=11-(-5,2)=16,20С

Теплові втрати будівлі чи необхідність в теплі

16,20С*10,24кВт/0С=165.88кВт

Питома необхідність тепла

165.88кВт/1618м2=102.5Вт/м2

Відношення тепла випромінювання

102.5Вт/м2*0,71=72.77Вт/м2

Температура відчуття

tr= t1+0.072*i=10+0.072*72.77=16.30С - достатньо

6.3 Підйомний цех

Розрахуємо необхідну потужність інфрочервоного опалення для даного цеху.

Дані для розрахунку:

Площа будівлі по зовнішньому обміру - 1508 м2;

Об'єм будівлі по зовнішньому обміру - 17643м3;

Температура відчуття - 180С;

Зовнішня температура - -5,20С;

Трансмісійна необхідність тепла на 10С - 5,52 кВт (без урахування добавок);

Фільтраційні втрати на 10С - 2 кВт

Характеристика встанавлюємого приладу ККД - 90,5%;

Абсорбціоні втрати - 4%; Втрати на розсіювання - 18%;

Знайдемо вклад випромінювання:

1*0,905*(1-0,04)*(1-0,18)=0,71(71%)

Повні теплові втрати будівлі складаються з суми трансмісійних втрат помножених на добавки від оточення і фільтраційних втрат:

5,52*1,2+2=8,62 кВт/0С

Поскільки ще невідома температура повітря (t1) за бажаної температури відчуття, то для знаходження необхідного тепла використовуємо ітераційний метод так, що в нульовому приближені оцінюємо це значення.

?t=12-(-5,2)=17,20С

Теплові втрати будівлі чи необхідність в теплі

17,20С*8,62кВт/0С=148,26кВт

Питома необхідність тепла

148,26кВт/1508м2=98,3Вт/м2

Відношення тепла випромінювання

98,3Вт/м2*0,71=69,79Вт/м2

Температура відчуття

tr= t1+0.072*i=12+0.072*69,79=18,20С - достатньо

6.4 Електромашинний відділ

Розрахуємо необхідну потужність інфрочервоного опалення для даного цеху.

Дані для розрахунку:

Площа будівлі по зовнішньому обміру - 1706 м2;

Об'єм будівлі по зовнішньому обміру - 17060м3;

Температура відчуття - 180С;

Зовнішня температура - -5,20С;

Трансмісійна необхідність тепла на 10С - 7,1 кВт (без урахування добавок);

Фільтраційні втрати на 10С - 2,4 кВт

Характеристика встанавлюємого приладу ККД - 90,5%;

Абсорбціоні втрати - 4%; Втрати на розсіювання - 18%;

Знайдемо вклад випромінювання:

1*0,905*(1-0,04)*(1-0,18)=0,71(71%)

Повні теплові втрати будівлі складаються з суми трансмісійних втрат помножених на добавки від оточення і фільтраційних втрат:

7,1*1,2+2,4=10,92 кВт/0С

Поскільки ще невідома температура повітря (t1) за бажаної температури відчуття, то для знаходження необхідного тепла використовуємо ітераціоний метод так, що в нульовому приближені оцінюємо це значення.

?t=11-(-5,2)=16,20С

Теплові втрати будівлі чи необхідність в теплі

16,20С*10,92кВт/0С=176,9кВт

Питома необхідність тепла

176,9кВт/1706м2=103,7Вт/м2

Відношення тепла випромінювання

103,7Вт/м2*0,71=73,63Вт/м2

Температура відчуття

tr= t1+0.072*i=11+0.072*73,63=18,20С - достатньо

6.5 Колісний цех

Розрахуємо необхідну потужність інфрочервоного опалення для даного цеху.

Дані для розрахунку:

Площа будівлі по зовнішньому обміру - 1074 м2;

Об'єм будівлі по зовнішньому обміру - 11277м3;

Температура відчуття - 160С;

Зовнішня температура - -5,20С;

Трансмісійна необхідність тепла на 10С - 4,5 кВт (без урахування добавок);

Фільтраційні втрати на 10С - 3,3 кВт

Характеристика встанавлюємого приладу ККД - 90,5%;

Абсорбційні втрати - 4%; Втрати на розсіювання - 18%;

Знайдемо вклад випромінювання:

1*0,905*(1-0,04)*(1-0,18)=0,71(71%)

Повні теплові втрати будівлі складаються з суми трансмісійних втрат помножених на добавки від оточення і фільтраційних втрат:

4,5*1,2+3,3=8,7 кВт/0С

Поскільки ще невідома температура повітря (t1) за бажаної температури відчуття, то для знаходження необхідного тепла використовуємо ітераційний метод так, що в нульовому приближені оцінюємо це значення.

?t=10-(-5,2)=15,20С

Теплові втрати будівлі чи необхідність в теплі

15,20С*8,7кВт/0С=132,24кВт

Питома необхідність тепла

132,24кВт/1074м2=123,13Вт/м2

Відношення тепла випромінювання

123,13Вт/м2*0,71=87,42Вт/м2

Температура відчуття

tr= t1+0.072*i=10+0.072*87,42=16,30С - достатньо

6.6 Цех ПТО локомотивів

Розрахуємо необхідну потужність інфрочервоного опалення для даного цеху.

Дані для розрахунку:

Площа будівлі по зовнішньому обміру - 1152 м2;

Об'єм будівлі по зовнішньому обміру - 13248м3;

Температура відчуття - 50С;

Зовнішня температура - -5,20С;

Трансмісійна необхідність тепла на 10С - 4 кВт (без урахування добавок);

Фільтраційні втрати на 10С - 3,9 кВт

Характеристика встанавлюємого приладу ККД - 90,5%;

Абсорбційні втрати - 4%; Втрати на розсіювання - 18%;

Знайдемо вклад випромінювання:

1*0,905*(1-0,04)*(1-0,18)=0,71(71%)

Повні теплові втрати будівлі складаються з суми трансмісійних втрат помножених на добавки від оточення і фільтраційних втрат:

4*1,2+3,9=8,7 кВт/0С

Поскільки ще невідома температура повітря (t1) за бажаної температури відчуття, то для знаходження необхідного тепла використовуємо ітераційний метод так, що в нульовому приближеніоцінюємо це значення.

?t=3-(-5,2)=8,20С

Теплові втрати будівлі чи необхідність в теплі

8,20С*8,7кВт/0С=71,34кВт

Питома необхідність тепла

71,34кВт/1152м2=61,93Вт/м2

Відношення тепла випромінювання

61,93Вт/м2*0,71=43,97Вт/м2

Температура відчуття

tr= t1+0.072*i=3+0.072*43,97=5,60С - достатньо

Знайдемо потужність променевого опалення для всіх 5 виробничих цехів депо, яка дорівнює їхній сумі.

Рн=165,88+148,26+176,9+132,24+71,34=694,62кВт

7. ТЕХНІКО-ЕКОНОМІЧНІ РОЗРАХУНКИ ЗА РАХУНОК ЕНЕРГОЗБЕРІГАЮЧИХ ЗАХОДІВ

7.1 Розрахунок економічної доцільності переводу парового котла на водогрійний режим

Перелік матеріалів та обладнання, необхідних для переводу парового котла типу МЕ-4,0/1,4ГМ на водогрійний режим роботи:

1) труба O 100 мм, довжина 55 м, ціна за 1 метр 64,20 грн, всього

3531 грн; труба O 76 мм, довжина 25 м, ціна за 1 метр 21,90 грн, всього 547,5 грн;

2) мережний насос з електродвигуном (три комплекти), ціна одного комплекту складає 12000 грн, всього 36000 грн;

3) повороти на 90° O 100 мм, кількість 17 шт, ціна за один поворот 18 грн, всього 306 грн;

4) повороти на 90° O 76 мм, кількість 3 шт, ціна за один поворот 15 грн, всього 45 грн;

5) контрольно - вимірювальні прилади, кількість 20 шт, ціна за один прилад складає 369 грн, всього 7380 грн;

6) засувки та вентилі O 100 мм, кількість 27 шт, ціна за одну штуку

167 грн, всього 4509 грн;

7) засувки та вентилі O 80 мм, кількість 8 шт, ціна за одну штуку

122,84 грн, всього 982,72 грн;

8) запобіжні клапани O 100 мм, кількість 8 шт, ціна за одну штуку

152 грн, всього 1216 грн;

9) лист заліза товщиною 5 мм, кількість 3 м2, загальна ціна 250 грн;

10) електроди зварювальні 25 кг, ціна за 1 кг складає 5,82 грн, всього

174,6 грн;

11) виплата заробітної плати (на реконструкцію котла) бригаді працівників 5900 грн.

Всього необхідно на реконструкцію котельні ДК = 60841,82 грн.

Час роботи даного котла - 1325 годин/рік (приймається 50,0% від часу роботи всієї котельні, тому що всього встановлено 2 котли).

Вартість 1,0 тис. м3 природнього газу - 1800 грн

Витрата палива котлом до реконструкції, м3/год:

Врб = 280 м3/год

Витрата палива котлом після реконструкції, м3/год:

Врн = 267,3 м3/год

Витрата палива котельною за опалювальний період до реконструкції, м3/рік:

Вбрік = Врб *hу = 280*1325 =371000

Витрата палива котельною після переводу на водогрійний режим роботи, м3/рік:

Внрік = Врн *hу = 267,3*1325 = 354172,5

Економія палива за рахунок переводу складає:

Егаз= Вбрік- Внрік=371000-354172,5=16827,5 м3=16,8 тис. м3

В розрахунку на гроші економія складає:

Егрошігаз= Егазгаз=16,8*1800=30240грн

Срок окупності складе: 60841,82/30240=2роки

7.2 Розрахунок економічної доцільності встановлення німецького пальника типу Weishaupt на котел МЕ-4,0/1,4ГМ, встановленого в локомотивному депо "Жовтень"

Дані для розрахунку:

Вартість модернізації - 297,3 тис. грн.

Фонд оплати праці одного оператора (з 01.11.08) - 1,96 тис. грн./мес.

Час роботи даного котла - 1325 годин/рік (приймається 50,0% від часу роботи всієї котельні, тому що всього встановлено 2 котли).

Вироблено теплоенергії - 2835 Гкал/рік (дані за 2007 рік)

К.К.Д. котла - 91,2% (дані за 2007 рік)

Питома витрата - 156,6кг.у.п/Гкал (дані за 2007 рік)

Потужність димососа й вентилятора - 40кВт

Розрахунок економічної доцільності модернізації:

На сьогоднішній день у котельні операторами й апаратниками, що мають посвідчення операторів котельні, працює 14 чіл. У двох змінах по 4 чоловік, і у двох змінах по 3 чоловік. Тобто є можливість скорочення 2 чоловік. При цьому річна економія коштів складе:

Езарп.= 1,96 тис. грн * 2 чоловік *12 місяців = 47,04 тис. грн.

Орієнтовне підвищення КПД котла, за рахунок встановлення нового пальника складе 2,0%, через оптимальну організацію структури факелу та більш якісного змішування повітря та пального. При цьому питома норма, після підвищення ККД до 93,2% складе:

(142,8/93,2)*100 = 153,2 кг.у.п./Гкал.

де 142,8 - витрата палива на 1Гкал при ККД 100%

Тоді економія палива від підвищення ККД складе:

(156, 6-153,2)*2835=9639 кг.у.п = 9,64 т.у.п

В розрахунку на природний газ це дорівнює

9,64/ 1,16 = 8,3 тис.м3 природн. Газу

де 1,16 - середнє значення калорійного еквіваленту

При вартості 1,0 тис. м3 1800 грн., економія по паливу за рік складе

Егаз= 1800*8,3=14,94 тис. грн./рік

Встановлення частотного регулятора на димососі й вентиляторі, дозволяє заощаджувати від 20,0% до 35,0%.електроенергії. Візьмемо середню економію в розмірі 25,0%, що і приймемо у наших розрахунках. Так як, сумарна електрична потужність становить 40,0 кВт, то економія від застосування складе:

40кВт*0,25 = 10кВт.

Час роботи котла -1325 годин у рік, тоді

10кВт*1325годин = 13250 кВт/рік.

Згідно даним СП "Енергозбут" вартість 1 кВт по 2 класу становить 0,61 грн. Тоді економія складе:

Еєл.єн. =13,25 тис. кВт *0,61 грн = 8,08 тис. грн.

Розрахункова річна економія за трьома складовими:

Епальник=47,04 (оплата праці) + 14,94 (екон. на газі) + 8,08 (екон. по ел.ен.) = 70,06 тис. грн.

Строк окупності складе: 297,3/70,06 - 4,2 роки.

Необхідно врахувати, що при встановлені нового пальника, час роботи даним котлоагрегатом можна та і потрібно підвищити хоча б до 75,0% від загального часу роботи котельної тобто до 2000 год/рік. Тоді економія по енергоносіям зросте до 82,0 тис.грн а термін окупності знизиться до 3,5 років. В той же час, при вартості газу з 01.01.2009 для промислових підприємств становить 2,5 тис.грн термін окупності значно знизиться.

7.3 Розрахунок економічної доцільності встановлення гідродинамічного нагрівача на мийну машину ММД - 12

Дані для розрахунку:

Вартість модернізації - 40,55 тис. грн.

Фонд часової оплати праці одного оператора - 7,5грн/год.

Необхідна кількість теплоти для мийної машини - 118,75Гкал

Витрата палива котлом на 1Гкал - 156,6 кг.у.п/Гкал

Вартість 1,0 тис. м3 природного газу - 1800 грн

Потужність димососа, вентилятора й живильного насоса - 46кВт

Вартість 1кВт/год по 2 класу - 0,61 грн

Розрахунок економічної доцільності модернізації:

Розраховуємо вартість 1Гкал відпущеної з котельні локомотивного депо, для цього необхідно розрахувати декілька складових частин, які входять в вартість 1Гкал це:

затрати на паливо;

фонд оплати праці;

затрати на електроенергію;

додаткові затрати (складають 5-7% від загальних);

Розраховуємо затрати на паливо

156,6*118,75=18,6т.у.п

Для виробництва необхідної кількості тепла нам необхідно 18,6т.у.п, щоб перевести це паливо в природній газ нам необхідно застосувати середнє значення калорійного еквіваленту яке для природного газу складає 1,16.

18,6/1,16=16,03тис.м3

Знаходимо необхідну суму грошей для палива

Зпаливо= 16,03*1800=28,854тис.грн

Розраховуємо затрати на оплату праці.

Продуктивність встановленого котла МЕ-4,0/1,4ГМ складає 2,24Гкал за годину.

Знаходимо час роботи котельні:

118,75/2,24=53години

В котельні працюють 4 людини за зміну. Знаходимо сумму грошей для оплати праці.

Зпраці= 53*7,5*4=1590грн

Знаходимо затрати на електроенергію:

Зел.ен= 53*46*0,61=1487,18грн

Знаходимо додаткові затрати:

Здодаткові= (28854+1590+1487,18)*0,06=1915,9грн

Таким чином вартість 1Гкал складає:

ЦГкал=(28854+1590+1487,18+1915,9)/118,57=285,5грн

Загальна сума коштів які необхідно затратити для отримання 118,75Гкал складає:

Ззагальні= 285,5*118,75=33,9тис. грн

Розраховуємо затрати коштів необхідних для вироблення необхідної кількості тепла за допомогою гідродинамічного нагрівача. До встановлення прийметься УГД "Термер-75" з наступними технічними характеристиками:

-Встановлена потужність 75кВт;

-Максимальна теплова продуктивність 0,063Гкал/год

Використовувати гідродинамічний нагрівач пропонуються в часи пільгового тарифу. Для підприємств він складає 0,25*Т. Дійсний цей тариф з 2300до 700.

Знаходимо вартість пільгового тарифу:

0,25*0,61=0,1525грн/кВт*год

Знаходимо затрати коштів на ел.ен. за добу:

75*0,1525*8=91,5грн

Знаходимо скільки теплоти виробляє нагрівач за добу:

0,063*8=0,504Гкал

Знайдемо скільки діб нам необхідно щоб виробити необхідну кількість тепла для мийної машини:

118,75/0,504=235діб

При цьому буде затрачено коштів на ел.ен.:

Знагрівач= 235*91,5=21,5тис. грн

Строк окупності складе:

40,55/(33,9-21,5)=3,3роки

7.4 Розрахунок економічної доцільності за рахунок підключення будівлі відпочинку локомотивних бригад до котельні локомотивного депо

Дані для розрахунку:

Фонд оплати праці одного оператора - 1,96грн/місяць.

Необхідна кількість теплоти для будівлі відп. локомотивних бригад - 212,37Гкал

Витрата палива котлом на 1Гкал - 213,0 кг.у.п. /Гкал

Вартість 1,0 тис. м3 природного газу - 1800 грн

Довжина теплотраси - 400м

Вартість 1м.п. теплотраси - 300грн

Ціна 1т вугілля - 700грн

Вартість 1Гкал - 285,5грн

В даному розділі приведений розрахунок економічної доцільності за рахунок демонтожа котельні будівлі відпочинку локомотивних бригад і підключення цієї будівлі до котельні локомотивного депо.

Спочатку треба розрахувати грошові затрати на утримання цієї котельні, які складаються з:

затрати на паливо

затрати на оплату праці операторам

Розрахуємо необхідну кількість т.у.п а потім вугілля, яке необхідно для будівлі відпочинку локомотивних бригад.

212,37*213=45,23т.у.п

45,23/0,732=61,78т вугілля

де 0,732 - середнє значення калорійного еквіваленту

Знайдемо кошти, які необхідні на паливо

Звугілля = 61,78*700=43,25тис. грн.

Знаходимо необхідну кількість грошей для оплати операторам котельні. Штат котельні складає - 4людини.

Зпраці= 4*1,96*12=94,08тис. грн.

Розраховуємо кошти, які необхідні на утримання цієї котельні

Ззагальні= 43,25+94,08=137,33тис. грн..

Розрахуємо кошти необхідні на монтаж теплотраси

Зтраса= 400*300=120тис. грн..

Знаходимо кошти для отримання необхідної теплоти котельною локомотивного депо.

Згаз= 285,5*212,37=60,63 тис. грн.

Знаходимо економію коштів

Е= Ззагальні- Згаз=137,33-60,63=76,7 тис. грн.

Строк окупності даного проекту складе

120/76,7=1,6роки

7.5 Розрахунок економічної доцільності встановлення інфрачервоного опалення

Дані для розрахунку:

Потужність встановлюемого нагрівача - 20кВт;

Номінальне споживання газу be- 2,26м3/год

Ціна 1Гкал - 285,5грн

Ціна 1тис. м3 природнього газу - 1800грн

Ціна одного комплекту нагрівача - 8964грн

Знайдемо необхідну кількість нагрівачів вона дорівнює необхідну потужність поділити на потужність нагрівача

L=Рн/20=700/20=35шт

де L - кількість нагрівачів

Рн - необхідна потужність

Необхідна кількість коштів для закупівлі обладнання

О=35*8964=313740грн=313,74тисгрн

Вартість монтажу складає 30% від вартості обладнання

М=313,74*0,3=94,12тис. грн.

Загальні затрати

Зобщ=О+М=313,74+94,12=407,86тис грн

Максимальне споживання газа за годину складе

Вгн=L* be=35*2,26=79,1 м3/год

З обліком дежурного режиму, який складає 30% витрати газа в основному режимі, витрати газа в опалювальний період складуть

Вг= Вгн(t1*114+kз*t2*114)=79,1(8*114+0,3*16*114)=115тис. м3

де t1, t2 - час роботи опалювальної системи в основному, дежурному режимі в рабочі дні.

114 - кількість робочих днів в опалювальному періоді.

kз - коефиціент використання теплової потужності нагрівача в дежурному режимі

Знайдемо кількість коштів

Зн=115*1800=207000грн=207тис. грн

Знайдемо необхідно кількість коштів необхідних для отримання тепла якщо водяне опалення

Зв.оп.=1099,14*285,5=313804грн=313,8тис. грн.

Річна економія коштів складе

Е= Зв.от.н=313,8-207=106,8тис грн.

Знайдемо строк окупності проекту

407,86/106,8=3,8роки

8. ОХОРОНА ПРАЦІ

Загальні відомості про підприємство

Даним проектом передбачена реконструкція котельні електровозного депо "Жовтень" у Харкові. Котельня призначена для технологічних потреб депо, централізованого теплопостачання систем опалення, вентиляції і гарячого водопостачання комунально-побутових підприємств, житлових і суспільних будинків.

Режим роботи котельні цілодобовий.

У котельні встановлені два котли МЕ-4-1,4ГМ. Вони обладнані тягодутьовими машинами і живильними насосами.

Напруга мережі загального освітлення і живлення машин - 380/220 В, місцевого і переносного - 12 В.

У зміну на котельні працює 14 людей, у обов'язки, яких входить підтримка у робочому стані усіх машин і механізмів, а також контроль якості живильної води.

Аналіз потенційної небезпеки при експлуатації котельні

Керівництво та відповідальність за безпечність експлуатації котлів, основного та допоміжного обладнання покладається на начальника котельні електровозного депо.

Котельні агрегати і все обладнання котельні повинно знаходитися під постійним наглядом, як об'єкт підвищеної небезпеки. Тому безпосереднє цілодобове обслуговування котлоагрегатів та всього устаткування котельні здійснюється силами обслуговуючого персоналу. За час чергування оператори котлів слідкують за належною роботою котлів і всього обладнання котельні, суворо дотримуючись встановленого режиму роботи котлів.

Надійна і економічна робота котельної установки в значній мірі залежить від правильної організації водного режиму котлів. Черговий персонал хімічної лабораторії на протязі всієї зміни періодично стежать за якістю води, виконують хімічний аналіз підживлювальної води, стежать за роботою деаераційної установки.

Надійність та безпечна робота котлів і допоміжного обладнання залежить від його належного стану та своєчасного проведення ремонтів.

В котельні слюсарі-ремонтники виконують поточний, або капітальний ремонти, вибір і проведення якого регламентується планом проведення і станом обладнання. В проміжках між цими видами ремонту можуть виконати ремонтні роботи, котрі необхідно виконувати на діючому агрегаті: підтягування сальників запірної арматури, усунення парування, течі води, усунення нещільностей в обмурівці, газоходах, повітроводах, добавлення, або зміна змазки підшипників обертаючих механізмів і т.п. Всі ці види робіт відносяться до дрібного ремонту, який виконується черговим слюсарем по обладнанню.

В котельні є небезпечні та шкідливі виробничі фактори. Найбільш характерні з них наступні: небезпечні - електричний струм, розташування робочого місця, або місця проведення ремонту на висоті; шкідливі - можливість загазування повітря в робочій зоні, можливість утворення вибухово та пожежо небезпечних сумішей в приміщеннях подавання рідкого палива (мазуту). Представляють небезпечність ємності, працюючи під тиском (підігрівачі, деаератори, трубопроводи пару та гарячої води), підвищені рівні шуму і вібрації на робочому місці, підвищена температура поверхонь обладнання і повітря робочої зони, недостатня освітленість робочих місць. Обслуговуючий персонал котельні зазнає нервово-емоціональні напруги, пов'язані зі змінністю роботи та великою відповідальністю за нормальний режим роботи обладнання.

Елементом підвищеної пожежної небезпеки в комплексі котельні є установка мазутопостачання, яка включає в себе два надземних металічних резервуари для рідких присадок, а також установка очищення стокових вод, де можливе утворення плівки мазуту на поверхні ливневої води.

Міри по забезпеченню безпечної експлуатації котельні

Даний проект розроблений з урахуванням забезпечення безпечних умов праці для обслуговуючого персоналу котельні.

Котлоагрегати та допоміжне обладнання оснащені у відповідності діючим нормам і правилам, необхідними технологічними захисними пристроями, що вимикають котел в разі аварійної ситуації.

Будівля і конструктивні елементи котельні виконані з не згоряємих матеріалів. В котельній зоні та приміщені деаераційної установки є по два виходи в протилежні сторони.

Для зручного і безпечного обслуговування котлів і їх елементів встановлено постійні майданчики і сходи з перилами. Для управління роботою та забезпечення нормальних умов експлуатації котли обладнані арматурою, контрольно-вимірювальними приладами і приладами безпеки, досяжними для нагляду і обслуговування.


Подобные документы

  • Огляд сучасного стану енергетики України. Розробка системи електропостачання підприємства. Розрахунок графіків електричних навантажень цехів. Вибір компенсуючих пристроїв, трансформаторів. Розрахунок струмів короткого замикання. Вибір живлячих мереж.

    курсовая работа [470,0 K], добавлен 14.11.2014

  • Характеристика котла ТП-230. Розрахунок ентальпій повітря і продуктів згоряння палива. Коефіцієнт надлишку повітря. Тепловий баланс котельного агрегату. Геометричні характеристики топки. Розрахунок теплоти, яка сприймається фестоном, теплопередачею.

    курсовая работа [256,5 K], добавлен 18.04.2013

  • Розрахунок теплового балансу котла та визначення витрати палива. Температурний напір пароперегрівника. Коефіцієнт теплопередачі водяного економайзера. Аеродинамічний розрахунок газового тракту в межах парового котла. Розрахунок товщини стінки барабану.

    курсовая работа [1,7 M], добавлен 19.05.2014

  • Повірочний тепловий розрахунок парового котлоагрегату, його теплові характеристики при різних навантаженнях. Вибір типу і конструктивних характеристик топки, перегрівника, економайзера. Визначення теплового балансу парогенератора й витрати палива.

    курсовая работа [2,2 M], добавлен 26.11.2014

  • Характеристика виробництва та навантаження у цеху. Розрахунок електричного освітлення. Енергозбереження за рахунок впровадження електроприводів серії РЕН2 частотного регулювання. Загальна економія електроенергії при впровадженні енергозберігаючих заходів.

    курсовая работа [1,1 M], добавлен 24.05.2015

  • Енергетична політика України, проблеми енергозбереження. Характеристика електроприймачів: розрахунок навантажень; компенсація реактивної потужності; вибір силових трансформаторів. Розрахунок струмів короткого замикання. Обґрунтування систем захисту.

    курсовая работа [785,7 K], добавлен 20.05.2014

  • Обґрунтування вибору лігніну як альтернативного виду палива для котлоагрегату БКЗ-75-39. Розрахунок основного і допоміжного обладнання для котлоагрегату з врахуванням в якості палива відходів гідролізного виробництва. Виробництво брикетів з лігніну.

    дипломная работа [2,5 M], добавлен 18.11.2013

  • Представлення енергозберігаючих заходів та їх розрахунковий аналіз. Регулювання насосної станції за допомогою зміни кількості насосних агрегатів та використанні частотного перетворювача. Розрахунок економічної ефективності енергозберігаючих заходів.

    дипломная работа [1,3 M], добавлен 26.09.2012

  • Розрахунок котельного агрегату, склад і кількість продуктів горіння. Визначення теплового балансу котла і витрат палива. Характеристики та розрахунок конвективної частини. Тепловий розрахунок економайзера і перевірка теплового балансу котельного агрегату.

    курсовая работа [677,6 K], добавлен 17.03.2012

  • Загальний опис об’єкту - школа І-ІІІ ступенів №202 м. Києва. Обстеження поточного стану енергетичних систем об’єкту. Розрахунок заходів з енергозбереження. Впровадження енергоменеджменту, встановлення аераторів та реконструкція системи освітлення.

    курсовая работа [2,2 M], добавлен 07.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.