Термодинамический цикл паротурбинных электростанций
Описание принципиальной тепловой схемы паротурбинной электростанции и определение термического коэффициента её полезного действия. Превращения энергии на ТЭЦ и характеристика технологической схемы котел – турбина. Устройство двухвальных турбогенераторов.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 25.10.2013 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
15
Реферат
Термодинамический цикл паротурбинных электростанций
Способы производства электрической и тепловой энергии
Наиболее распространенным типом тепловых электростанций являются паротурбинные электростанции. На современных тепловых электростанциях превращение тепла в работу осуществляется большей частью в циклах, в которых основным рабочим теплом является водяной пар высоких давлений и температур. Водяной пар получают с помощью парогенераторов, в топках которых сжигают разные виды топлива. Тепловая энергия преобразуется в механическую работу в паротурбинных установках по термодинамическому циклу, предложенному в середине XIX в. шотландским инженером и физиком У. Рен-киным, а также немецким физиком Р. Клаузиусом. К основным термодинамическим процессам относятся изобарный -- при постоянном давлении, изохорный -- при постоянном объеме, изотермический -- при постоянной температуре, адиабатный -- при постоянной энтропии.
Принципиальная тепловая схема электростанции, работа которой основана на цикле Ренкина, показана на рис. 1.2, а.
На рис. 1.3 цикл Ренкина изображен на Т-5-диаграмме, где по оси ординат отложена температура Т, а по оси абсцисс--удельная энтропия S, ДжУ(кг-К). С помощью питательного насоса ПН (рис. 1.2, а) вода сжимается и подается в парогенератор ПГ, в котором вода подогревается и превращается в водяной пар. В пароперегревателе ЯД пар подвергается перегреву. Перегретый пар, поступая затем в паровую турбину ПТ, приводит в движение вращающуюся часть --ротор, соединенный с ротором генератора электрической энергии Г. Из паровой турбины пар выходит конденсация пара. Конденсат пара поступает в питательный насос ПН.
Конденсация пара происходит по изобаре р2--const (линия 23 на рис. 1.3). Сжатие воды питательным насосом от давления р2 до давления рг является адиабатным процессом, изображенным весьма малым отрезком 35, что свидетельствует о малой работе, которая затрачивается насосом для сжатия воды., К воде в парогенераторе при изобарном процессе p^const подводится тепло: сначала вода нагревается до кипения (участок 54), затем происходит парообразование (участок 46) и перегрев водяного пара (участок 61) изобары p1 = const. Перегретый пар поступает в турбину, в которой происходит адиабатический процесс расширения пара (адиабата 12). Отработанный пар направляется в конденсатор, и цикл замыкается. Количество тепла, подведенного к рабочему телу в цикле (qj), соответствует площади а.354 612ва на Г-5-диаграмме. Тепло, отведенное в цикле (92). изображено площадью а32ва. Работа цикла эквивалентна площади 3546 123.
Термический коэффициент полезного действия (к.п.д.) цикла
(1.5)
где i1, i2, i3, i5 --удельные энтальпии (удельные количества теплоты) рабочего тела, Дж/кг, равные суммам внутренней энергии системы u и произведениям давления системы р на объем системы V; для k-u точки цикла
in=uk+phVk (1-6)
-- теоретическая работа сжатия в цикле, совершаемая питательным насосом
(1.7)
где Vb -- удельный объем воды, м3/кг.
Термический к.п.д. можно также определить из уравнения:
(1.8)
где Т2 -- температура для точки 2 цикла, К; Sr и S3 -- энтропии для точек 1 и 3 цикла, Дж/(кг- К).
На рис. 1.4, а цикл Ренкина изображен на i-S-диаграмме, на которой по оси ординат отложена энтальпия i, Дж/кг, а по оси абсцисс энтропия S, Дж/(кг-К). Расстояние между точками 1 и 2 соответствует работе турбины, между точками 5 и 3 -- работе в насосе, между точками 1,6,4 и 5 тепла q1, подводимому в цикле, а между точками 2 и 3 -- теплу q2, отводимому в цикле i-S-диаграмма водяного пара приведена на рис. 1.4, б.
К.п.д. паротурбинной установки тем выше, чем больше давление и температура поступающего в турбину пара и глубже вакуум в конденсаторе. Вакуум в конденсаторах турбин достигает 95--97%, что соответствует давлению отработавшего пара 0,0049 -- 0,0029 МПа. Последующее повышение вакуума возможно лишь в небольших пределах, связано с необходимостью дополнительного увеличения количества охлаждающей воды и экономически нецелесообразно.
Увеличение начальных параметров, т. е. давления и температуры подводимого к турбине так называемого «острого» пара, также ограничено в связи с трудностью создания дешевых материалов, способных работать при таких параметрах пара, а также вследствие возникающих при этом затруднениях в организации внутри котловых процессов и водного режима котлов.
При критических параметрах воды, т. е. при критическом давлении 22 МПа и критической температуре Тк = 647,3 К, энтальпия жидкости составляет около 2090 кДж/кг и нет различия между водой и паром. Принципиальная технологическая цепь изменений энергии на электростанции на основе изложенного (см. рис, 1.2) состоит из трех основных процессов:
превращение энергии, содержащейся в топливе, в энергию рабочего тепла водяного пара; агрегатом, в котором происходит процесс, является паровой котел или парогенератор (его к.п.д. -90-95%);
превращение энергии рабочего тепла пара в кинетическую энергию вращения ротора турбины; при этом процессе рабочий агрегат -- паровая турбина. У конденсационных турбин пар проходит через проточную часть и выходит в конденсатор, охлаждаемый циркуляционной водой, нагреваемой при этом на 7--12°. Пар конденсируется и превращается в конденсат, который с помощью питательного насоса вновь направляется в паровой котел. Нагретая циркуляционная вода направляется в водоемы или охладители. Ее тепло не используется, в связи с чем к.п.д. турбины обычно не превышает 35--43%. На теплоэлектроцентралях (ТЭЦ) весь пар или часть его после турбины либо нагретая при ухудшенном вакууме в конденсаторе вода, либо пар из отбора турбины направляются для использования на нужды бытовые или промышленности;
превращение кинетической энергии вращающегося вала турбины в электрическую энергию.
Агрегатом, в котором происходит превращение, является генератор с к.п.д. 98,5--99%. Наиболее удобны с термодинамической и эксплуатационной точек зрения рабочие тела теплосиловых установок с достаточно низкой теплоемкостью в жидкой фазе и с не слишком низким значением давления в конденсаторе, обеспечивающие высокое значение к.п.д. при не очень высоком давлении пара, и недорогие. Вода имеет, однако, довольно высокую теплоемкость в жидкой фазе, хотя и характеризуется не слишком низким значением давления в конденсаторе. Средняя температура подвода тепла в пароводяном цикле не очень высока даже при использовании пара высокого давления. Поэтому вода может быть удачно применена в низкотемпературной части цикла.
Рабочих тел без недостатков, способных обеспечить предъявляемые к ним требования во всем температурном интервале цикла, нет, ( поэтому были предложены так называемые бинарные циклы с использованием комбинации двух рабочих тел. При их осуществлении верхняя часть цикла отражает работу ртути или других высококипящих веществ. Тепло, которое отводится при их конденсации, используют для парообразования низкокипящего вещества, например воды. В США для работы по бинарному циклу была построена электростанция Кирни. Парортутные и другие бинарные циклы ввиду сложности соответствующих установок распространения не получили.
Способы производства электрической и тепловой энергий подразделяются на раздельный -- электростанция и котельные (см. рис. 1.2, б) и комбинированный-- теплоэлектроцентрали (ТЭЦ). При раздельном способе электроэнергию вырабатывают электростанции, а тепловую энергию --котельные. При комбинированном способе электрическая и тепловая энергии вырабатываются на ТЭЦ. Общий к.п.д. на конденсационных тепловых электростанциях не превышает 30--37%. На теплоэлектроцентралях он может достигать 80% и более.
К недостаткам ТЭЦ относятся:
1)меньшая, по сравнению с конденсационными электростанциями, единичная мощность агрегатов и более высокая стоимость одного установленного киловатта (на конденсационных электростанциях в 1975 г. она была равна в среднем 135--140 руб/кВт, а на ТЭЦ -- 170--270 руб/кВт); более высокие удельные (на один установленный киловатт) расходы строительных материалов и дефицитного оборудования (кабеля, приборов, трубопроводов и т. п.);
ограниченный радиус транспортировки тепла. К наибольшим по протяженности относится теплофикационная магистраль СУГРЭС (г. Свердловск) длиной 28 км;
большая масса теплофикационных трубопроводов по сравнению с трубопроводами для транспортировки энергетически эквивалентных количеств газа.
В дальнейшем возможно более широкое применение электрических бытовых установок, которые имеют ряд гигиенических и других преимуществ.
В настоящее время, за исключением отдаленных районов и особых случаев, не устанавливаются турбоагрегаты мощностью менее 50 МВт, включая ТЭЦ. ТЭЦ сооружают при наличии тепловых нагрузок свыше 350 МВт, а при небольших тепловых нагрузках до 230 МВт при дешевом топливе ТЭЦ не сооружают, и строят районные и промышленные отопительные котельные. При суммарных тепловых нагрузках 230--350 МВт вопрос о выборе схемы теплоснабжения решают на основе инженерно-экономических расчетов.
На тепловых электростанциях устанавливаются турбоагрегаты различных типов. Для повышения к.п.д. турбинных установок в многоцилиндровых турбинах пар после одного или двух цилиндров направляется на дополнительный промежуточный перегрев в котел. Некоторые зарубежные установки имеют двойной промежуточный перегрев пара. При наличии промежуточного перегрева пара экономичность теплосиловой установки растет за счет увеличения средней температуры подвода тепла (рис. 1.5). Термический к.п.д. цикла с промежуточным перегревом:
где i7 и i8 -- соответственно энтальпии тара в начале и в конце промежуточного перегрева; i9 -- энтальпия влажного пара на входе в конденсатор.
Для целей теплофикации применяют теплофикационные турбины с отборами пара; они имеют один, два или более отборов пара (рис. 1.6, а). Отборы низкого давления до 0,1--0,5 МПа (номинальное значение часто равно 0,12 МПа) используются для отопительных установок. Отборы более высоких давлений 0,5--1,0 МПа (иногда до 1,6 МПа и выше) используются для промышленных нужд. Турбины с противодавлением (рис. 1.6, б) конденсаторов не имеют; пар из этих турбин направляется для нужд теплофикации. Турбины с ухудшенным вакуумом отдают тепло для нужд теплофикации с нагретой до 50--60°С (или до более высокой температуры) циркуляционной водой; при этом разрежение в конденсаторе невелико.
Принципиальная технологическая схема ТЭЦ
Принципиальная технологическая схема ТЭЦ (рис. 1.9) несколько сложнее схемы ГРЭС. Пар к технологическим потребителям направляется из отборов турбины непосредственно к потребителям пара ПТП или же через паропреобразозатеть ППР, которые применяются и для сокращения потерь дорогостоящего конденсата установок высокого давления. Конденсат потребителей после очистки и конденсат паропреобразователей возвращаются в общий поток конденсата насосами перекачки конденсата НПК. Горячая вода направляется к теплофикационным потребителям ТП сетевыми насосами СП Она подогревается паром из теплофикационных отборов турбины в основных ОПСВ и пиковых ППСВ подогревателях (бойлерах) сетевой воды или же в пиковых водогрейных котлах ПВК. Конденсат подогревателей направляется в деаэратор насосами перекачки конденсата бойлеров НПК.
Так как ТЭЦ расположены ближе к потребителям электроэнергии ПЭ, чем ГРЗС, то для их питания сооружают распредустройства генераторного напряжения закрытого типа (ГРУ или ЗРУ) и только удаленные потребители ТЭЦ питаются от открытых распредустройств
(ОРУ), соединенных с ГРУ повышающими трансформаторами ПТР. Трансформаторы собственного расхода присоединяются при этом не к выводам генератора, а к ГРУ.
Принципиальная технологическая схема КЭС
На КЭС котлы и турбины соединяются в блоки: котел--турбина (моноблоки) или два котла--турбина (Дубль-блоки). Общая принципиальная технологическая схема конденсационной тепловой электростанции КЭС (ГРЗС) представлена на рис. 1.7.
К топке парового котла ПК (рис. 1.7) подводится топливо: газообразное ГТ, жидкое ЖТ или твердое ТТ. Для хранения жидкого и твердого топлив имеется склад СТ. Образующиеся при сжигании топлива нагретые газы отдают тепло поверхностям котла, подогревают воду, находящуюся в котле, и перегревают образовавшийся в нем пар. Далее газы направляются в дымовую трубу Дт и выбрасываются в атмосферу. Если на электростанции сжигается твердое топливо, то газы до поступления в дымовую трубу проходят через золоуловители ЗУ в целях охраны окружающей среды (в основном атмосферы) от загрязнения. Пар, пройдя через пароперегреватель ПИ, идет по паропроводам в паровую турбину, которая имеет цилиндры высокого (ЦВД), среднего (ЦСД) и низкого (ЦНД) давлений. Пар из котла поступает в ЦВД, пройдя через который вновь направляется в котел, а затем в промежуточный пароперегреватель ППП по «холодной нитке» паропровода промежуточного перегрева. Пройдя промежуточный пароперегреватель, пар вновь возвращается к турбине по «горячей нитке» паропровода промежуточного перегрева и поступает в ЦСД. Из ЦСД пар по пароперепускным трубам направляется в ЦНД и выходит в конденсатор /(, где конденсируется.
Конденсатор охлаждается циркуляционной водой. Циркуляционная зона подается в конденсатор циркуляционными насосами ЦН. При прямоточной схеме циркуляционного водоснабжения циркуля-циончзя вода забирается из водоема В (реки, моря, озера) и, выйдя из конденсатора, вновь возвращается в водоем. При оборотной схеме циркуляционного водоснабжения охлаждающая конденсатор вода направляется в охладитель циркуляционной воды (градирню, пруд-охладитель, брызгальный бассейн), охлаждается в охладителе и вновь возвращается циркуляционными насосами в конденсатор. Потери циркуляционной воды компенсируются путем подачи добавочной воды от ее источника.
В конденсаторе поддерживается вакуум и происходит конденсация пара. С помощью конденсатнык насосов К.Н конденсат направляется в деаэратор Д, где очищается от растворенных в нем газов, в частности от кислорода. Содержание кислорода в воде и в паре теплосиловых установок недопустимо, так как кислород агрессивно действует на металл трубопроводов и оборудования. Из деаэратора питательная вода с помощью питательных насосов ПН направляется в паровой котел. Потери воды, возникающие в контуре котел--паропровод--турбина--деаэратор котел, пополняются с помощью устройств водоподготовки ХВО (химводоочистки). Вода из устройств водоподготовки направляется для подпитки рабочего контура теплосиловой установки через деаэратор химочищенной воды ДХВ.
Находящийся на одном валу с паровой турбиной генератор Г вырабатывает электрический ток, который по выводам генератора направляется на ГРЭС, в большинстве случаев на повышающий трансформатор ПТр. При этом напряжение электрического тока повышается и появляется возможность передачи электроэнергии на большие расстояния по линиям передачи ЛЭП, присоединенным к повышающему распредустройству. Распредустройства высокого напряжения строятся главным образом открытого типа и называются открытыми распредустройствами (ОРУ). Электродвигатели механизмов ЭД, освещение электростанции и другие потребители собственного расхода или собственных нужд питаются от трансформаторов ТрСР, присоединенных обычно на ГРЭС к выводам генераторов.
При работе тепловых электростанций на твердом топливе должны быть приняты меры по охране окружающей среды от загрязнения золой и шлаком. Шлак и зола на электростанциях, сжигающих твердое топливо, смываются водой, смешиваются с нею, образуя пульпу, и направляются на золошлакоотвалы ЗШО, в которых зола и шлаки выпадают из пульпы. «Осветленная> вода с помощью насосов осветленной воды НОВ или самотеком направляется на электростанцию для повторного использования.
При сжигании жидкого топлива возникает необходимость в очистке в специальных устройствах УОЗВ замазученных вод, которые сбрасываются в процессе транспортировки и сжигания топлива. Подвергаются также очистке сбросные воды при промывке оборудования, сточные воды химочистки и конденсатоочистки.
Двухвальные турбогенераторы
Помимо одновальных турбин известны двухзальные паровые турбины большой мощности (рис. 1.10). В установках этого типа пар, пройдя через ЦВД первого вала, направляется сначала в ПСД этого же вала, а затем в ЦСД второго вала. Пройдя ЦСД каждого из валов, пар поступает в соединенные с ними ЦНД. Каждый вал приводит в действие один генератор. Соотношение мощностей генераторов первого и второго валов в ряде случаев 100: 60%.
Параметры пара -- давление и температура перегрева -- по мере развития теплоэнергетики увеличивались, так как при этом обеспечивался рост экономичности тепловых электростанций. Часто действующие установки расширяются путем «пристройки» новых установок, рассчитанных на более высокие параметры пара (рис. 1.11, а). Иногда при этом установки высокого давления соединяются с установками низкого давления дроссельно-увлажнительными устройствами для передачи части пара от установок высокого давления к установкам низкого давления.
Предвключенные турбины устанавливаются относительно редко при модернизации теплосиловых установок путем надстройки (рис. 1,11, б). При этом остаются в работе действующие турбины низкого давления, котлы низкого давления демонтируются, устанавливаются новые котлы более высокого давления, пар из которых проходит к ранее установленным турбинам через предвключенные турбины.
Хотя удельный расход топлива при повышении давления и температуры пара в турбинных установках снижается, увеличение параметров пара, как уже отмечалось ранее, не всегда выгодно. В установках с высокими параметрами для обеспечения прочности паропроводов и деталей котлов и турбин необходимо применение дорогостоящих сталей аустенитного класса. Такие стали более устойчивы к длительному воздействию высоких температур, при которых в сталях наблюдаются температурные деформации -- возникновение.
турбогенератор котел турбина термический коэффициент
Список литературы
1. Аветисян, Д. А. Автоматизация проектирования электрических систем и устройств [Текст]: учеб. пособие / Д. А. Аветисян. - М.: Высш. шк., 2005. - 511 с.
2. Акимова, Н. А. Монтаж, техническая эксплуатация и ремонт электрического и электромеханического оборудования [Текст]: учеб. пособие / Н. А. Акимова, Н. Ф. Котеленец, Н. И. Сентюрихин; под ред. Н. Ф. Котеленца. - М.: Академия, 2009. - 304 с.
3. Алиев, И. И. Кабельные изделия [Текст]: справочник / И. И. Алиев. - М.: РадиоСофт, 2009. - 224 с.
4. Алиев, И. И. Электротехника и электрооборудование [Текст]: справочник / И. И. Алиев. - М.: Высш. шк., 2010. - 199 с.
6. Бейербах, В. А. Инженерные сети, инженерная подготовка и оборудование территорий, зданий и стройплощадок [Текст]: учеб. пособие/ В. А. Бейербах. - Ростов-на-Дону: Феникс, 2005. - 576 с.
7. Бодин, А. П. Электроустановки потребителей [Текст]: справочник/ А. П. Бодин.-М.:Энергосервис, 2007.- 616 с.
8. Браславский, И. Я. Энергосберегающий асинхронный электропривод [Текст]: учеб. пособие / И. Я. Браславский, З. Ш. Ишматов, В. Н. Поляков; под ред. И. Я. Браславского. - М.: Академия, 2004. - 256 с.
9. Буль, О. Б. Методы расчета магнитных систем электрических аппаратов. Программа ANSYS [Текст]: учеб. пособие / О. Б. Буль. - М.: Академия, 2006. - 288 с.
Размещено на Allbest.ru
Подобные документы
Анализ методов проведения поверочного расчёта тепловой схемы электростанции на базе теплофикационной турбины. Описание конструкции и работы конденсатора КГ-6200-2. Описание принципиальной тепловой схемы теплоцентрали на базе турбоустановки типа Т-100-130.
дипломная работа [2,9 M], добавлен 02.09.2010Выбор котла и турбины. Описание тепловой схемы паротурбинной установки. Методика и этапы определения параметров основных точек термодинамического цикла. Тепловой баланс паротурбинной установки, принципы расчета главных показателей и коэффициентов.
курсовая работа [895,5 K], добавлен 03.06.2014Выбор типа и количества турбин, энергетических котлов ГРЭС. Составление принципиальной тепловой схемы электростанции, её расчет на заданный режим. Выбор вспомогательного оборудования тепловой схемы станции. Выбор тягодутьевых установок и дымовой трубы.
дипломная работа [1,2 M], добавлен 02.11.2010Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.
курсовая работа [82,0 K], добавлен 23.04.2016Выбор типа и количества турбин и котлов. Составление и описание принципиальной тепловой схемы электростанции. Определение часового расхода топлива энергетических и водогрейных котлов. Определение выбросов ТЭЦ в атмосферу, расчет и выбор дымовой трубы.
дипломная работа [505,3 K], добавлен 15.01.2015Закономерности переноса и использования теплоты. Сущность термодинамического метода исследования, решение инженерных задач по преобразованию тепловой и механической энергии, определение термического коэффициента полезного действия в физических системах.
курсовая работа [2,2 M], добавлен 20.10.2012Краткое описание, принципиальная тепловая схема и основные энергетические характеристики паротурбинной установки. Моделирование котла-утилизатора и паровой конденсационной турбины К-55-90. Расчет тепловой схемы комбинированной энергетической установки.
курсовая работа [900,4 K], добавлен 10.10.2013Технологическое решение по установке генерирующих мощностей. Основные технические характеристики устанавливаемого основного оборудования: газовая турбина, котел-утилизатор. Расчет принципиальной тепловой схемы и установки генерирующих мощностей.
дипломная работа [1,9 M], добавлен 12.03.2013Расчёт принципиальной тепловой схемы как важный этап проектирования паротурбинной установки. Расчеты для построения h,S–диаграммы процесса расширения пара. Определение абсолютных расходов пара и воды. Экономическая эффективность паротурбинной установки.
курсовая работа [190,5 K], добавлен 18.04.2011Принципиальная схема двигателя внутреннего сгорания и его характеристика. Определение изменения в процессах цикла внутренней энергии и энтропии, подведенной и отведенной теплоты, полезной работы. Расчет термического коэффициента полезного действия цикла.
курсовая работа [209,1 K], добавлен 01.10.2012