К расчету эффективных магнитных полей в магнитных жидкостях

Анализом действующих на дипольную частицу сил. Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц. Формула расчета эффективных полей при разных формах зависимости, когда выполняется требование однородности среды.

Рубрика Физика и энергетика
Вид доклад
Язык русский
Дата добавления 20.03.2007
Размер файла 47,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3

К РАСЧЕТУ ЭФФЕКТИВНЫХ МАГНИТНЫХ ПОЛЕЙ В МАГНИТНЫХ ЖИДКОСТЯХ

Диканский Ю.И.

Один из подходов к определению эффективных полей связан с анализом действующих на дипольную частицу сил [1]. В работе [2] на основании такого анализа получена формула для расчета эффективных электрических полей в жидких диэлектриках. Механический перенос подхода, используемого при ее выводе, возможный благодаря глубокой аналогии между законами электрической поляризации и намагничивания позволяет получить аналогичную формулу для расчета эффективных магнитных полей в магнитных жидкостях в приближении однородности среды:

, (1)

где - напряженность внешнего поля, - магнитная восприимчивость магнитной жидкости, - объемная концентрация ее дисперсной фазы.

Как следует из [3], полученное выражение для эффективного поля согласуется с формулой Лоренц-Лоренца при выполнении условия

, (2)

которое непосредственно следует из того, что функция Клаузиса-Моссоти не зависит от плотности (концентрации диполей):

(3)

Выражение (1) для эффективного поля может быть представлено в виде , т.е. , откуда для параметра эффективного поля следует:

. (4)

Полученная формула позволяет рассчитать параметр эффективного поля по экспериментально полученной зависимости .

Изучение диполь-дипольного взаимодействия однодоменных дисперсных частиц возможно также с помощью анализа температурных зависимостей магнитной восприимчивости магнитных жидкостей. Выражение для расчета эффективного поля можно получить, воспользовавшись подходом, предложенным в [2], возможным благодаря непосредственной связи эффективного поля с действующей на частицу среды силой. При этом, естественно воспользоваться результатами макроскопической теории для объемной плотности сил в магнитном поле. Ранее, выражение для таких сил выводилось во многих работах [3-5] путем приравнивания вариации свободной энергии (при постоянной температуре и векторном потенциале магнитного поля) работе внутренних сил. Вместе с тем авторами работы [6] было показано, что в более общем случае, при вычислении вариации полной (или внутренней) энергии необходимоучитывать вариации температур или энтропий. Если осуществить некоторое виртуальное перемещение элемента магнитной жидкости , находящейся в магнитном поле Н (например, в поле соленоида) так, что часть жидкости вытиснится из пространства, занимаемого полем, то изменение энергии поля, соответствующее изотермическому процессу может быть записано в виде, аналогичном выведенного в [3] для жидкого диэлектрика:

, (5)

где - концентрация дипольных частиц.

Можно предположить, что в общем случае, с учетом изменения температуры это выражение должно быть дополнено слагаемым , т.е. . Изменение температуры определится выражением для магнетокалорического эффекта:

. (6)

Тогда, с учетом предложенного характера виртуального перемещения и выражения для изменения температуры можно получить:

(7)

Наложим ограничение на процесс виртуального перемещения, предположив, что оно не сопровождается изменением концентрации дипольных частиц. В этом случае, второй член в выражении (5) можно положить равным нулю. Тогда, окончательно, для изменения полной энергии с учетом получим:

. (8)

Приравняем полученное выражение для работе пондеромоторных сил, взятой с обратным знаком, т.е. . С учетом этого, нетрудно получить:

.

Используя соотношения векторного анализа

,

. (9)

С учетом того, что , получим:

. (10)

В работе [2] для плотности сил в дипольном приближении найдено следующее выражение:

(11)

Приравнивая (10) и (11), с учетом отсутствия в МЖ пространственной дисперсии и токов проводимости, получим:

(12)

Из формулы (12) видно, что величина эффективного поля связана с магнитной восприимчивостью и ее производной по температуре и может быть рассчитана при использовании зависимости магнитной восприимчивости от температуры. По-видимому, впервые (12) было приведено нами в работе [7] без вывода.

Условие согласуемости (12) с формулой Лоренц-Лоренца для эффективного поля имеет вид:

(13)

Соотношение (13) может быть использовано для оценки в случае применимости формулы Лоренц-Лоренца.

Проверим справедливость полученной формулы (12) для некоторых известных функциональных форм зависимости магнитной восприимчивости от температуры.

В случае парамагнитной жидкости для температурной зависимости магнитной восприимчивости справедлив закон Кюри:

и (14)

Подставив эти выражения в формулу (12), получим: , что и следовало ожидать для системы с невзаимодействующими частицами.

Для парамагнитной жидкости, с магнитной восприимчивостью, подчиняющейся закону Кюри-Вейсса,

, , (15)

где - температура Кюри. Формула (12) в этом случае дает:

(16)

Приравняв (16) к выражению для эффективного поля, записанного в виде и учитывая, что , получим:

(17)

Последнее соотношение, с учетом выражения (15) для дает , что, как известно, следует также непосредственно из закона Кюри-Вейсса. Проведенные оценки позволяют предположить возможность применения формулы (12) для расчета эффективных полей и при других формах зависимости , в том случае, когда выполняется поставленное при ее выводе требование однородности среды.

Литература

1. Де Грот С., и Мазур П. Неравновесная термодинамика.- М.: Мир, 1964.-456 с.

2. Бараш Ю.С. О макроскопическом описании действующего поля в некоторых диэлектриках.// ЖЭТФ.-Т.79, вып.6.-С.2271-2281.

3. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. -М.: Наука.-1982.-623 с.

4. 4.Стреттон Д. Теория электромагнетизма.- М.-Л.: Гостехиздат, 1948.-312 с.

5. Пановский В., Филипс М. Классическая электродинамика.- М.: Гостехиздат, 1957.

6. Гогосов В.В., Налетова В.А., Шапошникова Г.А. Гидродинамика дисперсных систем, взаимодействующих с электромагнитным полем.// Механика жидкости и газа.- №3.-1977.- С.62-70.

7. Диканский Ю.И. Экспериментальное исследование эффективных полей в магнитной жидкости.// Магнитная гидродинамика.- 1982.- №3. - С.33-36.


Подобные документы

  • Примеры расчета магнитных полей на оси кругового тока. Поток вектора магнитной индукции. Теорема Гаусса-Остроградского для вектора: основное содержание, принципы. Теорема о циркуляции вектора. Примеры расчета магнитных полей: соленоида и тороида.

    презентация [522,0 K], добавлен 24.09.2013

  • Магнитные жидкости представляют собой взвесь однодоменных микрочастиц ферро- и ферримагнетиков в жидкой среде. Магнитная жидкость как однородная намагничивающаяся среда. Структурно-динамические образования в магнитных жидкостях.

    реферат [48,6 K], добавлен 20.03.2007

  • Исследование капиллярного подъема магнитной жидкости при воздействии электрического и магнитного полей. Изучение проявления действия пондеромоторных сил на жидкие намагничивающиеся среды и процессы релаксации заряда в тонких слоях магнитных жидкостей.

    лабораторная работа [1,9 M], добавлен 26.08.2009

  • Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.

    курсовая работа [840,5 K], добавлен 12.02.2014

  • Биологическое влияние электрических и магнитных полей на организм людей и животных. Суть явления электронного парамагнитного резонанса. Исследования с помощью ЭПР металлсодержащих белков. Метод ядерного магнитного резонанса. Применение ЯМР в медицине.

    реферат [28,2 K], добавлен 29.04.2013

  • Основные критерии классификации магнитных материалов. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Свойства ферритов и магнитодиэлектриков. Магнитные материалы специального назначения. Анализ магнитных цепей постоянного тока.

    курсовая работа [366,4 K], добавлен 05.01.2017

  • Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.

    презентация [4,2 M], добавлен 14.03.2016

  • Закон полного тока. Единая теория электрических и магнитных полей Максвелла. Пояснения к теории классической электродинамики. Система уравнений Максвелла. Скорость распространения электромагнитного поля. Релятивистская трактовка магнитных явлений.

    презентация [1,0 M], добавлен 14.03.2016

  • Процессы в электрических цепях с сосредоточенными параметрами. Четырехполюсники при переменных токах. Расчет электрических полей. Теорема Гаусса и ее применение. Расчет симметричных магнитных полей. Моделирование плоскопараллельного магнитного поля.

    методичка [4,4 M], добавлен 16.10.2012

  • Геомагнитное поле земли. Причины возникновения магнитных аномалий. Направление вектора напряженности земли. Техногенные и антропогенные поля. Распределение магнитного поля вблизи воздушных ЛЭП. Влияние магнитных полей на растительный и животный мир.

    курсовая работа [326,4 K], добавлен 19.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.