Выбор и расчет электродвигателя
Выбор электродвигателя и его кинематический расчет. Расчет зубчатых колес редуктора. Конструкция ведущего и ведомого вала. Конструктивные размеры корпуса редуктора, цепной передачи. Проверка долговечности подшипников и прочности шпоночных соединений.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.02.2011 |
Размер файла | 158,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Введение
Для передачи вращающего момента, от вала двигателя к валу рабочей машины, в приводах различных машин и механизмов применяются редукторы.
Редуктором называют механизм состоящий из зубчатых или червячных передач выполненный в виде отдельного агрегата и служащий для передачи вращающего момента от вала двигателя к валу рабочей машины поэтому редукторы широко применяются в приводах различных машин и механизмов. Редуктор состоит из корпуса (ленточного чугунного или сварного стального) в котором помещают элементы передачи - зубчатые колеса валы подшипники и т.д.
Редуктор предназначен для понижения угловой скорости и соответственно повышения вращающего момента ведомого вала по сравнению с ведущим.
Редуктор проектируют либо для привода определённой машины, либо по заданной нагрузке и передаточному числу без указания конкретного назначения.
Передаточное отношение одноступенчатых цилиндрических редукторов ограничено Umax ? 6,3, поэтому для реализации больших передаточных отношений в схему привода дополнительно включают цепные или ременные передачи.
Для привода ленточного конвейера спроектировать одноступенчатый цилиндрический редуктор общего назначения с прямозубыми колесами предназначенный для длительной эксплуатации. Передача нереверсивная нагрузка близкая к постоянной. Работа двухсменная.
Исходные данные:
Тяговое усилие ленты Fл = 2,07 кН
Скорость ленты Vл = 1,33 м/с
Диаметр приводного барабана Дб = 380 мм
Схема привода
1. Выбор электродвигателя и кинематический расчет
По таблице 1.1 [1] принимаем:
К.п.д. пары цилиндрических зубчатых колес 1 = 098;
К.п.д. пары подшипников качения 3 = 099;
К.п.д. открытой цепной передачи 2 = 092;
К.п.д. потерь в опорах приводного барабана 4 = 099
Общий К.п.д. привода
= 1 22 3 4 = 098 0992 092 099 = 087
Мощность на валу барабана
Рб = Vл Fл = 1.33 2.07 = 2.75кВт
Требуемая мощность электродвигателя
кВт
Угловая скорость барабана
рад/с
Частота вращения барабана
об/мин.
По ГОСТ 19523- 81 (таблица п.1) по требуемой мощности Ртр = 3,15 кВт выбираем асинхронный трехфазный короткозамкнутый электродвигатель серии 4А с синхронной частотой частотой вращения nc = 1000 об/мин. Типа 112 МВ6 с параметрами Рдв = 4 кВт и скольжением S = 5,1%.
Номинальная частота вращения двигателя
nдв = 1000 (1-S) = 1000(1-0.051)=949 об/мин
Угловая скорость электродвигателя
рад/с
Передаточное отношение привода
Принимаем по ГОСТ 2185-66передаточное отношение редуктора Up = 4, тогда передаточное отношение цепной передачи
Вращающие моменты на валах:
На валу шестерни Нм
Навалу колеса Т2 = T1 Up = 31,7 4 = 126,8 Нм
Частоты вращения и угловые скорости валов
Вал В |
n1 = nдв= 949об/мин |
1 = дв = 99,3 рад/с |
|
Вал С |
об/мин |
рад/с |
|
Вал А |
n3 = nб = 67 об/мин |
n3 = nб = 67 об/мин |
2.Расчет зубчатых колес редуктора
По таблице 3.3 [1] выбираем материал зубчатых колес:
для шестерни сталь 45 - термообработка улучшение твердость НВ 230;
для колеса - сталь 45 - термообработка улучшение твердость НВ 200.
Допускаемые контактные напряжения (формула 3.9 [1])
,
где GНlimb - предел контактной выносливости при базовом числе циклов нагружения.
По таблице 3.2 [1] для материала колёс: Нlimb = 2НВ + 70.
КHL - коэффициент долговечности при длительной эксплуатации КHL = 10 (стр.33 [1]);
[Sн]- коэффициент безопасности. Для улучшеной стали [Sн] = 115 (cтр. 33 [1]).
Допускаемые контактные напряжения
для шестерни Мпа;
для колеса Мпа.
Коэффициент нагрузки, с учётом влияния изгиба от натяжения цепи, принимаем как для несимметрично расположенных колёс. По таблице 3.1[1] Кнл=1.25
Коэффициент ширины вунца по межосевому расстоянию Шва= в/aw
Для прямозубых колёс Шва= 0,16 (стр.36)
Межосевое расстояние из условия контактной выносливости активных поверхностей зубьев определяем по формуле 3.7 [1]
мм,
Принимаем по ГОСТ 2185-66 аw = 180 мм
где Ка = 49,5 - коэффициент для прямозубых колес (страница 32 [1]).
Нормальный модуль зацепления
m = (001 002) аw = (001 002) 180 = (1,8 3,5) мм.
Принимаем по ГОСТ 9563-60 m = 3 мм
Определяем суммарное число зубьев колес
Число зубьев шестерни
Число зубьев колеса
Z2 = ZE -Z1= 120-24 = 96
Уточняем передаточное отношение
Уточняем межосевое расстояние
аw =0,5(Z1 - Z2)m = 0.5 (24+96) ·3 =180 мм
Основные размеры шестерни и колеса:
делительные диаметры:
d1=m·z1= 3·24 = 72мм;
d2=z2·m = 96·3 = 288мм.
Проверка: мм.
диаметры вершин зубьев
da1 = d1 + 2m = 72 + 2 3 = 78 мм;
da2 = d2 + 2m = 288 + 2 3 = 294 мм.
диаметры впадин зубьев
df1 = d1- 2.5 m = 72-2.5·3 = 64.5 мм
Ширина колеса мм.
Ширина шестерни b1 = b2 + (2ч5) = 30 + 4= 34 мм.
Коэффициент ширины шестерни по диаметру
.
Окружная скорость колеса и степень точности передачи:
м/с.
При такой скорости колёс следует принять 8-ую степень точности передачи.
По таблице 3.5 [1] при bd = 0.47 и твердости НВ< 350, принимаем КН = 1.05.
По таблице 3.4 [1] при V = 3.6 м/с и 8-й степени точности, коэффициент КН =109.
По таблице 3.6 [1] для шевронных колес коэффициент КHv = 105.
Тогда коэффициент нагрузки КН = КН КН КНv = 1.05 109 105 = 1.20
Проверяем контактные напряжения по формуле 3.6 [1]
Мпа < [Н].
Силы действующие в зацеплении:
окружная сила Н
радиальная сила Н,
Проверяем зубья на выносливость по напряжениям изгиба по формуле 3.25 [1]
[F].
где коэффициент нагрузки КF = KF KFv
По таблице 3.7 [1] при bd = 0.47,твёрдости НВ<350. Коэффициент КF = 108
По таблице 3.8 [1] при V=3.6и 8-ой степени точности коэффициент КFv = 1.45
Тогда КF = 108· 145 =1,57
YF - коэффициент прчности зуба по местным напряжениям зависящий от эквивалентного числа зубьев zv:
тогда YF1 = 4.09 YF2= 3.61 (страница 42 [1]).
Допускаемые напряжения при изгибе
По таблице 3.9 [1] для стали 45 улучшенной при твердости НВ< 350 принимаем НВ.
для шестерни 0Flimb1 = 18 НВ1 = 18 230 = 414Мпа;
для колеса 0Flimb2 = 181 НВ2 = 18 200 = 360 Мпа.
Коэффициент безопасности [SF] = [SF] [SF]''.
По таблице 3.9 [1]: [SF] = 175 и [SF]'' = 10.
Тогда [SF] = 175 10 = 175.
Допускаемые напряжения:
для шестерни Мпа;
для колеса Мпа.
Производим сравнительную оценку прочности зубьев для чего находим отношение
:
для шестерни Мпа;
для колеса Мпа.
Дальнейший расчет ведем для зубьев колеса для которых это отношение меньше.
Мпа < [F2] = 206Мпа.
Вывод: условие прочности выполнено.
3. Предварительный расчет валов редуктора
Предварительный расчет валов проведем на кручение. Крутящие моменты в сучениях вылов: ведущего-T1 = 31,7 H·м; ведомого -Т2 = 126.8 Н·м
3.1 Ведущий вал
Крутящий момент на валу Т1 = 12.5.
Допускаемые напряжения на кручение [к] = 25 Мпа.
Диаметр выходного конца вала
мм.
Так как ведущий вал редуктора соединяется муфтой МУВП с валом электродвигателя, то необходимо согласовать диаметры выходных концов валов.
По таблице 2[1] для электродвигателя 4A112М dдв = 32мм.
Тогда dв1 = 0,75 dдв = 0,75 32 =24м (страница 296 [1]);
диаметр вала под подшипниками принимаем dп1 = 20мм.
Конструкция ведущего вала
3.2 Ведомый вал:
Крутящий момент на валу Т2 = 50м. Диаметр выходного конца вала под ведущую звездочку цепной передачи определяем по пониженным напряжениям [к] = 20 МПа чем учитывается влияние изгиба вала от натяжения цепи:
мм
Принимаем dв2 = 32, диаметр вала под подшипники dп2 = 35м под зубчатым колесом dк2 = 40.
Диаметр остальных участков валов назначаем исходя из конструктивных соображений при компоновке редуктора.
Конструкция ведомого вала
4. Конструктивные размеры шестерни и колеса
Шестерню выполняем за одно целое с валом ее размеры определены выше:
Z1 = 24; m = 3мм; dа1 = 78; df1 = 64.5м; b1 = 34.
Колесо кованое, его размеры
d2 = 288; da2 = 294; b2 = 30мм; m = 3мм; Z2 = 96 мм; df2 = 280.5мм,
диаметр ступицы колеса dст2 = 16 dк2 = 64мм
длина ступицы колеса lст2 = (1215) dк2 = (1215) 40 = (48-60)мм
принимаем lст2 = b2 = 50
Толщина обода 0 = (24) m = (24) 3= (612)мм
принимаем 0 = 10мм.
Толщина диска С = 03 b2 = 03 30=9мм, принимаем с = 10мм
Диаметр окружности центров в диске
Дотв =0,5 (До + dст2) = 0.5(269+64) = 162мм
Где До = df2 - (2do + 5m) = 294-(2·10+3·5) = 259мм
Диаметр отверстий в диске колеса
5.Конструктивные размеры корпуса редуктора
Толщина стенок корпуса и крышки
= 0025aw + 1мм = 0025 180 + 1 = 5,5 мм;
1 = 002aw +1мм = 002 180 + 1 = 4,6 мм
принимаем = 1 = 8мм.
Толщина фланцев поясов корпуса и крышки
b = b1 = 15 = 15 8 = 12 мм.
Толщина нижнего пояса корпуса
р = 235 = 235 8 = 18,8 мм принимаем p = 20 мм.
Диаметры болтов:
Фундаментных: d1 = (0030036)аw + 12 = (0030036)180 + 12 = (17,418,5) мм; принимаем болты с резьбой М18;
крепящих крышку к корпусу у подшипников:
d2 = (07075)d1 = (07075)18 = (12,613,5) мм принимаем болты с резьбой М12.
соединяющих крышку с корпусом: d3 = (0506)d1 = (0506)18 = (910,8) мм; принимаем болты с резьбой М10.
6. Расчет цепной передачи
Выбираем приводную роликовую однорядную цепь. Крутящий момент на валу
Т2 = 126,8Н·м
Передаточное отношение определено выше Uц = 3,55.
Число зубьев ведущей звездочки
z3 = 31 - 2Uц = 31 - 2 355 = 23,9; принимаем z3 = 24.
Число зубьев ведомой звездочки
z4 = z3Uц = 24 3,55 = 85,2. Принимаем z4 = 85
Фактическое передаточное отношение
что соответствует принятому.
Оклонение Д =
Допускается ± 3%
Определяем расчетный коэффициент нагрузки (формула 7.38[1]);
Кэ = КдКаКнКрКсмКп = 1111251125 = 156;
где Кд = 1 - динамический коэффициент при спокойной нагрузке;
Ка = 1 - коэффициент, учитывает влияние межосевого расстояния при ац (30ч60)t;
Кн = 1 - коэффициент влияние угла наклона линии центров при = 45; Кн =1,0
Кр - коэффициент, учитывает способ регулирования натяжения цепи Кр = 125 при периодическом регулировании натяжения цепи;
Ксм - коэффициент учитывает способ смазки; при непрерывной смазке Ксм = 10;
Кп - учитывает продолжительность работы передачи в сутки при двухсменной работе Кп = 125.
Для определения шага цепи надо знать допускаемое давление [p] в шарнирах цепи. По таблице 7.18 [1] при n2 = 238 об/мин, ориентируясь на шаг цепи t = 19,05 принимаем [p] = 24 МПа.
Шаг однорядной цепи
мм.
Подбираем по таблице 7.15 [1] цепь ПР-25,4-60 по ГОСТ 13568-75, имеющую: шаг t = 25,4 мм; разрушающую нагрузку Q = 60кН; массу q = 2,6 кг/м;
Аоп = 179,7мм2.
Скорость цепи
м/с.
Окружная сила
H.
Давление в шарнирах проверяем по формуле 7.39 [1]:
МПа.
Уточняем по таблице 7.18 [1] допускаемое давление.
р = 23 [ 1 + 001 (z3 - 17)] = 21 [1 + 001 (24 - 17)] = 22,5 МПа.
Условие р [p] выполнено.
Определяем число звеньев цепи (формула 7.36 [1])
где (стрaница 148 [1]); z = z3 + z4 = 24 + 85 = 109.
тогда Lt = 2 ? 50 + 05 ? 109 + = 156,4. Округляем до четного числа Lt = 156.
Уточняем межосевое расстояние цепной передачи по формуле 7.37 [1]
Для свободного провисания цепи предусматриваем возможность уменьшения межосевого расстояния на 04% т.е. на 1265 ? 0004 5 мм.
Определяем диаметры делительных окружностей звездочек по формуле 7.34 [1]
мм;
мм.
Определяем диаметры наружных окружностей звездочек.
мм
мм,
где d1 = 15,88 мм - диаметр ролика цепи (таблица 7.15 [1]).
Силы, действующие на цепь:
Окружная Ftц = 1300Н (определены выше).
От центробежных сил Fv = q ? 2 = 2,6 ? 2,422 = 16 H.
От провисания цепи Ff = 981 ? Kf ? q ? ац = 981 ? 15 ? 2,6 ? 1,27= 49 Н,
Расчетная нагрузка на вал Fв = Ftц + 2Fг = 1300+ 2 ? 49 = 1398H.
Проверяем коэффициент запаса прочности цепи (формула 7.40 [1])
> [S] = 8,4
где [S] = 8,4- нормативный коэффициент запаса прочности цепи (таблица 7.19 [1]).
Условие S > [S] выполнено
Размеры ведущей звездочки:
dd3 =194.6мм; Дез = 206мм
диаметр ступицы звездочки
Дст3= 16 dв2 = 16 ? 32 = 52мм;
длина ступицы lст3 = (1216) ? dв2 = (1216) ? 32 = (38,4ч51,2) мм;
принимаем lст3 = 50 мм.
Толщина диска звездочки
С = 093 Вн = 093 ? 15,88 =14,8 мм
где Вн = 15,88 мм - расстояние между пластинами внутреннего звена цепи (табл. 7.15 [1])
7. Первый этап компоновки редуктора
Компоновку выполняется в два этапа. Превый этап позволяет приближенно определить положение зубчатых колес и ведущей звездочки цепной передачи относительно опор для последующего определения опорных реакций и набора подшипников.
Компоновочный чертеж выполняем в одной проекции - разрез по осям валов при снятой крышке корпуса в масштабе М 1:1.
Примерно по середине листа проводим горизонтальную осевую линию затем две вертикальные оси валов на расстоянии аw = 180 мм.
Вычерчиваем упрощенно шестерню и колесо: шестерня выполнена за одно целое с валом: длина ступицы колеса равна ширине венца колеса.
Очерчиваем внутреннюю стенку корпуса:
а) принимаем зазор от окружности вершин зубьев колеса до внутренней стенки корпуса А = д =10 мм;
б) принимаем зазор между торцом ступицы шестерни и внутренней стенкой корпуса А1 = 10 мм;
в) принимаем зазор между наружным кольцом подшипника ведущего вала и внутренней стенкой корпуса А2 = 10 мм.
Предварительно намечаем радиальные шарикоподшипники легкой серии по ГОСТ 8338-75. Габариты подшипников выбираем из таблицы П3. [1] по диаметру вала в месте посадки подшипника: dп1 = 30 мм; dп2 = 35 мм.
Условное обозначение подшибника |
d |
D |
B |
Грузоподъёмность, кН |
||
Размеры, мм |
||||||
206 |
30 |
62 |
16 |
19,5 |
10 |
|
207 |
35 |
72 |
17 |
25,5 |
13,7 |
Решаем вопрос смазки подшипников. Принимаем для подшипников пластичную смазку. Для предотвращения вытекания смазки внутрь и вымывания пластичной смазки жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца. Их ширина определяет размер У=10 мм; принимаем У = 10 мм.
Находим расстояние от середины шестерни до точек приложения реакции подшипников к валам:
на ведущем валу мм;
на ведомом валу мм;
тоесть l1 = l2 = 54 мм.
Из расчета цепной передачи определяем расстояние от точки приложения натяжения цепи к валу, до точки приложения реакции ближайшего из подшипника ведомого вала.
Длина гнезда подшибника
мм,
S = 10 мм - толщина врезной крышки;
Определяем расстояние от точки приложения натяжения цепи к валу до реакции ближайшего подшибника ведомого вала
мм
8. Проверка долговечности подшипников
8.1 Ведущий вал
Силы, действующие в зацеплении:
Ft = 500 H; Fr = 182 H, из первого этапа компоновки l1 = 46 мм.
Расчетная схема вала
Определяем реакции опор:
а) в горизонтальной плоскости H;
б) в вертикальной плоскости Н.
Определяем изгибающие моменты и строим эпюры:
а) в горизонтальной плоскости
Mx1 = 0; Mx2 = 0; Mcx = Rx1? l1 = 440? 54 = 23760 H?мм = 23,76 Н?м;
б) в вертикальной плоскости
My1 = 0; My2 = 0; Mcy = Ry1? l1 = 160? 54 = 8640 H?мм = 8,64 Н?м.
Определяем суммарные реакции опор
Так как осевая нагрузка в зацеплении отсутствует то коэффициент осевой нагрузки
y = 0 а радиальной x = 10.
Эквивалентную нагрузку определяем по формуле
Рэ = x ? v ? R ? Кб ? Кт
при t < 100 C температурный коэффициент Кт = 10 (табл. 9.20 [1] );
V = 10 - коэффициент при вращении внутреннего кольца подшипника.
Кб =1.2 -коэфициент безопасности для редукторов
Тогда Рэ = 1,0 ? 1,0 ? 470 ? 12 ? 1,0 = 570 H = 0,57кН.
Расчетная долговечность, часов
часов.
8.2 Ведомый вал
Силы действующие в зацеплении: Ft = 880 H; Fr = 320 H; Fц = 1398 H. Крутящий момент на валу Т2 = 126 Н?м. n2 = 238об/мин
Из первого этапа компоновки: l2 = 54 мм; l3 = 70 мм.
Расчетная схема вала
Составляющие действующие на вал от натяжения цепи.
Fцx = Fцy = Fц ? sinг = 1398 ? sin 45° = 1398 ? 07071 = 988 Н.
Определяем реакции опор:
а) в горизонтальной плоскости
m3 = 0; Fцx? (2l2 + l3) - Ft ? l2 - Rx4 ? 2l2 = 0;
Н;
m4 = 0; - Rx3 ? 2l2 + Ft ? l2 + Fцx ? l3 = 0
H.
Проверка:
xi = 0; Rx3 + Fцx - Ft - Rx4 = 1126 + 988 - 880 - 1234= 0.
Следовательно реакции определены верно.
б) в вертикальной плоскости
m3 = 0; Fr? l2 + Fцy? (2l2 + l3) - Ry4? 2l2 = 0
H;
m4 = 0; - Ry3? 2l 2 - Fr? l 2 + Fцy? l 3 = 0;
Н.
Проверка:
yi = 0; Ry3 + Fr + Fцy - Ry4 = 480 + 320+988 - 1788 = 0.
Следовательно реакции определены верно.
Определяем изгибающие моменты и строим эпюры:
а) в горизонтальной плоскости
Мx3 = 0; Mbx = 0;
Max = - Rx3? l2 = - 1126? 54 = - 60800 H?мм = -60,8 Н?м;
M4х = - Fцx? l3 = - 988 ?70 = - 69160 H?мм = - 69,16 Н?м;
б) в вертикальной плоскости
M3y = 0 M by = 0;
May = Ry3? l 2 = 480 ? 54 = 25920 H?мм = 25,92 Н?м;
M4y = - Fцy? l 3 = - 998 ? 70 = - 69160 H?мм = - 69,16 Н?м.
Определяем суммарные реакции опор
Н;
Н.
Эквивалентную нагрузку определяем для более нагруженной опоры “4” так как
R4 > R3.
Значения коэффициентов принимаем те же что и для ведущего вала:
x = 1,0 v = 1,0 Кт = 1,0 Кб = 12. У = 0;
Определяем эквивалентную нагрузку
Рэ4 = x ? v ? R4 ? Кт ? Кб = 1,0 ? 1,0 ? 2,18 ? 1,2 ? 10 = 2,62 кН.
Расчетная долговечность, часов
часов.
Подшипники ведущего вала № 205 имеют ресурс Lh = 69?104 ч а подшипники ведомого вала № 206 имеют ресурс Lh = 64,52?103 часов.
9. Проверка прочности шпоночных соединений
Шпонки призматические со скругленными торцами. Размеры сечений шпонок пазов и длины по ГОСТ 23360 - 78. Материал шпонок сталь 45 нормализованная.
Напряжения смятия и условие прочности
;
допускаемые напряжения при стальной ступице [см] = 120 МПа, а при чугунной ступице [G см] = 70 МПа.
9.1 Ведущий вал
Крутящий момент на валу Т1 = 31,7 Н?м.
Шпонка на выходном конце вала для соединения муфтой с валом электродвигателя. По таблице 8.9 [1] при dв1 = 18 мм находим bЧh = 8Ч7 мм; t1 = 4 мм; длина шпонки
l = 40 мм при длине ступицы полумуфты lст = 45 мм (Таблица 11.5 [1]).
Тогда
9.2 Ведомый вал
Крутящий момент на валу Т2 = 126,8 Н?м.
Шпонка под зубчатым колесом dк2 = 40 мм. По табл. 8.9 [1] принимаем bЧh = 12Ч8 мм; t1 = 5 мм; длина шпонки l = 45 мм . При длине ступицы колеса lст3 = 50 мм.
Тогда
Шпонка на выходном конце вала, под ведущую звёздочку цепной передачи,
dв2 = 32мм; По таблице8.9[1] bЧh = 10Ч8; t 1 = 5мм; l = 50мм; при длине ступицы звёздочки lст = 55мм
Звёздочка литая из стали 45Л
Тогда
Вывод: Условие см [см] выполнено.
10. Уточненный расчет валов
Будем выполнять расчет для предположительно опасных сечений. Прочность соблюдена при S [S].
10.1 Ведущий вал
Материал вала сталь 45, улучшенная так как вал изготовлен за одно целое с шестерней. По таблице 3.3 [1] при диаметре заготовки до 90 мм (в нашем случае da1 = 78 мм) принимаем в = 780 МПа.
Предел выносливости при симметричном цикле изгиба
= 043?в = 043 ? 780 = 335 МПа.
Предел выносливости при симметричном цикле касательных напряжений
-1 = 058? = 058 ? 335 = 193 МПа.
Сечение А-А .
Это сечение выходного конца вала dв1 = 24 мм под муфту, для соединения вала двигателя с валом редуктора. Концентрацию напряжений вызывает наличие шпоночной канавки. По таблице 8.9 [1] при dв1 = 24 мм находим b = 8 мм; t1 = 4 мм. Это сечение рассчитываем на кручение. Коэффициент запаса прочности сечения
.
Момент сопротивления кручению
мм3.
Крутящий момент на валу Т1 = 12,5 Н?м.
Амплитуда и среднее напряжение цикла касательных напряжений
МПа.
Принимаем по таблице 8.5 [1] K = 178
по таблице 8.8 [1] = 083 и = 01. Тогда
10.2 Ведомый вал
Материал вала - сталь 45, нормализованная. По табл.3.3[1] принимаем в = 580 МПа.
Cечение вала А-А.
Это сечение под зубчатым колесом dк2 = 40 мм. Крутящий момент на валу
Т2 = 126,8 Н?м. Концентрация напряжений обусловлена наличием шпоночной канавки. По табл. 8.9 [1] при dк2=35мм находим b = 12 мм, t1 = 5 мм.
Вал подвергается совместному действию изгиба и кручения.
Момент сопротивления изгибу:
мм3.
Амплитуда нормальных напряжений:
МПа.
Амплитуда и среднее напряжение цикла касательных напряжений:
МПа.
По табл. 8.5 [1] K= 1,58; K = 1,48;
По табл. 8.8 [1] = 0,85; = 0,73; = 0,1.
Коэффициент запаса прочности по нормальным напряжениям
.
Коэффициент запаса прочности по касательным напряжениям
Результирующий коэффициент запаса прочности сечения
Сечение вала Б-Б.
Это сечение выходного конца вала под ведущую звездочку цепной передачи
dв2 = 32мм. Концентрация напряжений обусловлена наличием шпоночной канавки. По табл. 8.9 [1] при dв2=25 мм находим b = 10 мм, t1 = 5 мм.
Вал подвергается совместному действию изгиба и кручения
Изгибающий момент в сечении под звездочкой
Mи = Fц? x приняв x =50 мм получим
Ми = 1398 ? 50 = 69,9 Н?м.
Момент сопротивления кручению
мм3.
Момент сопротивления изгибу
мм3.
Амплитуда нормальных напряжений
МПа; m = 0.
Амплитуда и среднее напряжение цикла касательных напряжений
МПа.
По табл. 8.5 [1] принимаем К= 158; К = 148.
По табл. 8.8 [1] находим = 087; = 076;
Коэффициент запаса прочности по нормальным напряжениям
Коэффициент запаса прочности по касательным напряжениям
Результирующий коэффициент запаса прочности сечения
Вывод: прочность валов обеспечена.
11. Выбор сорта смазки
Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса редуктора.
Объем масляной ванны (Vм) определяется из расчета 025 дм3 масла на 1 кВт передаваемой мощности.
Vм = 025? Ртр = 3,15 = 0,7 дм3.
По табл. 10.8 [1] устанавливаем вязкость масла. При контактных напряжениях
н = 302 МПа и скорости колес V = 4,26 м/с рекомендуемая вязкость масла
50 = 28?10-6 м2/c
По табл. 10.10 [1] по ГОСТ 20799 - 75 выбираем масло индустриальное И - 30А.
Подшипниковые камеры заполняют пластичной смазкой УТ-1 (Табл. 9.14 [1]). Периодически смазка пополняется шприцем через пресс - масленки.
12. Посадки деталей редуктора
Посадки назначаем в соответствии с указаниями таблица 10.13. [1]
по ГОСТ 25347 - 82.
Посадка зубчатого колеса на вал .
Посадка ведущей звездочки на вал .
Шейки валов под подшипники выполняем с отклонением вала к6. Отклонения отверстий в корпусе под наружные кольца подшипников по Н7.
Посадки остальных деталей указаны на сборочном чертеже редуктора.
13. Сборка редуктора
Перед сборкой внутреннюю полость редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вала начиная с узлов валов;
На ведущий вал насаживают мазеудерживающие кольца и устанавливают шарикоподшипники номер 206 предварительно нагретые в масле до t = 90 - 100 С и надевают сквозную подшипниковую крышку.
В ведомый вал закладывают шпонку 12Ч8Ч45 мм и напрессовывают колесо до упора в бурт вала устанавливают распорную втулку мазеудерживающие кольца шарикоподшипники номер 207 предварительно нагретые в масле и надевают сквозную подшипниковую крышку.
Собранные валы укладывают в основание корпуса заполняют подшипниковые камеры пластичной смазкой. Покрывают поверхности стыка корпуса и крышки спиртовым лаком устанавливают в проточки корпуса глухие врезные подшипниковые крышки и устанавливают крышку корпуса.
Перед установкой сквозных подшипниковых крышек в проточки закладывают войлочные сальники.
Для центровки крышка устанавливается на корпусе с помощью двух конических штифтов.
Проверяют проворачиванием валов отсутствие заклинивания подшипников и закрепляют крышку корпуса болтами.
Ввертывают пробку маслоспускного отверстия с прокладкой жезловый маслоуказатель и пресс-масленки. Заливают внутрь корпуса масло индустриального И - 30А и закрывают смотровое отверстие крышкой с прокладкой из маслостойкой резины и закрепляют крышку болтами.
Собранный редуктор обкатывают и подвергают испытанию на стенде.
Литература
Чернавский С.А. и др. “Курсовое проектирование деталей машин”. М. 1987г.
Устюгов.И.И «Детали машин». М 1981г.
Подобные документы
Исходные данные к расчету редуктора. Выбор и проверка электродвигателя. Определение передаточного числа привода и закрытой червячной передачи. Проверка коэффициента запаса прочности. Эскизная компоновка редуктора и проверка шпоночных соединений.
курсовая работа [472,8 K], добавлен 25.06.2014Выбор электродвигателя и энерго-кинематический расчет привода. Проектные и проверочные расчеты передач привода. Подбор и расчет подшипников и шпонок. Компоновка редуктора и расчет корпуса. Подбор расчет муфт. Выбор смазки и способ контроля ее уровня.
курсовая работа [235,1 K], добавлен 20.07.2009Подбор электродвигателя, определение кинематических параметров на валах привода. Расчет клиноременной передачи, проектный и проверочный. Выбор материала и параметры колес зубчатой передачи. Этапы компоновки редуктора. Выбор смазочных материалов.
курсовая работа [1,0 M], добавлен 08.07.2012Принципы работы механического привода электродвигателя редуктора. Кинематический и силовой расчёты привода, его мощности, выбор электродвигателя, вычисление основных его характеристик. Расчёт зубчатой передачи тихоходной и быстроходной ступени редуктора.
курсовая работа [132,0 K], добавлен 10.05.2010Кинематический расчет редуктора, его характерные параметры и внутренняя структура. Геометрический и прочностной расчеты передачи. Эскизная компоновка, предварительный и проверочный расчет валов, шпоночных и шлицевых соединений, их конструктивные размеры.
курсовая работа [321,0 K], добавлен 25.03.2015Анализ кинематической схемы привода. Определение мощности, частоты вращения двигателя. Выбор материала зубчатых колес, твердости, термообработки и материала колес. Расчет закрытой цилиндрической зубчатой передачи. Силовая схема нагружения валов редуктора.
курсовая работа [298,1 K], добавлен 03.03.2016Расчет и выбор электродвигателя. Определение общего передаточного числа по номограмме числа, зубьев по ступеням, геометрических размеров вала и зубчатого колеса на последнем валу, диаметров делительных окружностей колес. Проверка числа ступеней механизма.
контрольная работа [84,2 K], добавлен 02.07.2014Основные размеры электродвигателя постоянного тока. Расчет обмоток якоря и возбуждения. Размеры зубцов, пазов, проводов и электрические параметры якоря. Коллектор, щеткодержатели и щетки. Магнитная система и рабочие характеристики электродвигателя.
курсовая работа [367,2 K], добавлен 13.10.2014Механическая характеристика рабочей машины, приведённой к угловой скорости вала электродвигателя. Передаточное число передачи электродвигателя к рабочей машине. Продолжительность пуска электродвигателя с нагрузкой. Потери энергии в асинхронном двигателе.
контрольная работа [49,3 K], добавлен 27.10.2010Предварительный выбор двигателя турникета. Расчет требуемой мощности и редуктора. Необходимые геометрические размеры. Проверочный расчет требуемой мощности двигателя. Кинематическая погрешность редуктора. Обоснование выбора применяемых материалов.
контрольная работа [58,9 K], добавлен 11.01.2014